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Abstract

Institutional investors, such as banks and hedge funds, typically base their trad-

ing strategies on stochastic signals extracted from data sets. This thesis explores

the determinants of an optimal trading strategy in a game theoretical framework.

Since institutional investors compete for trading profits, they have an intrinsic mo-

tive to forecast their competitors’ information and incorporate that forecast into

their trading strategies. This thesis contributes to the literature by letting trading

strategies account for stylized empirical facts like autocorrelated order flows and

news arrivals.

The first chapter explores the influence of autocorrelated order flows on trad-

ing strategies. Since market microstructure models predict that informed traders

have an intrinsic motive to submit unpredictable orders, the empirically observed

autocorrelation in order flows is likely to come from uninformed traders. Instead

of assuming uninformed orders to be white noise, the model allows uninformed or-

ders to exhibit a general correlation structure that generates autocorrelation in the

aggregate order flow. As a result, the market maker’s prices and beliefs are linear

functions of the innovation in the aggregate order flow, implying that any form of

predictability in financial markets gets priced immediately. A vital result of the

model is that autocorrelation in the uninformed order flow implies uninformed

orders to be conditionally correlated with the asset value and informed traders’

signals. Therefore, autocorrelated uninformed orders also contain relevant infor-

mation upon conditioning. Although informed traders still submit unpredictable

orders in equilibrium, a numerical analysis shows that the correlation structure



of uninformed orders significantly affects informed traders’ trading intensities and

expected profits.

The second chapter explores the influence of news arrivals on trading strategies.

Given that modern market makers are high-frequency traders competing for speed,

the model assumes that the market maker can trade news faster than other traders.

Consequently, the market maker is also an informed trader since she possesses

short-lived private information about the asset value in every period. Informed

traders learn the news after the market maker and incorporate that information

into their trading strategies. A vital result of the model is that the market maker

only prices the innovation in news. In general, news improves price discovery and

has the highest price impact the first time it arrives. Also, since news arrivals reveal

information about the asset value, informed traders’ expected profits are negatively

related to the informativeness of news. Finally, depending on the correlation

structure of news arrivals, the model can produce new stylized facts like negative

trading intensities and increasing price sensitivities to news.
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1 Information in Noise: Strategic

Trading under Autocorrelated

Uninformed Orders

Vladislav Gounas†

Abstract

This paper develops a strategic trading model in which uninformed orders exhibit

a general correlation structure that generates autocorrelation in the aggregate

order flow. Since the order flow is predictable, informed traders and the market

maker not only need to infer information about the asset value but also forecast

future order flows. The correlation structure of uninformed orders significantly

affects trading intensities, market liquidity, and price efficiency. Since the empirical

autocorrelation in order flows is likely to come from uninformed traders, strategic

trading models should not assume them to be simply noise.

Keywords: Kyle model, autocorrelated order flow, strategic trading, asymmetric

information, signal processing, price impact, market microstructure.

†I thank my supervisor Laurent Calvet for his help and support throughout the creation of this
work. Moreover, I thank Raman Uppal, Abraham Lioui, and Kasper Larsen for the helpful
feedback and provided material.
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1.1 Introduction

Strategic trading models usually classify traders as either informed or unin-

formed.1 The common assumption is that uninformed traders are noise traders

who submit orders completely randomly due to liquidity or rebalancing needs.

However, this is a relatively strong assumption. Just because most traders do not

possess non-public information does not imply that their trades should follow a

random walk. So what if orders submitted by uninformed traders are not simply

noise? What if instead there is a pattern to uninformed orders?

The first strategic trading model was developed by Kyle (1985), and ever since

its original publication, the model has inspired a large body of literature.2 A

key result in strategic trading models with long-lived private information is that

informed traders have an intrinsic motive to place unpredictable orders. Due

to informed traders’ trading strategy, the market cannot infer whether informed

traders will submit buy or sell orders. Since orders by uninformed traders are

usually assumed to be white noise, the aggregate order flow is uncorrelated over

time in those models.

However, as studies by Hasbrouck (1991a,b) and Brogaard, Hendershott, and

Riordan (2019) show, there is significant autocorrelation in empirical order flows.

Consequently, if informed traders have an incentive to be unpredictable with their

trades, then the empirical autocorrelation should come from uninformed traders.

Consider momentum strategies as a simple example. If a single stock performed

strongly in the past, a momentum strategy would imply buying that stock. Thus,

1The existence of uninformed traders is a necessary condition for informed traders to participate
in the market. See Kyle (1985), Glosten and Milgrom (1985), and Easley and O’Hara (1987).

2Extensions with multiple informed traders include Holden and Subrahmanyam (1992, 1994),
Foster and Viswanathan (1994, 1996), Bernhardt and Miao (2004), Dridi and Germain (2009),
Colla and Mele (2010), Ostrovsky (2012), Rostek and Weretka (2012), Lambert, Ostrovsky,
and Panov (2018), and Sastry and Thompson (2019). Back (1992), Back, Cao, and Willard
(2000), Back and Baruch (2004), and Collin-Dufresne and Fos (2016) extend the Kyle (1985)
model in continuous time. Admati and Pfleiderer (1988), Kyle (1989), Seppi (1990), Foster
and Viswanathan (1990), Degryse, Jong, and Kervel (2014), and Choi, Larsen, and Seppi
(2019) incorporate strategic uninformed traders into their models. Caballe and Krishnan
(1994) and Pasquariello (2007) study a multi-asset version of the one-period Kyle (1985)
model with multiple informed traders.
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if several uninformed traders were to follow this strategy, not only would the order

flow be autocorrelated, but it might also be correlated with the true asset value

and even non-public signals.

Moreover, there are also economic reasons why the autocorrelation in the order

flow is likely to come from uninformed traders. In Degryse, Jong, and Kervel

(2014) and Choi, Larsen, and Seppi (2019), autocorrelation in the order flow arises

endogenously by modeling an uninformed trader who strategically rebalances his

position to maintain a target level.3 Since that uninformed trader must reach

his target level before the end of the trading day, his orders are autocorrelated

as a result. To conclude, it stands to reason that uninformed traders generate

autocorrelation in the order flow and that their orders might even be correlated

with other variables of interest.

This paper contributes to the literature by allowing uninformed orders to ex-

hibit autocorrelation in the time series and cross-sectional correlation with the

asset value and informed traders’ signals. As a result, the aggregate order flow

will also be autocorrelated and thus predictable. Even though this paper speaks of

uninformed traders, one can think of them as being partially informed traders who

do not behave strategically. Being uninformed in that context means not possess-

ing relevant non-public information. This paper wants to ask the following ques-

tions: how should heterogeneously informed traders adjust their trading strategies

under (auto)correlated uninformed orders? How does the (auto)correlation affect

the value of non-public information? What is the impact on information efficiency

in financial markets? How sensitive are prices to arriving orders when there is

autocorrelation in the order flow?

This paper builds on the model by Foster and Viswanathan (1996), who were

the first to derive a dynamic trading equilibrium with heterogeneously informed

traders.4 As is usual in strategic trading models, it is assumed that the market

3Choi, Larsen, and Seppi (2019) also allow the uninformed trader to be partially informed.
However, the model still generates autocorrelation in the order flow if the uninformed trader
is entirely uninformed.

4Back, Cao, and Willard (2000) study the Foster and Viswanathan (1996) model in continuous
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consists of informed traders, a mass of uninformed traders, and a competitive

market maker. Before trading starts, each informed trader receives a private

signal about the asset’s true value, leading to a “forecasting the forecasts of others”

problem. Foster and Viswanathan (1996) show that the average of the informed

traders’ signals is a sufficient statistic to forecast the asset value. However, that

result no longer holds once uninformed orders are allowed to be (auto)correlated.

Since uninformed orders now also contain information about the asset value, the

average signal no longer captures all available information in the market.

A vital result of this paper’s model is that autocorrelation in the uninformed

order flow implies uninformed orders to be conditionally correlated with the asset

value and informed traders’ signals in the cross-section. Thus, even if autocorre-

lated uninformed orders do not initially contain information about the asset value

and non-public signals, they do so upon conditioning. Another main result is that

only the innovation in the aggregate order flow has a price impact, implying that

any form of predictability in the market gets priced immediately.

A numerical study shows that (auto)correlated uninformed orders significantly

affect informed traders’ expected profits and price discovery. Informed traders

make the highest expected profits, and prices are least revealing if uninformed

orders are negatively correlated with the asset value in the cross-section. In that

scenario, private information is most valuable because uninformed traders effec-

tively conceal informed traders’ orders by pushing the price away from the true

asset value. In contrast, informed traders’ expected profits are lowest, and price

efficiency is highest if the cross-sectional correlation between uninformed orders

and the asset value is positive. In that case, uninformed orders reveal information

about the asset’s true value, generating competition for informed traders.

Moreover, the speed at which information gets incorporated into prices depends

on the cross-sectional correlation between uninformed orders and informed traders’

time. Other papers with heterogeneously informed traders include Foster and Viswanathan
(1994), Bernhardt and Miao (2004), Dridi and Germain (2009), Colla and Mele (2010),
Rostek and Weretka (2012), Ostrovsky (2012), and Lambert, Ostrovsky, and Panov (2018).
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signals. A positive correlation implies that most information about the asset value

gets revealed in the first periods. In contrast, price discovery is initially low and

increases in later periods if the correlation is negative.

Finally, the shape of the market maker’s illiquidity parameter is determined by

the correlation structure of uninformed orders. In particular, the market maker’s

price sensitivity to order flows can be monotonically decreasing/increasing, con-

stant, U -shaped, and even have an inflection point. Thus, (auto)correlated unin-

formed orders can explain various dynamics of market depth.

This research is related to Aase, Bjuland, and Øksendal (2012) and Lambert,

Ostrovsky, and Panov (2018). Aase, Bjuland, and Øksendal (2012) consider a

model with one perfectly informed trader and allow the uninformed order flow to be

correlated with the asset value. The authors find a negative relationship between

the informed trader’s expected profit and the correlation between uninformed

orders and the asset value. Additionally, price efficiency is lowest if uninformed

orders are negatively correlated with the asset value.

In contrast, Lambert, Ostrovsky, and Panov (2018) consider multiple informed

traders with heterogeneous information and allow for a general correlation struc-

ture between the asset value, informed traders’ signals, and the uninformed or-

der flow.5 They also find that correlated uninformed orders significantly affect

informed traders’ expected profits and price discovery. Moreover, the authors pro-

vide general results on equilibrium existence and uniqueness and derive general

closed-form equilibrium characterizations.

However, both papers focus on a one-period model, whereas this paper wants to

study a dynamic trading game. Even though it will be necessary to impose sym-

metry conditions for (co)variances to keep the analysis tractable in the dynamic

setting, this paper can be viewed as a multi-period extension of the one-period

model in Lambert, Ostrovsky, and Panov (2018).

The rest of this paper is organized as follows. Section 1.2 explains the gen-

5Lambert, Ostrovsky, and Panov (2018) also allow the market maker to receive a signal that
is correlated with the asset value, informed traders’ signals, and the uninformed order flow.
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eral model framework, and Section 1.3 describes the conjectured equilibrium.

In Section 1.4, informed traders’ updating processes along equilibrium and off-

equilibrium paths are analyzed. Moreover, necessary and sufficient conditions

for a dynamic trading equilibrium are provided. Finally, Section 1.5 numerically

evaluates the model, and Section 1.6 concludes.

1.2 The Model

Let the trading day be standardized to the interval [0, 1]. Trading takes place

over N ∈ N sequential batch auctions at equidistant time points 1/N . The market

consists of M ∈ N risk-neutral informed traders, a mass of uninformed traders,

and one risk-neutral competitive market maker, who all trade a single risky asset

with stochastic value v and variance Σv
0 ≡ Var[v]. Trading takes place as follows:

(i) In each period n ∈ {1, . . . , N}, informed and uninformed traders place their

orders to the market maker.

(ii) The market maker observes the aggregate order flow and sets the clearing

price.

(iii) The clearing price and aggregate order flow become public information.

(iv) Steps (i) to (iii) are repeated until the last trading period N is reached.

(v) After the last round of trading, the liquidation value of the asset v gets

publicly announced, and profits of the asset holders are realized.

Before the start of the trading game, each informed trader i ∈ {1, . . . ,M} receives

a private signal si,0 about the asset’s true value. Denote the signal vector as s ≡

[s1,0, . . . , sM,0]′, and let Σs
0 be the corresponding covariance matrix with diagonals

Σsi,0
0 ≡ Var[si,0] and off-diagonals Σsi,0,sj,0

0 ≡ Cov[si,0, sj,0] where j ∈ {1, . . . ,M}

and j 6= i. Also, define the covariance between the asset value and informed trader

i’s signal as Σv,si,0
0 ≡ Cov[v, si,0]. To keep future analysis tractable, the following

6



symmetry conditions are imposed for all i, j, k ∈ {1, . . . ,M}:

Σsi,0
0 = Σsj,0

0 , Σsi,0,sj,0
0 = Σsi,0,sk,0

0 , Σsi,0,sj,0
0 = Σsk,0,sj,0

0 , Σv,si,0
0 = Σv,sj,0

0 .

The symmetry in (co)variances is a crucial assumption for the analysis that follows

as it will keep the dimensionality space small.

In each period n ∈ {1, . . . , N}, uninformed traders submit the aggregate order

un. Collect these orders into the vector u ≡ [u1, . . . , uN ]′, and let Σu
0 be the

corresponding covariance matrix. Instead of assuming uninformed orders to be

simply noise, they are allowed to be autocorrelated in the time series and exhibit

cross-sectional correlation with the asset value and informed traders’ signals.

To this end, assume that Σu
0 has diagonals Σun

0 ≡ Var[un] and off-diagonals

Σun,um
0 ≡ Cov[un, um] where m ∈ {1, . . . , N} and m 6= n. Moreover, define the

covariance between the asset value and the uninformed order flow in period n as

Σv,un
0 ≡ Cov[v, un] and the covariance between informed trader i’s signal and the

uninformed order flow in period n as Σsi,0,un

0 ≡ Cov[si,0, un]. As before, to keep

future analysis tractable, the following symmetry conditions are imposed for all

n,m, l ∈ {1, . . . , N} and all i, j ∈ {1, . . . ,M}:

Σun
0 = Σum

0 , Σun,um
0 = Σun,ul

0 , Σun,um
0 = Σul,um

0 , Σv,un
0 = Σv,um

0 , Σsi,0,un

0 = Σsj,0,um

0 .

Allowing for (auto)correlation in the uninformed order flow is the main contri-

bution of this paper. At first glance, the uninformed order vector u could be

interpreted as a signal vector just like s. However, the crucial difference is that

signals are realized simultaneously before the first trading period, whereas unin-

formed orders are only realized sequentially over time. Consequently, informed

traders not only need to infer information about other informed traders’ signals

but also forecast future uninformed order flows.

Let Σv,s
0 be the (1 ×M) vector with entries Σv,si,0

0 , Σv,u
0 be the (1 × N) vector

with entries Σv,un
0 , and Σs,u

0 be the (M × N) matrix with entries Σsi,0,un

0 . It is
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assumed that the asset value, informed traders’ signals, and uninformed orders

are jointly normally distributed as follows:


v

s

u

 ∼ N





0
...
...

0


,



Σv
0

(1×1)
Σv,s

0
(1×M)

Σv,u
0

(1×N)

Σs,v
0

(M×1)
Σs

0
(M×M)

Σs,u
0

(M×N)

Σu,v
0

(N×1)
Σu,s

0
(N×M)

Σu
0

(N×N)




. (1.1)

Denote the covariance matrix in (1.1) as Σ0 and assume the distribution is common

knowledge in the market.6

Finally, there is a risk-neutral competitive market maker who observes the ag-

gregate order flow and sets the clearing price. Suppose each informed trader

i ∈ {1, . . . ,M} submits a quantity xi,n in period n ∈ {1, . . . , N}, then the aggre-

gate order flow yn in period n is defined as

yn ≡
M∑

i=1
xi,n + un. (1.2)

The market maker cannot distinguish whether a single order is informed or unin-

formed, and perfect competition implies that the clearing price pn in period n is

set to her conditional expectation of the asset value:

pn ≡ E
[
v
∣∣∣y1:n

]
, (1.3)

where the order flow history y1:n ≡ (y1, . . . , yn) is the available information to the

market maker after n periods of trading.

Consider the objective function of any informed trader i ∈ {1, . . . ,M}. In each

period n ∈ {1, . . . , N}, he maximizes his terminal conditional expected profit.

6Naturally, restrictions are required to ensure that the covariance matrix Σ0 in (1.1) is positive
definite. Numerically, this will put upper bounds on the absolute values of covariances.
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The Bellman equation for his dynamic programming problem writes

max
xi,n

E
[
(v − pn)xi,n + Vi,n

∣∣∣si,0, y1:n−1, x̃i,1:n−1
]
, (1.4)

where

Vi,n ≡ max
xi,n+1,...,xi,N

E
[

N∑
m=n+1

(v − pm)xi,m

∣∣∣∣∣si,0, y1:n, x̃i,1:n

]
(1.5)

is informed trader i’s value function after n rounds of trading. Note that informed

trader i’s information set in period n consists of his private signal si,0, the order

flow history y1:n−1, and his individual trading history x̃i,1:n−1. The individual

trading history is written with a “tilde” to stress that the history can be arbitrary.

By definition, the Bellman equation accounts for both optimal and suboptimal

play in the past.

A Bayesian Nash equilibrium of the dynamic trading game is defined as in Foster

and Viswanathan (1996).

Definition 1.1. The strategies {x1,n, . . . , xM,n, pn}N
n=1 form a Bayesian Nash equi-

librium of the dynamic trading game if they satisfy two conditions:

(i) Given the strategies {x1,n, . . . , xi−1,n, xi+1,n, . . . , xM,n}N
n=1 and {pn}N

n=1, the

strategy {xi,n}N
n=1 maximizes the objective function (1.4) for each informed

trader i ∈ {1, . . . ,M} in every period n ∈ {1, . . . , N}.

(ii) Given the strategies {x1,n, . . . , xM,n}N
n=1, the market maker’s pricing rule

{pn}N
n=1 satisfies (1.3) in every period n ∈ {1, . . . , N}.

There are two important things to note about Definition 1.1. First, the Bell-

man equation (1.4) requires informed trader i’s strategy xi,n in period n to be

optimal given any arbitrary past trading history x̃i,1:n−1. It is therefore necessary

to distinguish between equilibrium and off-equilibrium play. Second, deviations

by any informed trader i ∈ {1, . . . ,M} from his optimal strategy are unobserv-

able to the market maker and other informed traders. Consequently, there are no

off-equilibrium beliefs in the model.
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1.3 The Conjectured Equilibrium

Following Kyle (1985) and its extensions, this paper wants to derive a linear

and symmetric trading equilibrium. To this end, conjecture that informed traders’

equilibrium strategies are of the same form as in Foster and Viswanathan (1996),

that is, for all i ∈ {1, . . . ,M} and all n ∈ {1, . . . , N}:

xi,n = βnsi,n−1, (1.6)

where si,n−1 ≡ si,0 − E
[
si,0

∣∣∣y1:n−1
]
is the part of informed trader i’s private in-

formation that is not known to the market maker after n − 1 periods of trading.

Thus, conjecture that even when uninformed orders are (auto)correlated, informed

traders have an incentive to place orders that are unpredictable from the market

maker’s point of view. However, it is important to stress that (1.6) only charac-

terizes the strategy played along the equilibrium path and does not yet account

for off-equilibrium play.

Although informed traders’ orders are unpredictable, the aggregate order flow

is autocorrelated since

E
[
yn

∣∣∣y1:n−1
]

= E
[

M∑
i=1

βnsi,n−1 + un

∣∣∣∣∣y1:n−1

]
= E

[
un

∣∣∣y1:n−1
]
, (1.7)

that is, the autocorrelation in the aggregate order flow comes solely from unin-

formed traders. In particular, the trading strategy (1.6) has the following impli-

cations for the market maker’s updating processes along equilibrium play.7

Lemma 1.1. Suppose informed trading strategies are as in (1.6). Then for all

n ∈ {1, . . . , N}, i ∈ {1, . . . ,M}, and t ∈ {1, . . . , N − n}, the market maker

recursively updates her prices and beliefs as follows:

pn ≡ E
[
v
∣∣∣y1:n

]
= pn−1 + λn(yn − rn,n−1), (1.8)

7The market maker has no off-equilibrium beliefs since off-equilibrium play is unobservable.
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ti,n ≡ E
[
si,0

∣∣∣y1:n
]

= ti,n−1 + ζn(yn − rn,n−1), (1.9)

rn+t,n ≡ E
[
un+t

∣∣∣y1:n
]

= rn,n−1 + θn(yn − rn,n−1), (1.10)

where λn, ζn, and θn are projection coefficients.

Proof. See Appendix 1.A.1.

There are two important things to note about Lemma 1.1. First, prices and

beliefs are linear functions of yn − rn,n−1, the innovation in the aggregate order

flow. Thus, the predictable part of the aggregate order flow rn,n−1 has no price

impact. Moreover, similar to Kyle (1985), the projection coefficient λn is an inverse

measure of market depth. The less sensitive prices are to aggregate order flow

innovations, the deeper the market.

Second, the market maker needs to forecast future uninformed orders. According

to (1.7), this problem is equivalent to forecasting future aggregate order flows. It

can be inferred from (1.10) that rn+t,n is independent of the forecasting horizon t.

Consequently, forecasting uninformed orders only one period ahead is sufficient,

that is, after n periods, rn+1,n is a sufficient statistic for forecasting all future

uninformed orders. This property is important since it keeps the dimensionality

space small. Otherwise, the market maker would need to forecast each future

uninformed order flow separately, resulting in a dimensionality problem with a

growing number of trading periods.

While the market maker can also smooth past and filter current uninformed

orders, it is not necessary for solving the model. More importantly, the smoothing

and filtering processes are different for each uninformed order flow, that is, for

all n ∈ {1, . . . , N}, one can show that rm,n 6= rl,n for all m, l ∈ {1, . . . , n} where

m 6= l. Thus, to avoid the curse of dimensionality, this paper does not keep track

of the smoothing and filtering processes.8

8One can show that E
[
v
∣∣s,u] = µ

∑M
i=1 si,0 + ω

∑N
n=1 un ≡ v̂, where µ and ω are constants.

While v̂ is a sufficient statistic for solving the model, it also leads to a dimensionality issue
since one would need to smooth past and filter current uninformed orders.
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It will prove helpful to consider uncertainty from the market maker’s point of

view. To this end, define for all periods n ∈ {1, . . . , N} and all informed traders

i, j ∈ {1, . . . ,M} the following conditional (co)variances:

Σv
n ≡ Var

[
v
∣∣∣y1:n

]
, Σsi,0

n ≡ Var
[
si,0

∣∣∣y1:n
]
,

Σun+1
n ≡ Var

[
un+1

∣∣∣y1:n
]
, Σv,si,0

n ≡ Cov
[
v, si,0

∣∣∣y1:n
]
,

Σv,un+1
n ≡ Cov

[
v, un+1

∣∣∣y1:n
]
, Σsi,0,sj,0

n ≡ Cov
[
si,0, sj,0

∣∣∣y1:n
]
,

Σsi,0,un+1
n ≡ Cov

[
si,0, un+1

∣∣∣y1:n
]
, Σun+1,un+2

n ≡ Cov
[
un+1, un+2

∣∣∣y1:n
]
.

These (co)variances are conditional on the market maker’s information after n

periods, consisting of the aggregate order flow history y1:n. In particular, Σv
n mea-

sures how much uncertainty about the asset value remains after n trading rounds.

The following lemma shows how these conditional (co)variances are related.

Lemma 1.2. Suppose informed trading strategies are as in (1.6). Then for all

n ∈ {1, . . . , N − 1} and i, j ∈ {1, . . . ,M}, it holds that

Σsi,0
n−1 − Σsi,0

n = Σsi,0,sj,0
n−1 − Σsi,0,sj,0

n , (1.11)

Σun
n−1 − Σun+1

n = Σun,un+1
n−1 − Σun+1,un+2

n . (1.12)

Moreover, the market maker’s illiquidity parameter λn in (1.8) satisfies

λn =
(

Σv,s
n−1 Σv,un

n−1

)Σs
n−1 Σs,un

n−1

Σun,s
n−1 Σun

n−1


−1



ζn

...

ζn

θ̃n


, (1.13)

where Σs
n−1 is the (M ×M) conditional covariance matrix with diagonals Σsi,0

n−1

and off-diagonals Σsi,0,sj,0
n−1 , Σv,s

n−1 is the (1×M) conditional covariance vector with

entries Σv,si,0
n−1 , Σs,un

n−1 is the (M × 1) conditional covariance vector with entries

Σsi,0,un

n−1 , and θ̃n 6= θn is a projection coefficient.
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Proof. See Appendix 1.A.2.

The first part of Lemma 1.2 implies for all periods n ∈ {1, . . . , N − 1}:

Σsi,0
n−1 − Σsi,0,sj,0

n−1 ≡ χs, (1.14)

Σun
n−1 − Σun,un+1

n−1 ≡ χu, (1.15)

where χs and χu are constants. Thus, for both informed traders’ signals and future

uninformed orders, the difference between variances and covariances is indepen-

dent of the trading period.

The second part of Lemma 1.2 implies that the market maker’s update of the

asset value is not proportional to her update of informed traders’ signals:

pn − pn−1 6∝
M∑

i=1
(ti,n − ti,n−1). (1.16)

A key result in Foster and Viswanathan (1996) is that the market maker only

needs to forecast the average of the informed traders’ signals. However, that

result is no longer true once (auto)correlation in the uninformed order flow is

introduced. Since uninformed orders now also contain relevant information, the

average signal is no longer a sufficient statistic for all available information in

the market. Thus, (auto)correlated uninformed orders disentangle the one-to-

one relationship between forecasting the asset value and forecasting the private

information of informed traders.

1.4 Informed Traders’ Updating Processes

This section addresses the dimensionality issue of the dynamic trading game and

shows how informed traders’ beliefs are updated over time. Definition 1.1 requires

one to distinguish between updating along equilibrium and off-equilibrium play.

Deriving the updating processes will help identify the state variables of informed

traders’ dynamic programming problem.
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1.4.1 Updating along the Equilibrium Path

Following Foster and Viswanathan (1996), it is first shown that for every in-

formed trader i ∈ {1, . . . ,M} the individual past trading history is redundant

information along the equilibrium path. Indeed, from (1.6), (1.9), and (1.10), one

can infer that informed trader i’s optimal trading strategy xi,n in every period

n ∈ {1, . . . , N} is equivalent to

xi,n = βnsi,n−1 = βn(si,0 − ti,n−1) = βn

(
si,0 −

n−1∑
t=1

ζt

[
yt − rt,t−1

])

= βn

(
si,0 −

n−1∑
t=1

ζt

[
yt −

t−1∑
r=1

(
t−1∏

s=r+1

[
1− θs

])
θryr

])
.

(1.17)

Equation (1.17) implies that informed trader i’s optimal trading strategy in period

n is a function of his private signal si,0 and the past aggregate order flow history

y1:n−1. Therefore, the individual trading history xi,1:n−1 is redundant and the

meaningful information for informed trader i is just (si,0, y1:n−1). This result also

implies that the only relevant information that informed trader i has relative to

the market maker is his private signal si,0, which helps identify the state variables

for updating along the equilibrium path.

Lemma 1.3. Assume the market maker sets prices and forms beliefs as in (1.8),

(1.9), and (1.10), and all informed traders i, j ∈ {1, . . . ,M} where i 6= j trade

as in (1.6). Then si,n−1 is a sufficient statistic for informed trader i’s updating

processes after n − 1 periods for all n ∈ {1, . . . , N}. In particular, the updating

processes satisfy

E
[
v − pn−1

∣∣∣si,0, y1:n−1, xi,1:n−1
]

= ηnsi,n−1, (1.18)

E
[
sj,n−1

∣∣∣si,0, y1:n−1, xi,1:n−1
]

= φnsi,n−1, (1.19)

E
[
un − rn,n−1

∣∣∣si,0, y1:n−1, xi,1:n−1
]

= ψnsi,n−1, (1.20)

where ηn, φn, and ψn are projection coefficients.

Proof. See Appendix 1.A.3.
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If all informed traders (including i) have played optimally in the first n − 1

trading rounds, then the residual signal si,n−1 = si,0− ti,n−1 is a sufficient statistic

for informed trader i to forecast the asset value, other informed traders’ signals,

and the next period’s uninformed order flow.9 Thus, si,n−1 is the only state variable

along equilibrium play. However, it is important to stress that these results only

hold if informed trader i has played his equilibrium strategy in the first n−1 trading

periods. Additional state variables are required to account for off-equilibrium play.

1.4.2 Updating along Off-Equilibrium Paths

Without loss of generality, assume informed trader i has submitted an arbitrary

order sequence x̃i,1:n in the first n ∈ {1, . . . , N} trading periods while all other

informed traders j ∈ {1, . . . ,M} where j 6= i follow the equilibrium strategy (1.6).

Furthermore, suppose the market maker sets prices and forms beliefs as in (1.8),

(1.9), and (1.10).

Since deviations from the equilibrium strategy are unobservable, informed trader

i can manipulate the market maker’s and other informed traders’ beliefs about the

asset value, signals, and uninformed orders. More importantly, if informed trader

i manipulates beliefs by submitting arbitrary orders x̃i,1:n, the projection theorem

for Gaussian random variables cannot be applied since si,n and y1:n need not

be jointly normally distributed. In particular, si,n will no longer be a sufficient

forecasting statistic for informed trader i after n periods of trading.

To address this issue, closely follow Foster and Viswanathan (1996) and intro-

duce the following notation for all trading periods n ∈ {1, . . . , N} and informed

traders j ∈ {1, . . . ,M}:

ŷi
n ≡

M∑
j=1

βnŝ
i
j,n−1 + un,

ŝi
j,n ≡ sj,0 − t̂ij,n and ŝi

j,0 ≡ sj,0,

9Technically, informed traders need to form beliefs about all future uninformed order flows.
However, as was shown in Lemma 1.1, it is sufficient to forecast uninformed orders only one
period ahead.
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p̂i
n ≡ p̂i

n−1 + λn

(
ŷi

n − r̂i
n,n−1

)
and p̂i

0 ≡ 0,

t̂ij,n ≡ t̂ij,n−1 + ζn

(
ŷi

n − r̂i
n,n−1

)
and t̂ij,0 ≡ 0,

r̂i
n+1,n ≡ r̂i

n,n−1 + θn

(
ŷi

n − r̂i
n,n−1

)
and r̂i

1,0 ≡ 0.

These “hat” processes are the quantities that would have occurred along the equi-

librium path in trading period n if informed trader i had followed his equilibrium

strategy {βmŝ
i
i,m−1}n

m=1. All results from the previous sections apply to these

“hat” processes, which denote the equilibrium path processes. With this notation

in mind, an important result from Foster and Viswanathan (1996), which will help

characterize off-equilibrium paths, is stated.

Lemma 1.4. Assume the market maker sets prices and forms beliefs as in (1.8),

(1.9), and (1.10), and all informed traders j ∈ {1, . . . ,M} where j 6= i trade

as in (1.6). Suppose informed trader i has submitted an arbitrary sequence of

orders x̃i,1:n in the first n ∈ {1, . . . , N} trading periods. Then the following two

information sets are equivalent:

(
si,0, y1:n, x̃i,1:n

)
≡
(
si,0, ŷ

i
1:n, x̃i,1:n

)
, (1.21)

where ŷi
1:n ≡ (ŷi

1, . . . , ŷ
i
n).

Proof. See Appendix 1.A.4.

Lemma 1.4 states that the equilibrium order flow history ŷi
1:n is in informed

trader i’s information set even along off-equilibrium paths. Intuitively, informed

trader i knows how his trades affect the market maker’s and other informed traders’

strategies and beliefs. Consequently, he can recursively reconstruct the aggregate

order flow history that would have occurred along the equilibrium path if he had

played his equilibrium strategy. Since ŷi
1:n is in informed trader i’s information

set, so is the history of the equilibrium quantities {ŝi
i,m, p̂

i
m, t̂

i
j,m, r̂

i
m+1,m}n

m=0.

Lemma 1.3 has shown that, along the equilibrium path, ŝi
i,n−1 is a sufficient

forecasting statistic for informed trader i after n − 1 periods of trading. The
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following lemma lists the additional state variables required for updating along

off-equilibrium paths.

Lemma 1.5. Assume the market maker sets prices and forms beliefs as in (1.8),

(1.9), and (1.10), and all informed traders j ∈ {1, . . . ,M} where j 6= i trade as in

(1.6). Suppose informed trader i has submitted arbitrary orders x̃i,1:n−1 in the first

n−1 trading rounds. Then ŝi
i,n−1, p̂i

n−1−pn−1, t̂ij,n−1−tj,n−1, and r̂i
n,n−1−rn,n−1 are

sufficient statistics for informed trader i’s updating processes after n − 1 periods

for all n ∈ {2, . . . , N}. In particular, the updating processes satisfy

E
[
v − pn−1

∣∣∣si,0, y1:n−1, x̃i,1:n−1
]

= ηnŝ
i
i,n−1 +

(
p̂i

n−1 − pn−1
)
, (1.22)

E
[
sj,n−1

∣∣∣si,0, y1:n−1, x̃i,1:n−1
]

= φnŝ
i
i,n−1 +

(
t̂ij,n−1 − tj,n−1

)
, (1.23)

E
[
un − rn,n−1

∣∣∣si,0, y1:n−1, x̃i,1:n−1
]

= ψnŝ
i
i,n−1 +

(
r̂i

n,n−1 − rn,n−1
)
. (1.24)

Proof. See Appendix 1.A.5.

In Foster and Viswanathan (1996), the residual signal ŝi
i,n−1 and the price de-

viation from equilibrium p̂i
n−1 − pn−1 are sufficient statistics for updating along

off-equilibrium paths. However, in the presence of (auto)correlated uninformed

orders, two additional state variables are required: the deviation in beliefs from

equilibrium about informed traders’ signals t̂ij,n−1− tj,n−1 and the deviation in be-

liefs from equilibrium about the next period’s uninformed order flow r̂i
n,n−1−rn,n−1.

If uninformed orders are assumed to be white noise, the updating process of

the asset value is proportional to the updating process of informed traders’ sig-

nals. For this reason, t̂ij,n−1 − tj,n−1 is a redundant state variable in Foster and

Viswanathan (1996). However, as shown in (1.16), this proportionality breaks

down if uninformed orders exhibit a general correlation structure. Consequently,

updates about the asset value and updates about informed traders’ signals have

to be distinguished from each other.
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1.4.3 Necessary and Sufficient Conditions for Equilibrium

With the insights from Lemma 1.5 in mind, conjecture informed trader i’s op-

timal strategy, which accounts for both equilibrium and off-equilibrium play, to

be linear in the state variables. In particular, given any arbitrary order sequence

x̃i,1:n−1, conjecture informed trader i’s optimal strategy for the remaining trading

periods m ∈ {n, . . . , N} to be of the following form:

xi,m = βmŝ
i
i,m−1+γm

(
p̂i

m−1 − pm−1
)
+αm

(
t̂ij,m−1 − tj,m−1

)
+δm

(
r̂i

m,m−1 − rm,m−1
)
.

(1.25)

Along the equilibrium path, one has pm−1 = p̂i
m−1, tj,m−1 = t̂ij,m−1, and rm,m−1 =

r̂i
m,m−1 so that only βmŝ

i
i,m−1 remains. Thus, the initially conjectured strategy

(1.6), which will be played along the equilibrium path, is consistent with the

general strategy (1.25).

Moreover, since informed traders are assumed to be risk-neutral, conjecture

the value function Vi,n−1 of informed trader i after n − 1 trading periods to be

quadratic in the state variables, that is, for all periods n ∈ {1, . . . , N} and all

informed traders i, j ∈ {1, . . . ,M} where i 6= j, conjecture:

Vi,n−1 = an−1
(
ŝi

i,n−1

)2
+ bn−1

(
p̂i

n−1 − pn−1
)2

+ cn−1
(
t̂ij,n−1 − tj,n−1

)2

+ dn−1
(
r̂i

n,n−1 − rn,n−1
)2

+ en−1ŝ
i
i,n−1

(
p̂i

n−1 − pn−1
)

+ fn−1ŝ
i
i,n−1

(
t̂ij,n−1 − tj,n−1

)
+ gn−1ŝ

i
i,n−1

(
r̂i

n,n−1 − rn,n−1
)

+ hn−1
(
p̂i

n−1 − pn

) (
t̂ij,n−1 − tj,n−1

)
+ in−1

(
p̂i

n−1 − pn−1
) (
r̂i

n,n−1 − rn,n−1
)

+ jn−1
(
t̂ij,n−1 − tj,n−1

) (
r̂i

n,n−1 − rn,n−1
)

+ kn−1.

(1.26)

Only the first and last terms of the value function remain along the equilibrium

path. However, since Definition 1.1 requires trading strategies to be optimal for

arbitrary trading histories, one must consider the additional terms. In particular,

equilibrium parameters will depend on off-equilibrium parameters as the following

proposition shows.
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Proposition 1.1. The strategies and beliefs (1.8), (1.9), (1.10), (1.22), (1.23),

(1.24), and (1.25) form a symmetric linear Markov perfect equilibrium if the fol-

lowing recursions hold for all periods n ∈ {1, . . . , N}:

βn = ηn − λnψn − (1− ζnψn)(enλn + fnζn + gnθn)
λn[2 + (M − 1)φn]− ζn[1 + (M − 1)φn](enλn + fnζn + gnθn) ,

γn = 1− 2bnλn − hnζn − inθn

λn(2− 2bnλn − hnζn − inθn)− ζn(2cnζn + hnλn + jnθn)− θn(2dnθn + inλn + jnζn) ,

αn =

(M − 1)βn

[
θn(2dnθn + inλn + jnζn)− λn(1− 2bnλn − hnζn − inθn)

]
− [1− (M − 1)βnζn](2cnζn + hnλn + jnθn)

λn(2− 2bnλn − hnζn − inθn)− ζn(2cnζn + hnλn + jnθn)− θn(2dnθn + inλn + jnζn) ,

δn = ζn(2cnζn + hnλn + jnθn)− λn(1− 2bnλn − hnζn − inθn)− (1− θn)(2dnθn + inλn + jnζn)
λn(2− 2bnλn − hnζn − inθn)− ζn(2cnζn + hnλn + jnθn)− θn(2dnθn + inλn + jnζn) ,

λn =
MβnΣv,si,0

n−1 + Σv,un
n−1

Mβ2
n

[
Σsi,0

n−1 + (M − 1)Σsi,0,sj,0
n−1

]
+ Σun

n−1 + 2MβnΣsi,0,un

n−1

,

ζn =
βn

[
Σsi,0

n−1 + (M − 1)Σsi,0,sj,0
n−1

]
+ Σsi,0,un

n−1

Mβ2
n

[
Σsi,0

n−1 + (M − 1)Σsi,0,sj,0
n−1

]
+ Σun

n−1 + 2MβnΣsi,0,un

n−1

,

θn =
MβnΣsi,0,un

n−1 + Σun,un+1
n−1

Mβ2
n

[
Σsi,0

n−1 + (M − 1)Σsi,0,sj,0
n−1

]
+ Σun

n−1 + 2MβnΣsi,0,un

n−1

,

with value function coefficients

an−1 = βn

(
ηn − λn

[
βn + (M − 1)βnφn + ψn

])
+ an

(
1− ζn

[
βn + (M − 1)βnφn + ψn

])2
,

bn−1 = bn(1− γnλn)2 + γn(1− γnλn)(1− hnζn − inθn) + γ2
n(cnζ

2
n + dnθ

2
n + jnζnθn),

cn−1 = cn

(
1− ζn

[
αn + (M − 1)βn

])2
+
[
αn + (M − 1)βn

]2
(bnλ

2
n + dnθ

2
n + inλnθn)

−
[
αn + (M − 1)βn

][
αnλn +

(
1− ζn

[
αn + (M − 1)βn

])
(hnλn + jnθn)

]
,

dn−1 = dn

(
1− θn[1 + δn]

)2
+ (1 + δn)2(bnλ

2
n + cnζ

2
n + hnλnζn)

− (1 + δn)
[
δnλn +

(
1− θn[1 + δn]

)
(inλn + jnζn)

]
,

en−1 =
[
en(1− γnλn)− γn(fnζn + gnθn)

](
1− ζn

[
βn + (M − 1)βnφn + ψn

])
+ γn

(
ηn − λn

[
βn + (M − 1)βnφn + ψn

])
+ βn(1− γnλn),
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fn−1 =
[
fn

(
1− ζn

[
αn + (M − 1)βn

])
−
[
αn + (M − 1)βn

]
(enλn + gnθn)

](
1− ζn

[
βn

+ (M − 1)βnφn + ψn

])
+ αn

(
ηn − λn

[
βn + (M − 1)βnφn + ψn

])
− λnβn

[
αn + (M − 1)βn

]
,

gn−1 =
[
gn

(
1− θn[1 + δn]

)
− (1 + δn)(enλn + fnζn)

](
1− ζn

[
βn + (M − 1)βnφn + ψn

])
+ δn

(
ηn − λn

[
βn + (M − 1)βnφn + ψn

])
− λnβn(1 + δn),

hn−1 =
[
hn(1− γnλn)− γn(2cnζn + jnθn)

](
1− ζn

[
αn + (M − 1)βn

])
+ αn(1− γnλn)

+
[
αn + (M − 1)βn

][
γn

[
θn(2dnθn + jnζn)− λn(1− hnζn − inθn)

]
− (1− γnλn)(2bnλn + inθn)

]
,

in−1 =
[
in(1− γnλn)− γn(2dnθn + jnζn)

](
1− θn[1 + δn]

)
+ δn(1− γnλn)

+ (1 + δn)
[
γn

[
ζn(2cnζn + jnθn)− λn(1− hnζn − inθn)

]
− (1− γnλn)(2bnλn + hnζn)

]
,

jn−1 =
[
jn
(
1− θn[1 + δn]

)
− (1 + δn)(2cnζn + hnλn)

](
1− ζn

[
αn + (M − 1)βn

])
− αnλn(1 + δn) +

[
αn + (M − 1)βn

][
(1 + δn)

[
λn(2bnλn + hnζn) + θn(inλn + jnζn)

]
− λnδn −

(
1− θn[1 + δn]

)
(2dnθn + inλn)

]
,

kn−1 = kn + anζ
2
n

[
Var

[
un − rn,n−1

∣∣∣si,0, y1:n−1
]

+ 2(M − 1)βn Cov
[
sj,n−1, un − rn,n−1

∣∣∣si,0, y1:n−1
]

+ (M − 1)β2
n

(
Var

[
sj,n−1

∣∣∣si,0, y1:n−1
]

+ (M − 2) Cov
[
sj,n−1, sk,n−1

∣∣∣si,0, y1:n−1
])]

,

where aN = bN = cN = dN = eN = fN = gN = hN = iN = jN = kN = 0 and

ηn =
Σv,si,0

n−1
Σsi,0

n−1
,

φn =
Σsi,0,sj,0

n−1
Σsi,0

n−1
,

ψn =
Σsi,0,un

n−1
Σsi,0

n−1
.
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Also, for all i, j, k ∈ {1, . . . ,M} where i 6= j 6= k:

Var
[
un − rn,n−1

∣∣∣si,0, y1:n−1
]

= Σun
n−1 − ψ

2
nΣsi,0

n−1,

Var
[
sj,n−1

∣∣∣si,0, y1:n−1
]

= (1− φ2
n)Σsi,0

n−1,

Cov
[
sj,n−1, sk,n−1

∣∣∣si,0, y1:n−1
]

= (1− φn)Σsi,0,sj,0
n−1 ,

Cov
[
sj,n−1, un − rn,n−1

∣∣∣si,0, y1:n−1
]

= (1− φn)Σsi,0,un

n−1 .

Moreover, the second-order condition must hold in every period:

λn(2− 2bnλn − hnζn − inθn)− ζn(2cnζn + hnλn + jnθn)− θn(2dnθn + inλn + jnζn) > 0.

Finally, conditional (co)variances must satisfy the following recursive block struc-

ture in every period:

Σv
n = Σv

n−1 − λ2
n

(
Mβ2

n

[
Σsi,0

n−1 + (M − 1)Σsi,0,sj,0
n−1

]
+ Σun

n−1 + 2MβnΣsi,0,un

n−1

)
,

Σv,si,0
n = Σv,si,0

n−1 − λnζn

(
Mβ2

n

[
Σsi,0

n−1 + (M − 1)Σsi,0,sj,0
n−1

]
+ Σun

n−1 + 2MβnΣsi,0,un

n−1

)
,

Σv,un+1
n = Σv,un

n−1 − λnθn

(
Mβ2

n

[
Σsi,0

n−1 + (M − 1)Σsi,0,sj,0
n−1

]
+ Σun

n−1 + 2MβnΣsi,0,un

n−1

)
,

Σsi,0
n = Σsi,0

n−1 − ζ
2
n

(
Mβ2

n

[
Σsi,0

n−1 + (M − 1)Σsi,0,sj,0
n−1

]
+ Σun

n−1 + 2MβnΣsi,0,un

n−1

)
,

Σsi,0,sj,0
n = Σsi,0,sj,0

n−1 − ζ2
n

(
Mβ2

n

[
Σsi,0

n−1 + (M − 1)Σsi,0,sj,0
n−1

]
+ Σun

n−1 + 2MβnΣsi,0,un

n−1

)
,

Σsi,0,un+1
n = Σsi,0,un

n−1 − ζnθn

(
Mβ2

n

[
Σsi,0

n−1 + (M − 1)Σsi,0,sj,0
n−1

]
+ Σun

n−1 + 2MβnΣsi,0,un

n−1

)
,

Σun+1
n = Σun

n−1 − θ
2
n

(
Mβ2

n

[
Σsi,0

n−1 + (M − 1)Σsi,0,sj,0
n−1

]
+ Σun

n−1 + 2MβnΣsi,0,un

n−1

)
,

Σun+1,un+2
n = Σun,un+1

n−1 − θ2
n

(
Mβ2

n

[
Σsi,0

n−1 + (M − 1)Σsi,0,sj,0
n−1

]
+ Σun

n−1 + 2MβnΣsi,0,un

n−1

)
.

Proof. See Appendix 1.A.6.

Proposition 1.1 specifies the necessary and sufficient conditions for a dynamic

trading equilibrium. As is the case with most discrete-time strategic trading mod-

els, including Foster and Viswanathan (1996), this paper does not have analytic
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expressions for the equilibrium. Therefore, Proposition 1.1 must be computed

numerically. The corresponding algorithm is described in Appendix 1.A.7.

While Σv
n is not technically required to solve the remaining system of equations,

one still needs to keep track of it for the numerical analysis. Since the equilibrium

is only sustainable if the market maker does not fully learn about the asset’s true

value before the final trading period, one has to ensure that Σv
N−1 > 0.

Moreover, from the equations for θn, Σv,un+1
n , Σsi,0,un+1

n , and Σun+1,un+2
n , it can be

inferred that uninformed orders are conditionally correlated with the asset value

and informed traders’ signals in the cross-section if they are autocorrelated in the

time series. Thus, even if autocorrelated uninformed orders do not initially con-

tain information about the asset value and signals, they do so upon conditioning.

Similarly, if uninformed orders are initially uncorrelated over time, they become

conditionally autocorrelated as long as they initially contain information about

informed traders’ signals.

Finally, note that the models by Kyle (1985), Holden and Subrahmanyam

(1992), and Foster and Viswanathan (1996) are all nested in Proposition 1.1.

If one assumes uninformed orders to be white noise, one obtains the Foster and

Viswanathan (1996) model. Additionally, if informed traders perfectly observe

the asset value v, one gets the Holden and Subrahmanyam (1992) model with

homogeneously informed traders, while the Kyle (1985) model is obtained for the

special case where there is only one informed trader.

1.5 Numerical Analysis

This study is interested in how (auto)correlated uninformed orders affect the

equilibrium outcome. Numerically, correlations have to be bounded above in ab-

solute value to ensure that the covariance matrix Σ0 in (1.1) is positive definite.

Denoting ρx̄,ȳ
0 as the unconditional correlation coefficient between two arbitrary

variables x̄ and ȳ, the absolute values of ρv,si,0
0 , ρv,un

0 , ρsi,0,un

0 , ρsi,0,sj,0
0 , and ρun,un+1

0
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have to be bounded above for the model to be well-defined. Therefore, the equi-

librium in Proposition 1.1 is only sustainable for small to moderate correlations.

The main variables of interest are ρv,un
0 , the unconditional correlation between

the asset value and uninformed orders, and ρsi,0,un

0 , the unconditional correlation

between informed traders’ signals and uninformed orders. This study fixes the

number of informed traders to M = 3 and the number of trading periods to N =

10. Initial variances equal Σv
0 = 5, Σsi,0

0 = 1, and Σun
0 = 3/N . The unconditional

signal informativeness equals ρv,si,0
0 = 0.4, and the unconditional autocorrelation

in the uninformed order flow is set to ρun,un+1
0 = 0.1 since positive autocorrelation

is empirically the most relevant case.10 Finally, three different unconditional signal

correlations are considered: positive correlation ρ
si,0,sj,0
0 = 0.25, zero correlation

ρ
si,0,sj,0
0 = 0, and negative correlation ρsi,0,sj,0

0 = −0.25. Different combinations of

ρv,un
0 and ρsi,0,un

0 are analyzed for each unconditional signal correlation.

1.5.1 Positive Initial Signal Correlation

In this analysis, the initial signal correlation equals ρsi,0,sj,0
0 = 0.25. For unin-

formed orders, the unconditional correlation structures are (ρv,un
0 = 0.25, ρsi,0,un,0

0 =

0.25), (ρv,un
0 = 0.1, ρsi,0,un

0 = −0.1), (ρv,un
0 = −0.1, ρsi,0,un

0 = 0.1), and (ρv,un
0 =

−0.25, ρsi,0,un

0 = −0.25).

Figure 1.1 plots informed traders’ trading intensity βn, the market maker’s

illiquidity parameter λn, the conditional asset variance Σv
n, and informed traders’

terminal conditional expected profits over time. Suppose uninformed orders are

initially positively correlated with the asset value and signals. In that case, the

market maker’s price sensitivity monotonically decreases over time since most in-

formation about the asset value gets incorporated into prices in the first periods.

Since uninformed orders reveal information about the asset’s true value, competi-

tion for informed traders is high. Consequently, informed traders make the lowest

expected profits and decrease trading intensities throughout the trading day.

10See Hasbrouck (1991a,b) and Brogaard, Hendershott, and Riordan (2019).
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Figure 1.1: Trading Intensity, Illiquidity Parameter, Conditional Asset Variance,
and Expected Profits with Positive Initial Signal Correlation. The figure plots informed
traders’ trading intensity βn, the market maker’s illiquidity parameter λn, the conditional asset
variance Σv

n, and informed traders’ terminal conditional expected profits over time. Parameter
values are M = 3, N = 10, Σv

0 = 5, Σsi,0
0 = 1, Σun

0 = 3/N , ρv,si,0
0 = 0.4, ρsi,0,sj,0

0 = 0.25, and
ρ

un,un+1
0 = 0.1. The model is solved for four initial parametrizations: (ρv,un

0 = 0.25, ρsi,0,un

0 =
0.25), (ρv,un

0 = 0.1, ρsi,0,un

0 = −0.1), (ρv,un

0 = −0.1, ρsi,0,un

0 = 0.1), and (ρv,un

0 = −0.25,
ρ

si,0,un

0 = −0.25).

If uninformed orders are initially positively correlated with the asset value but

negatively correlated with signals, informed traders’ trading intensity monotoni-

cally increases over time, even though uninformed traders still reveal information

about the true asset value. Surprisingly, at the end of the trading day, price dis-

covery is the highest. In that scenario, aggregate order flows remain consistently

informative about the asset value, resulting in most information getting incorpo-

rated into prices. Consequently, the market maker’s price sensitivity only slowly

decreases over time.

Suppose uninformed orders are initially negatively correlated with the asset value
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but positively correlated with signals. In that case, uninformed traders push the

price away from the true asset value, which provides camouflage for informed

traders. As a result, informed traders trade most aggressively on their residual

signals throughout the trading day and make high expected profits. Interestingly,

the market maker’s illiquidity parameter exhibits a clear U -shape. It initially de-

clines because aggregate order flows are most informative about the asset value in

the first trading rounds. However, the illiquidity parameter eventually increases in

later periods since informed traders submit their most aggressive orders towards

the end of the trading day.

Finally, if uninformed orders are initially negatively correlated with the asset

value and signals, informed traders also increase their trading intensity over time

and make high expected profits. As in Kyle (1985), informed traders have an

incentive to delay their trades towards later periods to capitalize on their private

information. Moreover, the market maker can extract the least information from

aggregate order flows since uninformed traders trade in the opposite direction of

the true asset value and signals. Consequently, the market maker keeps a steady

price sensitivity, resulting in slow price discovery over time.

Figure 1.2 shows the evolution of the conditional correlations ρun+1,un+2
n , ρsi,0,sj,0

n ,

ρv,un+1
n , and ρsi,0,un+1

n . If uninformed orders are initially positively correlated with

the asset value and signals, the conditional correlations monotonically decrease

over time. Thus, uninformed orders become less informative about the asset value

and signals in later periods. Furthermore, ρun+1,un+2
n strongly decreases in the

first periods so that uninformed orders become conditionally less autocorrelated.

Finally, ρsi,0,sj,0
n becomes negative over time, meaning that informed traders switch

from trading in the same direction to trading in opposite directions. This result

is equivalent to informed traders developing a difference of opinion about the true

asset value.

Suppose uninformed orders are initially positively correlated with the asset value

but negatively correlated with signals. In that case, the conditional signal corre-
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Figure 1.2: Conditional Correlations with Positive Initial Signal Correlation. The
figure plots the conditional correlation between future uninformed orders ρun+1,un+2

n , the condi-
tional correlation between informed traders’ signals ρsi,0,sj,0

n , the conditional correlation between
the asset value and future uninformed orders ρv,un+1

n , and the conditional correlation between
informed traders’ signals and future uninformed orders ρsi,0,un+1

n over time. Parameter values are
M = 3, N = 10, Σv

0 = 5, Σsi,0
0 = 1, Σun

0 = 3/N , ρv,si,0
0 = 0.4, ρsi,0,sj,0

0 = 0.25, and ρun,un+1
0 = 0.1.

The model is solved for four initial parametrizations: (ρv,un

0 = 0.25, ρsi,0,un

0 = 0.25), (ρv,un

0 = 0.1,
ρ

si,0,un

0 = −0.1), (ρv,un

0 = −0.1, ρsi,0,un

0 = 0.1), and (ρv,un

0 = −0.25, ρsi,0,un

0 = −0.25).

lation slowly decreases, while the remaining conditional correlations stay approx-

imately constant over time. Therefore, uninformed orders remain consistently

informative about the asset value and exhibit a persistently high conditional auto-

correlation. Moreover, the conditional signal correlation stays positive throughout

the whole trading day so that no switch in trading directions occurs. Finally, note

that ρv,un+1
n is U -shaped and thus non-monotonic.

If uninformed orders are initially negatively correlated with the asset value but

positively correlated with signals, the conditional correlations monotonically de-

cline over time. In that scenario, uninformed traders effectively conceal informed
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traders’ orders from the market maker by pushing the price further away from the

asset’s true value while losing their informational value about signals after the first

few trading rounds. Furthermore, the conditional signal correlation becomes neg-

ative after the first period. Thus, even if informed traders initially agree whether

the asset is overvalued or undervalued, they will have different opinions after only

one round of trading.

Finally, if uninformed orders are initially negatively correlated with the asset

value and signals, ρun+1,un+2
n and ρsi,0,sj,0

n monotonically decrease, while ρv,un+1
n and

ρ
si,0,un+1
n monotonically increase over time. Since uninformed orders become less

negatively correlated with the asset value and signals, uninformed traders provide

less camouflage for informed traders in later periods. Surprisingly, the conditional

uninformed order flow autocorrelation becomes negative over time. Thus, even

if uninformed orders are positively autocorrelated, they can become negatively

autocorrelated upon conditioning.

1.5.2 Zero Initial Signal Correlation

In this analysis, the initial signal correlation equals ρsi,0,sj,0
0 = 0. For uninformed

orders, the unconditional correlation structures are (ρv,un
0 = 0.2, ρsi,0,un

0 = 0.1),

(ρv,un
0 = 0.1, ρsi,0,un

0 = −0.1), (ρv,un
0 = −0.1, ρsi,0,un

0 = 0.1), and (ρv,un
0 = −0.1,

ρ
si,0,un

0 = −0.2).

Figure 1.3 plots informed traders’ trading intensity βn, the market maker’s

illiquidity parameter λn, the conditional asset variance Σv
n, and informed traders’

terminal conditional expected profits over time. It is worth noting that, except

for (ρv,un
0 = −0.1, ρsi,0,un

0 = 0.1), trading intensities are approximately unaffected

by the correlation structure of uninformed orders if informed traders receive inde-

pendent signals. Also, trading intensities monotonically increase over time.

If uninformed orders are initially positively correlated with the asset value and

signals, informed traders make the lowest expected profits. Since uninformed

traders reveal information about the true asset value, competition for informed
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Figure 1.3: Trading Intensity, Illiquidity Parameter, Conditional Asset Variance, and
Expected Profits with Zero Initial Signal Correlation. The figure plots informed traders’
trading intensity βn, the market maker’s illiquidity parameter λn, the conditional asset variance
Σv

n, and informed traders’ terminal conditional expected profits over time. Parameter values are
M = 3, N = 10, Σv

0 = 5, Σsi,0
0 = 1, Σun

0 = 3/N , ρv,si,0
0 = 0.4, ρsi,0,sj,0

0 = 0, and ρun,un+1
0 = 0.1.

The model is solved for four initial parametrizations: (ρv,un

0 = 0.2, ρsi,0,un

0 = 0.1), (ρv,un

0 = 0.1,
ρ

si,0,un

0 = −0.1), (ρv,un

0 = −0.1, ρsi,0,un

0 = 0.1), and (ρv,un

0 = −0.1, ρsi,0,un

0 = −0.2).

traders is high. Moreover, the market maker’s price sensitivity monotonically

decreases since aggregate order flows become less informative about the asset value

over time. Consequently, price discovery is highest in the first trading periods.

If uninformed orders are initially positively correlated with the asset value but

negatively correlated with signals, informed traders make moderate expected prof-

its. Simultaneously, the market maker’s price sensitivity remains approximately

constant throughout the trading day. In that scenario, aggregate order flows stay

consistently informative about the asset value, resulting in the highest price dis-

covery at the end of the trading day.

If uninformed orders are initially negatively correlated with the asset value but
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positively correlated with signals, informed traders trade most aggressively on

their residual signals and make high expected profits. In that scenario, unin-

formed traders push the price away from the true asset value while not being

informative about signals after the first few trading rounds. As a result, price

discovery is lowest at the end of the trading day since informed traders can effec-

tively conceal their information from the market maker. Moreover, the illiquidity

parameter exhibits a clear U -shape. It initially declines because the first aggre-

gate order flows contain the most information about the asset value. However, the

illiquidity parameter eventually increases in later trading rounds since informed

traders trade most aggressively on their private information towards the end of

the trading day.

Finally, if uninformed orders are initially negatively correlated with the asset

value and signals, informed traders also make high expected profits. Furthermore,

the illiquidity parameter monotonically increases over time. In that scenario, un-

informed orders provide camouflage for informed traders by trading in the opposite

direction of the true asset value and signals. As a result, the market maker in-

creases her price sensitivity throughout the trading day since she can extract the

least information from aggregate order flows in the first periods.

Figure 1.4 shows the evolution of the conditional correlations ρun+1,un+2
n , ρsi,0,sj,0

n ,

ρv,un+1
n , and ρsi,0,un+1

n . If uninformed orders are initially positively correlated with

the asset value and signals, the conditional correlations monotonically decrease

over time. Therefore, uninformed orders become less informative about the asset

value and signals in later periods. Moreover, informed traders develop a differ-

ence of opinion about the asset value after only one round of trading, and the

conditional uninformed order flow autocorrelation strongly declines over time.

Suppose uninformed orders are initially positively correlated with the asset value

but negatively correlated with signals. In that case, the conditional uninformed

order flow autocorrelation slowly decreases, while the remaining conditional corre-

lations stay approximately constant over time. Since aggregate order flows remain
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Figure 1.4: Conditional Correlations with Zero Initial Signal Correlation. The figure
plots the conditional correlation between future uninformed orders ρun+1,un+2

n , the conditional
correlation between informed traders’ signals ρsi,0,sj,0

n , the conditional correlation between the
asset value and future uninformed orders ρv,un+1

n , and the conditional correlation between in-
formed traders’ signals and future uninformed orders ρsi,0,un+1

n over time. Parameter values are
M = 3, N = 10, Σv

0 = 5, Σsi,0
0 = 1, Σun

0 = 3/N , ρv,si,0
0 = 0.4, ρsi,0,sj,0

0 = 0, and ρun,un+1
0 = 0.1.

The model is solved for four initial parametrizations: (ρv,un

0 = 0.2, ρsi,0,un

0 = 0.1), (ρv,un

0 = 0.1,
ρ

si,0,un

0 = −0.1), (ρv,un

0 = −0.1, ρsi,0,un

0 = 0.1), and (ρv,un

0 = −0.1, ρsi,0,un

0 = −0.2).

consistently informative about the asset value, prices reflect the most information

at the end of the trading day. Moreover, uninformed orders stay conditionally

highly autocorrelated and informed traders submit independent orders through-

out most of the trading day. Finally, note that the conditional correlation between

the asset value and uninformed orders is U -shaped and thus non-monotonic.

If uninformed orders are initially negatively correlated with the asset value but

positively correlated with signals, the conditional correlations monotonically de-

crease over time. In that scenario, uninformed orders provide high camouflage for

informed traders by pushing the price further away from the true asset value while
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losing their informational value about signals after the first few trading rounds.

Also, the conditional uninformed order flow autocorrelation and the conditional

signal correlation strongly decline over time.

Finally, suppose uninformed orders are initially negatively correlated with the

asset value and signals. In that case, the conditional correlations stay approxi-

mately constant over time and only change towards the end of the trading day.

Since ρv,un+1
n and ρ

si,0,un+1
n remain persistently negative and only increase in the

final periods, price discovery is low in the first trading rounds. Also, uninformed

orders stay conditionally highly autocorrelated, and informed traders submit in-

dependent orders throughout most of the trading day.

1.5.3 Negative Initial Signal Correlation

In this analysis, the initial signal correlation equals ρsi,0,sj,0
0 = −0.25. For unin-

formed orders, the unconditional correlation structures are (ρv,un
0 = 0.4, ρsi,0,un

0 =

0.15), (ρv,un
0 = 0.2, ρsi,0,un

0 = 0.1), (ρv,un
0 = 0, ρsi,0,un

0 = 0), and (ρv,un
0 = −0.2,

ρ
si,0,un

0 = −0.1).11

Figure 1.5 plots informed traders’ trading intensity βn, the market maker’s

illiquidity parameter λn, the conditional asset variance Σv
n, and informed traders’

terminal conditional expected profits over time. If uninformed orders are initially

positively correlated with the asset value and signals, informed traders make the

lowest expected profits and price discovery is the highest. Since aggregate order

flows are most informative about the asset value in the first trading periods, the

market maker’s price sensitivity declines over time. It only increases towards the

end of the trading day if the initial correlation between the asset value and un-

informed orders is not too high. Interestingly, informed traders’ trading intensity

has a smirk shape if uninformed orders are initially highly correlated with the

asset value. Therefore, trading intensities need not be monotonic.
11Previous numerical results included cases where ρv,un

0 is positive while ρsi,0,un

0 is negative and
vice versa. However, if signals are initially negatively correlated, the covariance matrix Σ0
in (1.1) is only positive definite given the specified parametrization if ρv,un

0 and ρsi,0,un

0 have
the same sign.
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Figure 1.5: Trading Intensity, Illiquidity Parameter, Conditional Asset Variance, and
Expected Profits with Negative Initial Signal Correlation. The figure plots informed
traders’ trading intensity βn, the market maker’s illiquidity parameter λn, the conditional asset
variance Σv

n, and informed traders’ terminal conditional expected profits over time. Parameter
values are M = 3, N = 10, Σv

0 = 5, Σsi,0
0 = 1, Σun

0 = 3/N , ρv,si,0
0 = 0.4, ρsi,0,sj,0

0 = −0.25, and
ρ

un,un+1
0 = 0.1. The model is solved for four initial parametrizations: (ρv,un

0 = 0.4, ρsi,0,un

0 =
0.15), (ρv,un

0 = 0.2, ρsi,0,un

0 = 0.1), (ρv,un

0 = 0, ρsi,0,un

0 = 0), and (ρv,un

0 = −0.2, ρsi,0,un

0 = −0.1).

If uninformed orders are initially uncorrelated with the asset value and signals,

informed traders trade aggressively on their private information and make high

expected profits. In that scenario, uninformed orders become conditionally neg-

atively correlated with the asset value and signals over time. Thus, uninformed

traders effectively conceal informed traders’ orders by pushing the price away from

the true asset value. Furthermore, the market maker’s price sensitivity exhibits a

clear U -shape. It initially declines because aggregate order flows are most informa-

tive about the asset value in the first periods. However, the illiquidity parameter

eventually increases in later trading rounds since informed traders submit their

most aggressive orders towards the end of the trading day.
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Finally, if uninformed orders are initially negatively correlated with the asset

value and signals, informed traders trade most aggressively on their residual signals

and make the highest expected profits. Moreover, the market maker’s illiquidity

parameter monotonically increases over time, and price discovery is lowest at the

end of the trading day. In that scenario, uninformed traders trade in the opposite

direction of the true asset value and signals. As a result, informed traders can

effectively conceal their orders from the market maker, who extracts the least

information about the asset value from aggregate order flows.

Figure 1.6 shows the evolution of the conditional correlations ρun+1,un+2
n , ρsi,0,sj,0

n ,

ρv,un+1
n , and ρsi,0,un+1

n . If uninformed orders are initially positively correlated with

the asset value and signals, ρun+1,un+2
n , ρsi,0,sj,0

n , and ρsi,0,un+1
n monotonically decline

over time. Interestingly, ρv,un+1
n grows larger than its initial value in later periods.

Consequently, uninformed orders can become even more informative about the

asset value throughout the trading day.

Suppose uninformed orders are initially uncorrelated with the asset value and sig-

nals. In that case, the conditional correlations monotonically decrease over time.

Specifically, uninformed orders become conditionally negatively correlated with

the asset value and signals, providing camouflage for informed traders. Therefore,

even if autocorrelated uninformed orders initially contain no information about

the asset value and signals, they do so upon conditioning.

Finally, if uninformed orders are initially negatively correlated with the asset

value and signals, the conditional signal correlation slowly declines, while the

remaining conditional correlations stay approximately constant over time. It is

interesting to note that the conditional uninformed order flow autocorrelation stays

persistently high. Moreover, uninformed orders remain conditionally negatively

correlated with the asset value and signals. In that scenario, informed traders

can most effectively conceal their private information from the market maker and

make the highest expected profits.
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Figure 1.6: Conditional Correlations with Negative Initial Signal Correlation. The
figure plots the conditional correlation between future uninformed orders ρun+1,un+2

n , the condi-
tional correlation between informed traders’ signals ρsi,0,sj,0

n , the conditional correlation between
the asset value and future uninformed orders ρv,un+1

n , and the conditional correlation between
informed traders’ signals and future uninformed orders ρsi,0,un+1

n over time. Parameter val-
ues are M = 3, N = 10, Σv

0 = 5, Σsi,0
0 = 1, Σun

0 = 3/N , ρv,si,0
0 = 0.4, ρsi,0,sj,0

0 = −0.25,
and ρ

un,un+1
0 = 0.1. The model is solved for four initial parametrizations: (ρv,un

0 = 0.4,
ρ

si,0,un

0 = 0.15), (ρv,un

0 = 0.2, ρsi,0,un

0 = 0.1), (ρv,un

0 = 0, ρsi,0,un

0 = 0), and (ρv,un

0 = −0.2,
ρ

si,0,un

0 = −0.1).

1.6 Conclusion

This paper has derived a dynamic trading equilibrium with heterogeneously

informed traders and (auto)correlated uninformed orders. A numerical analysis

has shown that (auto)correlated uninformed orders significantly affect informed

traders’ trading intensities, the shape of the market maker’s illiquidity parameter,

and information efficiency in financial markets. In particular, autocorrelation

in the uninformed order flow implies that uninformed orders are conditionally

correlated with the asset value and informed traders’ signals in the cross-section.
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Since informed traders have an intrinsic motive to submit unpredictable orders,

the empirically observed autocorrelation in order flows is likely to come from

uninformed traders. Given the non-trivial effects of (auto)correlated uninformed

orders on the dynamic trading equilibrium, this paper wants to emphasize that

strategic trading models should not assume uninformed traders to be simply noise.

This paper’s results provide testable implications for the dynamics of prices, or-

der flows, and market depth. Moreover, this paper’s model serves as a framework

for interesting future research. Since this paper has studied a discrete-time frame-

work, one natural extension is to solve the model in continuous time. Another

extension is to relax the assumption of risk-neutral investors and allow for a more

general utility function. Finally, the model only accounts for market orders, and

allowing traders to submit limit orders may provide new valuable insights.
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1.A Appendix

1.A.1 Proof of Lemma 1.1

Proof. Assume informed orders are as in (1.6). Then for all periods n ∈ {1, . . . , N},

one has
pn = E

[
v
∣∣∣y1:n

]
= pn−1 + E

[
v − pn−1

∣∣∣y1:n
]

= pn−1 + E
[
v − pn−1

∣∣∣y1:n−1, yn − rn,n−1
]

= pn−1 + E
[
v − pn−1

∣∣∣yn − rn,n−1
]

= pn−1 + λn(yn − rn,n−1).

(1.A1)

In deriving this expression, the second line follows by definition since pn−1 is in

the market maker’s information set after n rounds of trading. The third line uses

the fact that the information sets y1:n and (y1:n−1, yn− rn,n−1) are equivalent since

rn,n−1 is a function of y1:n−1. Going from the third to the fourth line, a direct

application of the projection theorem for Gaussian random variables implies that

both v−pn−1 = v−E
[
v
∣∣∣y1:n−1

]
and yn−rn,n−1 = yn−E

[
yn

∣∣∣y1:n−1
]
are independent

of y1:n−1. Finally, λn is the regression coefficient from the projection of v − pn−1

on yn − rn,n−1.

Similarly, for all i ∈ {1, . . . ,M} and all n ∈ {1, . . . , N}, one has

ti,n = E
[
si,0

∣∣∣y1:n
]

= ti,n−1 + E
[
si,0 − ti,n−1

∣∣∣y1:n−1, yn − rn,n−1
]

= ti,n−1 + E
[
si,n−1

∣∣∣yn − rn,n−1
]

= ti,n−1 + ζn(yn − rn,n−1),

(1.A2)

where ζn is the regression coefficient from the projection of si,n−1 on yn − rn,n−1.
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Finally, for all n ∈ {1, . . . , N − 1} and t ∈ {1, . . . , N − n}, one has

rn+t,n = E
[
un+t

∣∣∣y1:n
]

= rn+t,n−1 + E
[
un+t − rn+t,n−1

∣∣∣y1:n−1, yn − rn,n−1
]

= rn+t,n−1 + E
[
un+t − rn+t,n−1

∣∣∣yn − rn,n−1
]

= rn,n−1 + E
[
un+1 − rn,n−1

∣∣∣yn − rn,n−1
]

= rn,n−1 + θn(yn − rn,n−1),

(1.A3)

where θn is the regression coefficient from the projection of un+1 − rn,n−1 on yn −

rn,n−1. In going from the third to the fourth line, the distribution assumption (1.1)

is used, which implies that un+t and un+1 have the same conditional distribution

for all t ∈ {1, . . . , N − n}. Consequently, one also has rn+t,n−1 = rn,n−1.

1.A.2 Proof of Lemma 1.2

Proof. Define for all n ∈ {1, . . . , N} the following conditional (co)variances:

Σyn
n−1 ≡ Var

[
yn

∣∣∣y1:n−1
]
, (1.A4)

Σsi,0,yn

n−1 ≡ Cov
[
si,0, yn

∣∣∣y1:n−1
]
. (1.A5)

Moreover, let Σs,yn
n−1 be the (M × 1) vector with entries Σsi,0,yn

n−1 . Then the property

of multivariate Gaussian distributions implies that the update of the (M×M) co-

variance matrix Σs
n with diagonals Σsi,0

n and off-diagonals Σsi,0,sj,0
n can be expressed

recursively as

Σs
n = Σs

n−1 − Σs,yn
n−1

(
Σyn

n−1

)−1(
Σs,yn

n−1

)′
. (1.A6)

Since the entries in Σs,yn
n−1 are all identical, it can be concluded that

Σsi,0
n−1 − Σsi,0

n = Σsi,0,sj,0
n−1 − Σsi,0,sj,0

n . (1.A7)
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A similar analysis yields

Σun
n−1 − Σun+1

n = Σun,un+1
n−1 − Σun+1,un+2

n . (1.A8)

Finally, to show the relation for λn, note that according to (1.8):

λn(yn − rn,n−1)

=pn − pn−1

=E
[
v − pn−1

∣∣∣y1:n
]

=E
[
E
[
v − pn−1

∣∣∣s1,0, . . . , sM,0, un, y1:n−1
]∣∣∣∣y1:n

]
=E

[
E
[
v − pn−1

∣∣∣s1,n−1, . . . , sM,n−1, un − rn,n−1, y1:n−1
]∣∣∣∣y1:n−1, yn − rn,n−1

]
=E

[
E
[
v − pn−1

∣∣∣s1,n−1, . . . , sM,n−1, un − rn,n−1
]∣∣∣∣yn − rn,n−1

]

=E


(

Σv,s
n−1 Σv,un

n−1

)Σs
n−1 Σs,un

n−1

Σun,s
n−1 Σun

n−1


−1



s1,n−1

...

sM,n−1

un − rn,n−1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
yn − rn,n−1



=
(

Σv,s
n−1 Σv,un

n−1

)Σs
n−1 Σs,un

n−1

Σun,s
n−1 Σun

n−1


−1



ζn

...

ζn

θ̃n


(yn − rn,n−1).

(1.A9)

In deriving the above expression, the fourth line follows from the law of iterated

expectations since the information set y1:n is a subset of (s1,0, . . . , sM,0, un, y1:n−1).

Also, these information sets can be equivalently expressed as (y1:n−1, yn − rn,n−1)

and (s1,n−1, . . . , sM,n−1, un−rn,n−1, y1:n−1), respectively. Then the projection theo-

rem for Gaussian random variables implies that v− pn−1, (s1,n−1, . . . , sM,n−1, un−

rn,n−1), and yn − rn,n−1 are all independent of y1:n−1. Finally, the last two lines

follow from the property of multivariate Gaussian distributions, and θ̃n is the

regression coefficient from the projection of un − rn,n−1 on yn − rn,n−1.
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1.A.3 Proof of Lemma 1.3

Proof. The proof is analogous to Foster and Viswanathan (1996). In every period

n − 1 where n ∈ {1, . . . , N} every informed trader i ∈ {1, . . . ,M} forecasts the

next period’s uninformed order flow un as follows:

E
[
un

∣∣∣si,0, y1:n−1, xi,1:n−1
]

= E
[
un

∣∣∣si,0, y1:n−1
]

= rn,n−1 + E
[
un − rn,n−1

∣∣∣si,0, y1:n−1
]

= rn,n−1 + E
[
un − rn,n−1

∣∣∣si,n−1, y1:n−1
]

= rn,n−1 + E
[
un − rn,n−1

∣∣∣si,n−1
]

= rn,n−1 + ψnsi,n−1.

(1.A10)

The first line exploits the result that the trading history xi,1:n−1 is redundant

information, as was shown in (1.17). The second line follows by definition since

rn,n−1 is in informed trader i’s information set after n− 1 periods of trading. The

third line uses the fact that the information sets (si,0, y1:n−1) and (si,n−1, y1:n−1) are

equivalent since si,n−1 = si,0 − ti,n−1 and ti,n−1 is a function of y1:n−1. Finally, the

last two lines follow from the projection theorem for Gaussian random variables

and ψn is the regression coefficient from the projection of un − rn,n−1 on si,n−1.

Similarly, informed trader i’s update of the asset value v equals

E
[
v
∣∣∣si,0, y1:n−1, xi,1:n−1

]
= pn−1 + E

[
v − pn−1

∣∣∣si,n−1
]

= pn−1 + ηnsi,n−1,

(1.A11)

where ηn is the regression coefficient from the projection of v − pn−1 on si,n−1.

Moreover, informed trader i’s belief about informed trader j’s signal sj,0, where

j ∈ {1, . . . ,M} and j 6= i, equals

E
[
sj,0

∣∣∣si,0, y1:n−1, xi,1:n−1
]

= tj,n−1 + E
[
sj,n−1

∣∣∣si,n−1
]

= tj,n−1 + φnsi,n−1,

(1.A12)

where φn is the regression coefficient from the projection of sj,n−1 on si,n−1.
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1.A.4 Proof of Lemma 1.4

Proof. The proof is taken from Foster and Viswanathan (1996) and is shown by

induction. Consider the aggregate order flow in the first trading period as the

base case:

y1 =
∑
j 6=i

β1sj,0+x̃i,1+u1 =
∑
j 6=i

β1ŝ
i
j,0+β1ŝ

i
i,0+(x̃i,1−β1ŝ

i
i,0)+u1 = ŷi

1+(x̃i,1−β1si,0).

(1.A13)

Since (si,0, y1, x̃i,1) is in informed trader i’s information set after the first trading

period, so is ŷi
1.

Assume as induction hypothesis that ŷi
1:n−1 is in informed trader i’s information

set after n − 1 periods where n ∈ {2, . . . , N}. To show that ŷi
n is in informed

trader i’s information set after n trading periods, write the aggregate order flow

in period n as

yn =
∑
j 6=i

βnsj,n−1 + x̃i,n + un

=
∑
j 6=i

βn(sj,0 − tj,n−1) + x̃i,n + un

=
∑
j 6=i

βn

(
sj,0 − t̂ij,n−1

)
+
∑
j 6=i

βn

(
t̂ij,n−1 − tj,n−1

)
+ x̃i,n + un

=
∑
j 6=i

βnŝ
i
j,n−1 + βnŝ

i
i,n−1 + un +

∑
j 6=i

βn

(
t̂ij,n−1 − tj,n−1

)
+ x̃i,n − βnŝ

i
i,n−1

= ŷi
n +

∑
j 6=i

βn

(
t̂ij,n−1 − tj,n−1

)
+ x̃i,n − βn

(
si,0 − t̂ii,n−1

)
.

(1.A14)

Note that t̂ij,n−1 is a function of the equilibrium order flow history ŷi
1:n−1, which is

in informed trader i’s information set by the induction hypothesis. Since informed

trader i knows (si,0, y1:n, x̃i,1:n) and thus also tj,n−1 after n trading periods, it can

be concluded that ŷi
n is also in informed trader i’s information set.
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1.A.5 Proof of Lemma 1.5

Proof. The proof is analogous to Foster and Viswanathan (1996). Suppose in-

formed trader i has submitted an arbitrary order sequence x̃i,1:n−1 in the first

n− 1 periods where n ∈ {2, . . . , N}. Then

E
[
un − rn,n−1

∣∣∣si,0, y1:n−1, x̃i,1:n−1
]

=E
[
un − r̂i

n,n−1 + r̂i
n,n−1 − rn,n−1

∣∣∣si,0, y1:n−1, x̃i,1:n−1
]

=E
[
un − r̂i

n,n−1

∣∣∣si,0, y1:n−1, x̃i,1:n−1
]

+
(
r̂i

n,n−1 − rn,n−1
)
.

(1.A15)

Note that Lemma 1.4 has shown that ŷi
1:n−1 can be recursively constructed from

the information set (si,0, y1:n−1, x̃i,1:n−1), which implies that r̂i
n,n−1 − rn,n−1 is in

informed trader i’s information set after n− 1 periods. Moreover, the term on the

left-hand side equals

E
[
un − r̂i

n,n−1

∣∣∣si,0, y1:n−1, x̃i,1:n−1
]

=E
[
un − r̂i

n,n−1

∣∣∣si,0, ŷ
i
1:n−1, x̃i,1:n−1

]
=E

[
un − r̂i

n,n−1

∣∣∣ŝi
i,n−1, ŷ

i
1:n−1, x̃i,1:n−1

]
=E

[
un − r̂i

n,n−1

∣∣∣ŝi
i,n−1, x̃i,1:n−1

]
=E

[
un − r̂i

n,n−1

∣∣∣ŝi
i,n−1

]
=ψnŝ

i
i,n−1,

(1.A16)

where the penultimate line makes use of the fact that x̃i,1:n−1 is an arbitrary

sequence of numbers that is unrelated to equilibrium play. Therefore, it can be

concluded that

E
[
un − rn,n−1

∣∣∣si,0, y1:n−1, x̃i,1:n−1
]

= ψnŝ
i
i,n−1 +

(
r̂i

n,n−1 − rn,n−1
)
. (1.A17)

A similar analysis shows that

E
[
v − pn−1

∣∣∣si,0, y1:n−1, x̃i,1:n−1
]

= ηnŝ
i
i,n−1 +

(
p̂i

n−1 − pn−1
)
, (1.A18)
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and

E
[
sj,n−1

∣∣∣si,0, y1:n−1, x̃i,1:n−1
]

= φnŝ
i
i,n−1 +

(
t̂ij,n−1 − tj,n−1

)
, (1.A19)

as was to be shown.

1.A.6 Proof of Proposition 1.1

Proof. Given the conjectured value function (1.26), informed trader i’s Bellman

equation in trading period n ∈ {1, . . . , N} writes

max
xi,n

E
[
(v − pn)xi,n

∣∣∣si,0, y1:n−1, x̃i,1:n−1
]

+E
[
an

(
ŝi

i,n

)2
+ bn

(
p̂i

n − pn

)2
+ cn

(
t̂ij,n − tj,n

)2
+ dn

(
r̂i

n+1,n − rn+1,n

)2

+ enŝ
i
i,n

(
p̂i

n − pn

)
+ fnŝ

i
i,n

(
t̂ij,n − tj,n

)
+ gnŝ

i
i,n

(
r̂i

n+1,n − rn+1,n

)
+ hn

(
p̂i

n − pn

) (
t̂ij,n − tj,n

)
+ in

(
p̂i

n − pn

) (
r̂i

n+1,n − rn+1,n

)
+ jn

(
t̂ij,n − tj,n

) (
r̂i

n+1,n − rn+1,n

)
+ kn

∣∣∣∣si,0, y1:n−1, x̃i,1:n−1

]
.

(1.A20)

Under the conjectured equilibrium, one has

pn = pn−1 + λn(yn − rn,n−1) = pn−1 + λn

xi,n +
∑
j 6=i

βnsj,n−1 + un − rn,n−1

 ,
(1.A21)

and

tj,n = tj,n−1 + ζn(yn − rn,n−1) = tj,n−1 + ζn

xi,n +
∑
j 6=i

βnsj,n−1 + un − rn,n−1

 ,
(1.A22)

and12

rn+1,n = rn,n−1 + θn(yn− rn,n−1) = rn,n−1 + θn

xi,n +
∑
j 6=i

βnsj,n−1 + un − rn,n−1

 .
(1.A23)

12By definition, rN+1,N = 0 since there are no uninformed orders after the final trading period.
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Taking the first derivative with respect to xi,n yields the first-order condition

E

v − pn−1 − λn

∑
j 6=i

βnsj,n−1 + un − rn,n−1

 ∣∣∣∣∣∣si,0, y1:n−1, x̃i,1:n−1

− 2λnxi,n

+E
[
2bn

(
p̂i

n − pn

)
(−λn) + 2cn

(
t̂ij,n − tj,n

)
(−ζn) + 2dn

(
r̂i

n+1,n − rn+1,n

)
(−θn)

+ enŝ
i
i,n(−λn) + fnŝ

i
i,n(−ζn) + gnŝ

i
i,n(−θn) + hn

[
−λn

(
t̂ij,n − tj,n

)
− ζn

(
p̂i

n − pn

)]
+ in

[
−λn

(
r̂i

n+1,n − rn+1,n

)
− θn

(
p̂i

n − pn

)]
+ jn

[
−ζn

(
r̂i

n+1,n − rn+1,n

)
−θn

(
t̂ij,n − tj,n

)] ∣∣∣∣si,0, y1:n−1, x̃i,1:n−1

]
= 0.

(1.A24)

Similarly, one obtains the second-order condition

−λn(2−2bnλn−hnζn−inθn)+ζn(2cnζn+hnλn+jnθn)+θn(2dnθn+inλn+jnζn) < 0.

(1.A25)

Following Foster and Viswanathan (1996), expand the first-order condition:

E

v − p̂i
n−1 − λn

∑
j 6=i

βnŝ
i
j,n−1 + un − r̂i

n,n−1

 ∣∣∣∣∣∣si,0, y1:n−1, x̃i,1:n−1


− 2λnxi,n +

(
p̂i

n−1 − pn−1
)

+ λn

∑
j 6=i

βn

(
ŝi

j,n−1 − sj,n−1
)
−
(
r̂i

n,n−1 − rn,n−1
)

−E
[
(enλn + fnζn + gnθn)ŝi

i,n + (2bnλn + hnζn + inθn)
(
p̂i

n − pn

)
+ (2cnζn + hnλn + jnθn)

(
t̂ij,n − tj,n

)
+ (2dnθn + inλn + jnζn)

(
r̂i

n+1,n − rn+1,n

)
∣∣∣∣si,0, y1:n−1, x̃i,1:n−1

]
= 0,

(1.A26)

where p̂i
n−1 − pn−1, ŝi

j,n−1 − sj,n−1, and r̂i
n,n−1 − rn,n−1 are in informed trader

i’s information set. Before proceeding with the first-order condition, recall from

Lemma 1.3 that

E
[
v − p̂i

n−1

∣∣∣si,0, y1:n−1, x̃i,1:n−1
]

= ηnŝ
i
i,n−1, (1.A27)

E
[
ŝi

j,n−1

∣∣∣si,0, y1:n−1, x̃i,1:n−1
]

= φnŝ
i
i,n−1, (1.A28)

E
[
un − r̂i

n,n−1

∣∣∣si,0, y1:n−1, x̃i,1:n−1
]

= ψnŝ
i
i,n−1, (1.A29)
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where ηn, φn, and ψn are the corresponding regression coefficients. With these

results, one can show that

E
[
ŝi

i,n

∣∣∣si,0, y1:n−1, x̃i,1:n−1
]

=ŝi
i,n−1 − ζn E

[
βnŝ

i
i,n−1 +

∑
j 6=i

βnŝ
i
j,n−1 + un − r̂i

n,n−1

∣∣∣∣∣ŝi
i,n−1

]

=
(

1− ζn

[
βn + (M − 1)βnφn + ψn

])
ŝi

i,n−1.

(1.A30)

Moreover,

p̂i
n − pn = p̂i

n−1 − pn−1 + λn

[
ŷi

n − r̂i
n,n−1 − (yn − rn,n−1)

]
=p̂i

n−1 − pn−1 + λn

[
βnŝ

i
i,n−1 − xi,n − (M − 1)βn

(
t̂ij,n−1 − tj,n−1

)
−
(
r̂i

n,n−1 − rn,n−1
) ]
,

(1.A31)

and

t̂ij,n − tj,n = t̂ij,n−1 − tj,n−1 + ζn

[
ŷi

n − r̂i
n,n−1 − (yn − rn,n−1)

]
=t̂ij,n−1 − tj,n−1 + ζn

[
βnŝ

i
i,n−1 − xi,n − (M − 1)βn

(
t̂ij,n−1 − tj,n−1

)
−
(
r̂i

n,n−1 − rn,n−1
) ]
,

(1.A32)

and

r̂i
n+1,n − rn+1,n = r̂i

n,n−1 − rn,n−1 + θn

[
ŷi

n − r̂i
n,n−1 − (yn − rn,n−1)

]
=r̂i

n,n−1 − rn,n−1 + θn

[
βnŝ

i
i,n−1 − xi,n − (M − 1)βn

(
t̂ij,n−1 − tj,n−1

)
−
(
r̂i

n,n−1 − rn,n−1
) ]
.

(1.A33)

Using all of these relations in the first-order condition, one can show that informed

trader i’s optimal strategy in period n equals

xi,n = βnŝ
i
i,n−1 + γn

(
p̂i

n−1 − pn−1
)

+ αn

(
t̂ij,n−1 − tj,n−1

)
+ δn

(
r̂i

n,n−1 − rn,n−1
)
,

(1.A34)
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where the coefficients βn, γn, αn, and δn are just as in Proposition 1.1. Finally,

plugging xi,n into the Bellman equation and noting that

E
[ (
ŝi

i,n

)2
∣∣∣∣si,0, y1:n−1, x̃i,1:n−1

]
=
(

1− ζn

[
βn + (M − 1)βnφn + ψn

])2 (
ŝi

i,n−1

)2

+ ζ2
n

[
Var

[
un − r̂i

n,n−1

∣∣∣si,0, ŷ
i
1:n−1

]
+ 2(M − 1)βn Cov

[
ŝi

j,n−1, un − r̂i
n,n−1

∣∣∣si,0, ŷ
i
1:n−1

]
+ (M − 1)β2

n

(
Var

[
ŝi

j,n−1

∣∣∣si,0, ŷ
i
1:n−1

]
+ (M − 2) Cov

[
ŝi

j,n−1, ŝ
i
k,n−1

∣∣∣si,0, ŷ
i
1:n−1

])]
,

(1.A35)

one obtains the value function coefficients in period n − 1. At this stage of the

proof, the “hat” notation is suppressed because informed trader i will not deviate

from his optimal strategy along the equilibrium path. The regression coefficients

ηn, φn, and ψn are defined by projecting v− pn−1, sj,n−1, and un− rn,n−1 on si,n−1,

respectively. Consequently,

ηn =
Cov

[
v − pn−1, si,n−1

]
Var

[
si,n−1

] = Σv,si,0
n−1

Σsi,0
n−1

, (1.A36)

φn =
Cov

[
sj,n−1, si,n−1

]
Var

[
si,n−1

] = Σsj,0,si,0
n−1

Σsi,0
n−1

, (1.A37)

ψn =
Cov

[
un − rn,n−1, si,n−1

]
Var

[
si,n−1

] = Σun,si,0
n−1

Σsi,0
n−1

. (1.A38)

Next, one obtains

Var
[
un − rn,n−1

∣∣∣si,0, y1:n−1
]

=E
[
(un − rn,n−1 − ψnsi,n−1)2

]
=E

[
(un − rn,n−1)2

]
− 2ψn E

[
(un − rn,n−1)si,n−1

]
+ ψ2

n E
[
(si,n−1)2

]
=Σun

n−1 − 2ψnΣun,si,0
n−1 + ψ2

nΣsi,0
n−1

=Σun
n−1 − ψ2

nΣsi,0
n−1,

(1.A39)
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and
Var

[
sj,n−1

∣∣∣si,0, y1:n−1
]

=E
[
(sj,n−1 − φnsi,n−1)2

]
=E

[
(sj,n−1)2

]
− 2φn E

[
sj,n−1si,n−1

]
+ φ2

n E
[
(si,n−1)2

]
=Σsj,0

n−1 − 2φnΣsj,0,si,0
n−1 + φ2

nΣsi,0
n−1

=(1− φ2
n)Σsi,0

n−1,

(1.A40)

and

Cov
[
sj,n−1, sk,n−1

∣∣∣si,0, y1:n−1
]

= Cov
[
sj,n−1 − φnsi,n−1, sk,n−1 − φnsi,n−1

]
= Cov

[
sj,n−1, si,n−1

]
− 2φn Cov

[
sj,n−1, si,n−1

]
+ φ2

n Cov
[
si,n−1, si,n−1

]
=Σsj,0,si,0

n−1 − 2φnΣsj,0,si,0
n−1 + φ2

nΣsi,0
n−1

=(1− φn)Σsj,0,si,0
n−1 ,

(1.A41)

and
Cov

[
sj,n−1, un − rn,n−1

∣∣∣si,0, y1:n−1
]

= Cov
[
sj,n−1 − φnsi,n−1, un − rn,n−1 − ψnsi,n−1

]
= Cov

[
sj,n−1, un − rn,n−1

]
− φn Cov

[
si,n−1, un − rn,n−1

]
− ψn Cov

[
sj,n−1, si,n−1

]
+ φnψn Cov

[
si,n−1, si,n−1

]
=Σsi,0,un

n−1 − φnΣsi,0,un

n−1 − ψnΣsj,0,si,0
n−1 + φnψnΣsi,0

n−1

=(1− φn)Σsi,0,un

n−1 .

(1.A42)

To compute λn, recall that

yn − rn,n−1 =
M∑

i=1
βnsi,n−1 + un − rn,n−1. (1.A43)
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Then the projection theorem implies

λn =
Cov

[
v − pn−1, yn − rn,n−1

]
Var

[
yn − rn,n−1

]
= MβnΣv,si,0

n−1 + Σv,un
n−1

Mβ2
n

[
Σsi,0

n−1 + (M − 1)Σsi,0,sj,0
n−1

]
+ Σun

n−1 + 2MβnΣsi,0,un

n−1

.

(1.A44)

Similarly,

ζn =
Cov

[
si,n−1, yn − rn,n−1

]
Var

[
yn − rn,n−1

]

=
βn

[
Σsi,0

n−1 + (M − 1)Σsi,0,sj,0
n−1

]
+ Σsi,0,un

n−1

Mβ2
n

[
Σsi,0

n−1 + (M − 1)Σsi,0,sj,0
n−1

]
+ Σun

n−1 + 2MβnΣsi,0,un

n−1

,

(1.A45)

and13

θn =
Cov

[
un+1 − rn,n−1, yn − rn,n−1

]
Var

[
yn − rn,n−1

]
= MβnΣsi,0,un

n−1 + Σun,un+1
n−1

Mβ2
n

[
Σsi,0

n−1 + (M − 1)Σsi,0,sj,0
n−1

]
+ Σun

n−1 + 2MβnΣsi,0,un

n−1

.

(1.A46)

Finally, to compute the updates of conditional (co)variances, define for all periods

n ∈ {1, . . . , N − 1}:

Σyn
n−1 ≡ Var

[
yn

∣∣∣y1:n−1
]

= Var
[
yn − rn,n−1

]
, (1.A47)

Σv,yn
n−1 ≡ Cov

[
v, yn

∣∣∣y1:n−1
]

= Cov
[
v − pn−1, yn − rn,n−1

]
, (1.A48)

Σsi,0,yn

n−1 ≡ Cov
[
si,0, yn

∣∣∣y1:n−1
]

= Cov
[
si,n−1, yn − rn,n−1

]
, (1.A49)

Σun+1,yn

n−1 ≡ Cov
[
un+1, yn

∣∣∣y1:n−1
]

= Cov
[
un+1 − rn,n−1, yn − rn,n−1

]
, (1.A50)

13By definition, θN = 0 since there are no uninformed orders after the final trading period.
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Also, consider the unconditional covariance matrix Σ0 in (1.1), and define the

corresponding conditional covariance matrix Σn for all n ∈ {1, . . . , N − 1} as

Σn ≡



Σv
n

(1×1)
Σv,s

n
(1×M)

Σv,u
n

(1×N)

Σs,v
n

(M×1)
Σs

n
(M×M)

Σs,u
n

(M×N)

Σu,v
n

(N×1)
Σu,s

n
(N×M)

Σu
n

(N×N)


, (1.A51)

where (co)variances are conditional on the aggregate order flow history y1:n. Then

the property of multivariate Gaussian distributions implies that the conditional

covariance matrix Σn can be expressed recursively as

Σn = Σn−1 −



Σv,yn
n−1

Σs1,0,yn

n−1
...

ΣsM,0,yn

n−1

Σu1,yn
n−1
...

ΣuN ,yn
n−1



(
Σyn

n−1

)−1



Σv,yn
n−1

Σs1,0,yn

n−1
...

ΣsM,0,yn

n−1

Σu1,yn
n−1
...

ΣuN ,yn
n−1



′

, (1.A52)

where the (co)variances in Proposition 1.1 are obtained after simplification.

1.A.7 Algorithm

The equilibrium in Proposition 1.1 is solved via backward induction. Specify

the number of informed traders M , the number of trading periods N , the desired

period zero (co)variances Σv
0, Σv,si,0

0 , Σv,un
0 , Σsi,0,un

0 , Σsi,0
0 , Σun

0 , and the constants χs

and χu for computing Σsi,0,sj,0
0 and Σun,un+1

0 from (1.14) and (1.15), respectively.

Note that the desired specification is only valid if the covariance matrix Σ0 in

(1.1) is positive definite.

The algorithm starts in the last trading period N and takes as inputs guesses

for the period N − 1 conditional (co)variances Σv,si,0
N−1 , Σv,uN

N−1, Σsi,0,uN

N−1 , Σsi,0
N−1, and
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ΣuN
N−1.14 Immediately, Σsi,0,sj,0

N−1 follows from (1.14). By definition, the value func-

tion coefficients aN , . . . , kN and the projection coefficient θN are zero in the last

trading period, simplifying the equations for βN and λN to

βN = ηN − λNψN

λN [2 + (M − 1)φN ] , (1.A53)

λN = MβNΣv,si,0
N−1 + Σv,uN

N−1

Mβ2
N

[
Σsi,0

N−1 + (M − 1)Σsi,0,sj,0
N−1

]
+ ΣuN

N−1 + 2MβNΣsi,0,uN

N−1
. (1.A54)

Rearranging yields a quadratic equation in λN , where only the positive root satis-

fies the second-order condition in period N . Given λN , one can compute βN , ζN ,

γN , αN , δN , and the value function coefficients aN−1, . . . , kN−1.

In the induction step, the algorithm takes the following quantities as inputs in

every period n ∈ {1, . . . , N − 1}:

(i) the projection coefficient βn+1,

(ii) the conditional (co)variances Σv,si,0
n , Σv,un+1

n , Σsi,0,un+1
n , Σsi,0

n , and Σun+1
n ,

(iii) and the value function coefficients an, . . . , kn.

With these inputs, one can simultaneously solve for βn, Σv,si,0
n−1 , Σv,un

n−1 , Σsi,0,un

n−1 , Σsi,0
n−1,

and Σun
n−1, resulting in a polynomial system with six equations and six unknowns.

Given χs and χu, one also obtains Σsi,0,sj,0
n−1 and Σun,un+1

n−1 from (1.14) and (1.15),

respectively. These results allow one to compute λn, ζn, θn, γn, αn, δn, and the

value function coefficients an−1, . . . , kn−1 and proceed to the next iteration.

After the final iteration, one can compute Σv
n for every period n ∈ {1, . . . , N−1}

since Σv
0 was initially specified. If

(i) the second-order condition is satisfied in every period,

(ii) conditional (co)variances are consistent in every period,

(iii) and the value function monotonically decreases over time,

14This paper does not compute conditional (co)variances for the last period N since these
quantities are realized after the trading game.
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an equilibrium was found. Additionally, if Σv,si,0
0 , Σv,un

0 , Σsi,0,un

0 , Σsi,0
0 , and Σun

0

satisfy the initial specification, the algorithm terminates. Otherwise, the guesses

for the period N − 1 conditional (co)variances are adjusted, and the algorithm

runs anew.
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2 Strategic Trading when the

Market Maker Has a Monopoly

on Short-Lived Information

Vladislav Gounas†

Abstract

This paper develops a strategic trading model in which the market maker has a

monopoly on short-lived information. Given that modern market makers are high-

frequency traders, it is assumed that market makers can process any short-lived

information event faster than other traders. Since the market maker’s informa-

tion is short-lived, informed traders sequentially learn about it and adjust their

strategies accordingly. The correlation structure of the market maker’s short-lived

information significantly affects the dynamic trading equilibrium. The model can

generate new stylized facts like negative trading intensities and increasing price

sensitivities to news.

Keywords: Kyle model, strategic trading, long-lived information, short-lived

information, signal processing, price impact, market microstructure.
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2.1 Introduction

Strategic trading models can explain how information gets incorporated into

asset prices. Most models assume a financial market with a single information

event solely observed by informed traders. Through dynamic trading, market

makers partially learn about informed traders’ private information and adjust

their prices accordingly.

However, empirical financial markets are characterized by the arrival of news.

Any asset-specific news released during the trading day directly impacts that as-

set’s price. Thus, the assumption of a single non-public information event may

be limiting in describing trading dynamics. A natural question is what types of

traders can react to news arrivals first. Since modern market makers are high-

frequency traders competing for speed, a reasonable assumption is that market

makers can trade news faster than other market participants.

This paper studies a strategic trading model in the spirit of Kyle (1985) and

its vast extensions.1 In the literature, the market maker can only learn about the

asset value by observing aggregate order flows. Exceptions to that assumption

include Jain and Mirman (1999), Daher, Mirman, and Saleeby (2014), and Fou-

cault, Hombert, and Roşu (2016). Jain and Mirman (1999) study a one-period

Kyle (1985) model in which the market maker observes the aggregate order flow

and a stochastic signal about the asset value.2 Daher, Mirman, and Saleeby (2014)

extend the Jain and Mirman (1999) model to two periods. Both papers conclude

that prices are more efficient if the market maker observes an additional signal

next to the aggregate order flow.

1Notable extensions of Kyle (1985) include but are not limited to Admati and Pfleiderer (1988),
Kyle (1989), Seppi (1990), Foster and Viswanathan (1990), Holden and Subrahmanyam
(1992), Back (1992), Holden and Subrahmanyam (1994), Caballe and Krishnan (1994), Foster
and Viswanathan (1994), Foster and Viswanathan (1996), Jain and Mirman (1999), Back,
Cao, and Willard (2000), Back and Baruch (2004), Bernhardt and Miao (2004), Pasquariello
(2007), Dridi and Germain (2009), Noh and S. Choi (2009), Nishide (2009), Colla and Mele
(2010), Ostrovsky (2012), Rostek and Weretka (2012), Daher, Mirman, and Saleeby (2014),
Collin-Dufresne and Fos (2016), Foucault, Hombert, and Roşu (2016), Lambert, Ostrovsky,
and Panov (2018), J. H. Choi, Larsen, and Seppi (2019), and Sastry and Thompson (2019).

2Lambert, Ostrovsky, and Panov (2018) provide a most general analysis of the one-period Kyle
(1985) model, where the model by Jain and Mirman (1999) is obtained as a special case.
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However, empirical signals like news arrive frequently rather than only once or

twice during the trading day. Since news can have substantial impacts on trading

strategies and asset prices, a dynamic model is more suitable to describe a market

in which the market maker can trade news faster than other traders.

Foucault, Hombert, and Roşu (2016) analyze a continuous-time version of the

Kyle (1985) model where public signals arrive deterministically over time.3 The

authors distinguish between the two cases where the informed trader either “slower”

or “faster” than the market maker. Clearly, the market maker has a monopoly on

short-lived information if the informed trader is slower than the market maker.

However, while Foucault, Hombert, and Roşu (2016) focus on trading speed,

this study focuses on the informativeness of news when the market maker is faster

than informed traders. Moreover, Foucault, Hombert, and Roşu (2016) consider a

single informed trader in a continuous-time setting. In contrast, this paper studies

a dynamic discrete-time model with multiple informed traders who possess het-

erogeneous information about the asset value. Consequently, this paper accounts

for game-theoretical aspects that multiple informed traders must consider when

they are collectively slower than the market maker.

Building on the framework by Foster and Viswanathan (1996), the contribution

to the literature lies in allowing the market maker to have a monopoly on short-

lived information in a dynamic discrete-time setting. Specifically, it is assumed

that the market maker sequentially receives short-lived signals that are correlated

with the asset value, informed traders’ long-lived private information, and future

short-lived signals.

One can think of short-lived signals as news arrivals, which the market maker

can process faster than other traders. Since information is short-lived, the market

maker can only trade it for one period before it becomes public knowledge. More-

over, since short-lived information events are autocorrelated, informed traders and

3Foucault, Hombert, and Roşu (2016) also study the case where public signals arrive stochas-
tically over time. The authors conclude that their main results remain unaffected by this
change.
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the market maker need to forecast future news arrivals. Overall, the model al-

lows for two types of information events in the market: one long-lived information

event solely observed by informed traders before the start of the trading game and

short-lived information events that arrive sequentially over time.

Numerical results show that the correlation structure of the market maker’s

short-lived information significantly affects market liquidity and price efficiency.

The more informative news arrivals are about the asset value, the higher the

corresponding price impact. Since the market maker only prices the innovation

in short-lived information, the first news arrival generally has the highest price

impact. In particular, short-lived information events help the market maker ex-

tract informed traders’ long-lived private information from aggregate order flows,

resulting in high price discovery.

Surprisingly, depending on the correlation structure of news arrivals, price sen-

sitivity to news innovations can also be monotonically increasing or U -shaped.

In particular, prices become more sensitive to news innovations in later periods

if news arrivals are (conditionally) negatively autocorrelated. That scenario is

equivalent to contradicting news arriving throughout the trading day. As a result,

the market maker smooths her incorporation of news into prices, resulting in the

final news innovation having the highest price impact.

Finally, the model can produce new stylized facts like negative trading intensi-

ties that become positive throughout the trading day. Under specific correlation

structures, equilibria are attainable in which the conditional correlation between

informed traders’ long-lived information and the asset value is initially negative

but becomes positive over time. For example, if informed traders receive the signal

that the asset value is currently undervalued, then it is optimal for them to ini-

tially sell the asset and only buy it in later trading periods. Intuitively, informed

traders realize that their initial private information is biased, which is why they

trade against it. However, as informed traders learn about the market maker’s

short-lived signals over time, they eventually switch trading directions since every
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subsequent news arrival reduces informed traders’ initial bias.

The idea of a strategic trading model with short-lived information is not a new

one. Admati and Pfleiderer (1988) consider a market in which traders can acquire

short-lived information at a cost so that traders decide in every period whether to

become informed or not. In contrast, Noh and S. Choi (2009) assume that informed

traders have a monopoly on long-lived and short-lived information. Consequently,

both papers implicitly assume that informed traders can trade short-lived infor-

mation events faster than other traders in the market. That assumption may be

appropriate if informed traders are high-frequency traders with faster algorithms

than market makers.

Nishide (2009) studies a continuous-time Kyle (1985) model with a continu-

ous public signal that is correlated with the asset value and uninformed orders.

The underlying idea is that uninformed traders base their orders on public news.

However, in contrast to this paper, the market maker in Nishide (2009) does

not have a monopoly on short-lived information since news gets released continu-

ously, eliminating the market maker’s informational advantage that she enjoys in

a discrete-time setting.

Finally, this paper’s model derivation is closely related to Gounas (2021), who

develops a strategic trading model where uninformed orders exhibit a general

correlation structure. As a result, there are two types of signals in Gounas (2021):

informed traders’ signals that are realized before the start of the trading game and

sequentially realized signals in the form of the uninformed order flow. By simply

substituting the sequentially realized signals with the market maker’s short-lived

information, one obtains this paper’s model framework.

Even though many results in Gounas (2021) apply to this paper’s model, the

economics differ considerably. First, in Gounas (2021), the sequentially realized

signals (in the form of the uninformed order flow) remain stochastic throughout

the trading day. In contrast, this paper’s sequentially realized signals (in the

form of the market maker’s short-lived information) become public knowledge
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over time, allowing informed traders to incorporate those signals into their trading

strategies. Second, in Gounas (2021), the market maker only observes aggregate

order flows throughout the trading day. In contrast, this paper’s market maker

also receives short-lived private information about the asset value in every period.

Consequently, this paper’s market maker is also an informed trader.

In what follows, Section 2.2 sets up the model. Section 2.3 explains the equi-

librium concept, and Section 2.4 derives necessary and sufficient conditions for its

existence. Finally, Section 2.5 numerically evaluates the model, and Section 2.6

concludes the paper.

2.2 The Model

The model framework is based on Foster and Viswanathan (1996). Consider a

market with a single risky asset. Denote the asset’s stochastic liquidation value

as v and its unconditional variance as Σv
0 ≡ Var[v]. Buy and sell orders for the

asset can be submitted over N ∈ N equally spaced batch auctions that take place

during the time interval [0, 1]. Strategic agents trading the asset include I ∈ N

risk-neutral informed traders and a competitive market maker. Also, there are

uninformed traders whose orders are assumed to arrive exogenously over time.

For all informed traders i ∈ {1, . . . , I}, denote informed trader i’s long-lived

private signal in period zero as si,0. Let sI ≡ [s1,0, . . . , sI,0]′ be informed traders’

collective long-lived signal vector, and define the covariance matrix of sI as ΣsI
0 ,

consisting of diagonals Σsi,0
0 ≡ Var[si,0] and off-diagonals Σsi,0,sj,0

0 ≡ Cov[si,0, sj,0]

where j ∈ {1, . . . , I} and j 6= i. Moreover, long-lived signals are correlated with

the asset value, and the corresponding covariance is given by Σv,si,0
0 ≡ Cov[v, si,0].

Following Foster and Viswanathan (1996), assume that Σsi,0
0 , Σsi,0,sj,0

0 , and Σv,si,0
0

are independent of i and j for all i, j ∈ {1, . . . , I} where i 6= j. Thus, (co)variances

are identical across all informed traders, which is a necessary assumption to resolve

the underlying dimensionality problem of the dynamic trading game.
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The innovation of this paper lies in allowing the market maker not only to

observe aggregate order flows but also short-lived signals that are correlated with

the asset value, long-lived signals, and future short-lived signals. Specifically,

assume that the market maker receives a short-lived private signal sM,n about

the asset’s true value in every period n ∈ {1, . . . , N}. Short-lived signals can be

interpreted as news arriving throughout the trading day, where it is assumed that

the market maker can trade news faster than informed traders.4 Since the market

maker’s signals are short-lived, they become sequentially public information over

time, that is, each signal sM,n gets publicly announced after trading period n.

Let sM ≡ [sM,1, . . . , sM,n]′ be the market maker’s collective short-lived sig-

nal vector, and define the covariance matrix of sM as ΣsM
0 , consisting of diag-

onals ΣsM,n

0 ≡ Var[sM,n] and off-diagonals ΣsM,n,sM,m

0 ≡ Cov[sM,n, sM,m] where

m ∈ {1, . . . , N} and m 6= n. Moreover, short-lived signals are correlated with

the asset value and long-lived signals. The corresponding covariances are given by

Σv,sM,n

0 ≡ Cov[v, sM,n] and Σsi,0,sM,n

0 ≡ Cov[si,0, sM,n] for all i ∈ {1, . . . , I}. As be-

fore, to resolve the dimensionality problem of the dynamic trading game, assume

that ΣsM,n

0 , ΣsM,n,sM,m

0 , Σv,sM,n

0 , and Σsi,0,sM,n

0 are independent of i, n, and m for all

i ∈ {1, . . . , I} and n,m ∈ {1, . . . , N} where n 6= m.

Summing up, informed traders have a monopoly on long-lived information, while

the market maker has a monopoly on short-lived information. Since the market

maker possesses short-lived private information about the asset value in every

period, the market maker is also an informed trader. However, note that the

market maker never fully learns about informed traders’ signals, whereas informed

traders perfectly learn about the market maker’s signals over time.

The central assumption of this paper is that the asset value, long-lived signals,

4This assumption is justified by the fact that modern market makers are high-frequency traders
who can react to news arrivals faster than other traders.
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and short-lived signals follow a multivariate normal distribution:5
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, (2.1)

where Σv,sI
0 has entries Σv,si,0

0 , Σv,sM
0 has entries Σv,sM,n

0 , and ΣsI ,sM
0 has entries

Σsi,0,sM,n

0 . Informed traders and the market maker know the distribution (2.1) and

form beliefs about v, sI , and sM during the trading day.

Similar to Foster and Viswanathan (1996), the model provides a sufficient statis-

tic that will facilitate the forecasting problem of the dynamic trading game.

Lemma 2.1. Assume the distribution assumption (2.1) holds, then

E
[
v
∣∣∣sI , sM] = θI

I∑
i=1

si,0 + θM

N∑
t=1

sM,t ≡ v̂, (2.2)

where θI and θM are constants.

Proof. See Appendix 2.A.1.

Lemma 2.1 implies that instead of forecasting the asset value v, it is sufficient

to forecast the weighted sum of both informed traders’ and the market maker’s

signals v̂. Intuitively, v̂ captures all available information about the asset value

in the market. Consequently, the best forecast of the asset value is the combined

forecast of all signals correlated with the asset value, where the corresponding

correlations are captured by the constants θI and θM .

5The distribution assumption (2.1) is similar to the one in Gounas (2021). In Gounas (2021), it
is assumed that uninformed orders (instead of the market maker’s signals) are correlated with
the asset value, informed traders’ signals, and each other over time. While the distributions
are statistically equivalent, the economics differ considerably. Informed traders and the
market maker never fully learn about uninformed orders since they are hidden in aggregate
order flows. In contrast, there is no uncertainty about the market maker’s signals at the end
of the trading day since they become public information over time. Moreover, this paper’s
market maker is also an informed trader since she possesses short-lived private information
about the asset value in every period. As a result, this paper’s strategies and beliefs will
differ from those in Gounas (2021).
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Finally, uninformed traders submit the aggregate quantity un in every period

n ∈ {1, . . . , N}. It is assumed that uninformed orders arrive identically and

independently distributed over time with zero mean and homogeneous variance

Σu
0 ≡ Var[u]. As discussed in Gounas (2021), this is an unreasonable assumption

since it implies aggregate order flows to be unpredictable, standing in contrast

to the significant autocorrelation found in empirical order flows.6 However, this

assumption is kept for simplicity and may be addressed in future research.

Define the aggregate order flow yn in every period n ∈ {1, . . . , N} as

yn ≡
I∑

i=1
xi,n + un, (2.3)

where xi,n is informed trader i’s order in period n. The market maker observes

yn and needs to set the clearing price pn in every period n ∈ {1, . . . , N}. Due to

perfect competition, she makes zero expected profits, implying

pn ≡ E
[
v
∣∣∣sM,1:n, y1:n

]
, (2.4)

where the market maker’s information set in trading round n consists of the his-

tories sM,1:n ≡ (sM,1, . . . , sM,n) and y1:n ≡ (y1, . . . , yn). Interpreting short-lived

signals as news arrivals, the perfect competition condition (2.4) creates a direct

link between news and asset prices.

The Bellman principle of optimality implies that every informed trader i ∈

{1, . . . , I}maximizes the following objective function in each period n ∈ {1, . . . , N}:

max
xi,n

E
[
(v − pn)xi,n + Vi,n

∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1
]
, (2.5)

where

Vi,n ≡ max
xi,n+1,...,xi,N

E
[

N∑
m=n+1

(v − pm)xi,m

∣∣∣∣∣si,0, sM,1:n, y1:n, x̃i,1:n

]
(2.6)

6See Hasbrouck (1991a,b) and Brogaard, Hendershott, and Riordan (2019).
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is informed trader i’s value function after n trading rounds. Thus, in each pe-

riod, every informed trader maximizes his terminal expected profit conditional

on his available information. Note that every informed trader sequentially learns

about the market maker’s signals and incorporates them into his profit maximiza-

tion problem. Moreover, by definition of the Bellman equation (2.5), informed

trader i’s strategy xi,n in period n must be optimal for any arbitrary trading his-

tory x̃i,1:n−1 ≡ (x̃i,1, . . . , x̃i,n−1). Therefore, optimal trading strategies must also

account for suboptimal play in the past.

Given informed traders’ and the market maker’s objective functions, a dynamic

trading equilibrium is defined as in Foster and Viswanathan (1996).

Definition 2.1. A Bayesian Nash equilibrium is defined by the set of strategies

{x1,n, . . . , xI,n, pn}N
n=1 if the following two conditions hold:

(i) The Bellman equation (2.5) is maximized for all informed traders i ∈ {1, . . . , I}

in every period n ∈ {1, . . . , N}.

(ii) The clearing price satisfies (2.4) in every period n ∈ {1, . . . , N}.

Note that Definition 2.1 implies that there cannot exist a Bayesian Nash equi-

librium in which a competitive market maker possesses long-lived private informa-

tion, and the proof is shown by contradiction. Suppose the market maker receives

a long-lived private signal sM,1 in the first period. In that case, the pricing rule

(2.4) implies that the price p1 in the first period is a function of the signal sM,1 and

the aggregate order flow y1. However, both p1 and y1 become public information

after the first round of trading. Since Definition 2.1 requires the functional form

of the market maker’s pricing rule to be common knowledge, informed traders can

derive the market maker’s signal sM,1 from observing p1 and y1. Consequently,

sM,1 cannot be long-lived private information. By induction, it follows that a com-

petitive market maker cannot possess long-lived private information in a Bayesian

Nash equilibrium.
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2.3 The Conjectured Equilibrium

This paper focuses on a linear and symmetric trading equilibrium. Let si,n−1 ≡

si,0 − E
[
si,0

∣∣∣sM,1:n−1, y1:n−1
]
be informed trader i’s residual long-lived signal after

n−1 trading rounds, and conjecture that informed trader i’s equilibrium strategy

xi,n in trading period n is linear in si,n−1:

xi,n = βnsi,n−1, (2.7)

for all informed traders i ∈ {1, . . . , I} in each period n ∈ {1, . . . , N}. As in Foster

and Viswanathan (1996), the trading strategy (2.7) implies that the market maker

cannot predict whether informed traders will submit buy or sell orders in the next

trading period, yielding the following lemma.

Lemma 2.2. Given (2.7), the market maker’s prices and beliefs satisfy the fol-

lowing recursions:

pn ≡ E
[
v
∣∣∣sM,1:n, y1:n

]
= pn−1 + µn(sM,n − rn,n−1) + λnyn, (2.8)

ti,n ≡ E
[
si,0

∣∣∣sM,1:n, y1:n
]

= ti,n−1 + αn(sM,n − rn,n−1) + ζnyn, (2.9)

rn+t,n ≡ E
[
sM,n+t

∣∣∣sM,1:n, y1:n
]

= rn,n−1 + ωn(sM,n − rn,n−1) + δnyn, (2.10)

for all periods n ∈ {1, . . . , N}, informed traders i ∈ {1, . . . , I}, and forecasting

horizons t ∈ {1, . . . , N−n}. Moreover, the multivariate projection coefficients µn,

λn, αn, ζn, ωn, and δn satisfy the relations

µn = IθIαn + θM

[
1 + (N − n)ωn

]
, (2.11)

λn = IθIζn + (N − n)θMδn. (2.12)

Proof. See Appendix 2.A.2.

According to Lemma 2.2, the market maker’s prices and beliefs are not only

linear functions of the aggregate order flow yn but also of the innovation in short-
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lived information sM,n − rn,n−1. Note that the projection coefficient λn measures

the price sensitivity to aggregate order flows and is equivalent to an illiquidity

parameter as in Kyle (1985). However, since projection coefficients are multivari-

ate now, the market maker also considers interaction effects that aggregate order

flows have with short-lived signal innovations.

Of particular interest is the projection coefficient µn, which measures the impact

of short-lived signal innovations on prices and can be thought of as a news param-

eter. The larger µn, the more sensitive prices are to news innovations. Moreover,

instead of forecasting all future short-lived signals, (2.10) implies that the market

maker only needs to forecast the next period’s short-lived signal sM,n+1 after n

rounds of trading. This result follows from the symmetry conditions imposed for

(co)variances, which resolve the dimensionality issue of the dynamic trading game.

Finally, Lemma 2.2 and the law of iterated expectations imply that the price

pn in trading period n ∈ {1, . . . , N} can be expressed as7

pn = IθIti,n + θM

[
n∑

t=1
sM,t + (N − n)rn+1,n

]
. (2.13)

Consequently, the market maker’s price in period n is a weighted sum of her be-

lief about informed traders’ long-lived signal ti,n, her realized short-lived signals

sM,1:n, and her belief about future short-lived signals rn+1,n. This result will facil-

itate informed traders’ dynamic programming problem since prices will become a

redundant state variable.

To measure information efficiency during the trading day, define for all periods

n ∈ {1, . . . , N} and all informed traders i, j ∈ {1, . . . , I}:

Σv̂
n ≡ Var

[
v̂
∣∣∣sM,1:n, y1:n

]
, Σsi,0

n ≡ Var
[
si,0

∣∣∣sM,1:n, y1:n
]
,

ΣsM,n+1
n ≡ Var

[
sM,n+1

∣∣∣sM,1:n, y1:n
]
, Σsi,0,sj,0

n ≡ Cov
[
si,0, sj,0

∣∣∣sM,1:n, y1:n
]
,

Σsi,0,sM,n+1
n ≡ Cov

[
si,0, sM,n+1

∣∣∣sM,1:n, y1:n
]
, ΣsM,n+1,sM,n+2

n ≡ Cov
[
sM,n+1, sM,n+2

∣∣∣sM,1:n, y1:n
]
.

7This result is shown in Appendix 2.A.2.
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These conditional (co)variances capture the market maker’s remaining uncertainty

about long-lived and future short-lived signals in every trading period. In partic-

ular, they satisfy the following relations.

Lemma 2.3. Given (2.7), the market maker’s conditional (co)variance updates

of long-lived and future short-lived signals satisfy

Σsi,0
n−1 − Σsi,0

n = Σsi,0,sj,0
n−1 − Σsi,0,sj,0

n , (2.14)

ΣsM,n

n−1 − ΣsM,n+1
n = ΣsM,n,sM,n+1

n−1 − ΣsM,n+1,sM,n+2
n , (2.15)

for all periods n ∈ {1, . . . , N−1} and informed traders i, j ∈ {1, . . . , I}. Moreover,

it holds that

Σv̂
n = Iθ2

I

[
Σsi,0

n + (I − 1)Σsi,0,sj,0
n

]
+ 2I(N − n)θIθMΣsi,0,sM,n+1

n

+ (N − n)θ2
M

[
ΣsM,n+1

n + (N − n− 1)ΣsM,n+1,sM,n+2
n

]
.

(2.16)

Proof. See Appendix 2.A.3.

From (2.14) and (2.15), it can be concluded that

Σsi,0
n−1 − Σsi,0,sj,0

n−1 ≡ χI , (2.17)

ΣsM,n

n−1 − ΣsM,n,sM,n+1
n−1 ≡ χM , (2.18)

for all periods n ∈ {1, . . . , N − 1}, where χI and χM are constants. Therefore,

similar to Gounas (2021), the difference between variances and covariances for

long-lived and future short-lived signals remains constant over time.

Finally, recall from Lemma 2.1 that v̂ is defined as the conditional expectation

of the asset value given all available information in the market. Thus, Σv̂
n in (2.16)

is the market maker’s conditional variance of the best forecast of the asset value.

Since the market maker cannot perfectly learn the asset value in discrete time,8 it

must hold that Σv̂
N > 0, yielding the same lower bounds for Σsi,0

N and Σsi,0,sj,0
N as

8See Foster and Viswanathan (1996) for proof of this statement.
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in Foster and Viswanathan (1996):

Σsi,0
N >

I − 1
I

χI , (2.19)

Σsi,0,sj,0
N > −1

I
χI , (2.20)

for all informed traders i, j ∈ {1, . . . , I} where i 6= j. From (2.14) and (2.20),

it follows that the conditional correlation between informed traders’ long-lived

signals monotonically decreases over time and must eventually be negative for a

sufficiently large number of trading periods.

2.4 Informed Traders’ Updating Processes

The Bellman equation (2.5) states that informed traders’ trading strategies must

be optimal for any arbitrary trading history. For this reason, there is a need

to distinguish between equilibrium and off-equilibrium play. First, it is shown

how informed traders update their beliefs along the equilibrium path. Then the

updating processes are extended to account for off-equilibrium play. Finally, this

section concludes with the necessary and sufficient conditions for equilibrium.

2.4.1 Updating along the Equilibrium Path

Lemma 2.2 implies that the trading strategy (2.7), which will be played in

equilibrium, can be written as

xi,n = βnsi,n−1 = βn(si,0 − ti,n−1) = βn

(
si,0 −

n−1∑
t=1

[
αt(sM,t − rt,t−1) + ζtyt

])

= βn

(
si,0 −

n−1∑
t=1

[
αt

(
sM,t −

t−1∑
r=1

(
t−1∏

s=r+1

[
1− ωs

]) [
ωrsM,r + δryr

])
+ ζtyt

])
,

(2.21)

for all informed traders i ∈ {1, . . . , I} in each period n ∈ {1, . . . , N}. Therefore,

informed trader i’s equilibrium strategy in period n only depends on his indi-

vidual long-lived signal si,0, the public history of short-lived signals sM,1:n−1, and
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the public history of aggregate order flows y1:n−1. Most importantly, the equilib-

rium strategy is independent of the individual trading history xi,1:n−1, yielding the

following lemma.

Lemma 2.4. Given (2.7), (2.8), (2.9), and (2.10), informed traders’ updating

processes satisfy

E
[
v − pn−1

∣∣∣si,0, sM,1:n−1, y1:n−1, xi,1:n−1
]

= ηnsi,n−1, (2.22)

E
[
sj,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1, xi,1:n−1
]

= φnsi,n−1, (2.23)

E
[
sM,n − rn,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1, xi,1:n−1
]

= ψnsi,n−1, (2.24)

for all periods n ∈ {1, . . . , N} and informed traders i, j ∈ {1, . . . , I} where i 6= j.

Proof. See Appendix 2.A.4.

To conclude, along equilibrium play, the only state variable for every informed

trader i after n− 1 periods is his residual long-lived signal si,n−1.9

2.4.2 Updating along Off-Equilibrium Paths

To ensure that informed traders do not have an incentive to deviate from the

equilibrium strategy (2.7), one needs to account for off-equilibrium play. By de-

viating, any informed trader i ∈ {1, . . . , I} can distort equilibrium beliefs since

deviations from (2.7) are invisible to the market maker and other informed traders.

Suppose informed trader i is the only informed trader to have deviated from

the equilibrium strategy (2.7). To account for off-equilibrium play, closely follow

Foster and Viswanathan (1996) and define the following equilibrium quantities for

all trading periods n ∈ {1, . . . , N} and informed traders j ∈ {1, . . . , I}:

ŷi
n ≡

I∑
j=1

βnŝ
i
j,n−1 + un,

9This result also applies to Foster and Viswanathan (1996) and Gounas (2021). However, since
beliefs differ in each paper, so does the functional form of si,n−1.
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ŝi
j,n ≡ sj,0 − t̂ij,n and ŝi

j,0 ≡ sj,0,

p̂i
n ≡ p̂i

n−1 + µn

(
sM,n − r̂i

n,n−1

)
+ λnŷ

i
n and p̂i

0 ≡ 0,

t̂ij,n ≡ t̂ij,n−1 + αn

(
sM,n − r̂i

n,n−1

)
+ ζnŷ

i
n and t̂ij,0 ≡ 0,

r̂i
n+1,n ≡ r̂i

n,n−1 + ωn

(
sM,n − r̂i

n,n−1

)
+ θnŷ

i
n and r̂i

1,0 ≡ 0.

These quantities would have been realized in equilibrium if all informed traders

(including i) had played the equilibrium strategy (2.7). A fundamental result

from Foster and Viswanathan (1996), which also applies to this paper, is that the

above equilibrium quantities are in informed trader i’s information set even along

off-equilibrium paths.

Lemma 2.5. Given (2.7), (2.8), (2.9), and (2.10), assume any informed trader

i ∈ {1, . . . , I} has deviated from (2.7). Then for all periods n ∈ {1, . . . , N}:

(
si,0, sM,1:n, y1:n, x̃i,1:n

)
≡
(
si,0, sM,1:n, ŷ

i
1:n, x̃i,1:n

)
, (2.25)

where ŷi
1:n ≡ (ŷi

1, . . . , ŷ
i
n).

Proof. See Appendix 2.A.5.

According to Lemma 2.5, any informed trader i who has deviated from the

equilibrium strategy (2.7) can recursively reconstruct the equilibrium order flow

history and, by extension, the history of equilibrium prices and beliefs. It is this

result that helps characterize off-equilibrium paths.

Lemma 2.6. Given (2.7), (2.8), (2.9), and (2.10), assume any informed trader

i ∈ {1, . . . , I} has deviated from the equilibrium strategy (2.7). Then informed

trader i’s updating processes satisfy

E
[
v − pn−1

∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1
]

= ηnŝ
i
i,n−1 +

(
p̂i

n−1 − pn−1
)
, (2.26)

E
[
sj,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1
]

= φnŝ
i
i,n−1 +

(
t̂ij,n−1 − tj,n−1

)
,

(2.27)
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E
[
sM,n − rn,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1
]

= ψnŝ
i
i,n−1 +

(
r̂i

n,n−1 − rn,n−1
)
,

(2.28)

for all periods n ∈ {2, . . . , N} and informed traders j ∈ {1, . . . , I} where j 6= i.

Proof. See Appendix 2.A.6.

Along off-equilibrium play, the state variables for every informed trader i after

n − 1 periods are his residual long-lived signal ŝi
i,n−1 and the manipulations of

conditional beliefs about the asset value p̂i
n−1−pn−1, long-lived signals t̂ij,n−1−tj,n−1,

and the next period’s short-lived signal r̂i
n,n−1 − rn,n−1.

However, p̂i
n−1 − pn−1 is a redundant state variable since (2.13) implies

p̂i
n−1 − pn−1 = IθI

(
t̂ij,n−1 − tj,n−1

)
+ (N − n+ 1)θM

(
r̂i

n,n−1 − rn,n−1
)
. (2.29)

Therefore, informed trader i’s manipulation of the market maker’s conditional

belief about the asset value can be reconstructed from his manipulations of the

market maker’s conditional beliefs about long-lived and future short-lived signals.

To conclude, along off-equilibrium play, the non-redundant state variables for every

informed trader i after n− 1 periods are ŝi
i,n−1, t̂ij,n−1− tj,n−1, and r̂i

n,n−1− rn,n−1.

2.4.3 Necessary and Sufficient Conditions for Equilibrium

A linear dynamic trading equilibrium implies that informed trader i’s optimal

trading strategy in period n must be linear in the non-redundant state variables:

xi,n = βnŝ
i
i,n−1 + γn

(
t̂ij,n−1 − tj,n−1

)
+ ρn

(
r̂i

n,n−1 − rn,n−1
)
, (2.30)

for all informed traders i ∈ {1, . . . , I} in each period n ∈ {1, . . . , N}. Moreover,

informed trader i’s value function in the Bellman equation (2.5) must be quadratic
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in the non-redundant state variables:

Vi,n−1 = an−1
(
ŝi

i,n−1

)2
+ bn−1

(
t̂ij,n−1 − tj,n−1

)2
+ cn−1

(
r̂i

n,n−1 − rn,n−1
)2

+ dn−1ŝ
i
i,n−1

(
t̂ij,n−1 − tj,n−1

)
+ en−1ŝ

i
i,n−1

(
r̂i

n,n−1 − rn,n−1
)

+ fn−1
(
t̂ij,n−1 − tj,n−1

) (
r̂i

n,n−1 − rn,n−1
)

+ gn−1,

(2.31)

for all periods n ∈ {1, . . . , N} and all informed traders i, j ∈ {1, . . . , I} where

i 6= j. Note that the equilibrium strategy (2.7) is consistent with (2.30) since

tj,n−1 = t̂ij,n−1 and rn,n−1 = r̂i
n,n−1 along equilibrium play. However, as the follow-

ing proposition shows, one has to account for off-equilibrium paths to ensure that

informed traders do not have an incentive to deviate from equilibrium play.

Proposition 2.1. A Markov perfect equilibrium is defined by the strategies and

beliefs (2.8), (2.9), (2.10), (2.26), (2.27), (2.28), and (2.30) if they satisfy the

following system of equations for all periods n ∈ {1, . . . , N}:

βn = ηn − µnψn − (1− αnψn)(dnζn + enδn)
λn[2 + (I − 1)φn]− ζn[1 + (I − 1)φn](dnζn + enδn) ,

γn = IθI − (I − 1)βn[λn − δn(2cnδn + fnζn)]− [1− (I − 1)ζnβn](2bnζn + fnδn)
2λn − ζn(2bnζn + fnδn)− δn(2cnδn + fnζn) ,

ρn = (N − n+ 1)θM − µn + αn(2bnζn + fnδn)− (1− ωn)(2cnδn + fnζn)
2λn − ζn(2bnζn + fnδn)− δn(2cnδn + fnζn) ,

µn = IθIαn + θM

[
1 + (N − n)ωn

]
,

λn = IθIζn + (N − n)θMδn,

αn =
Σsi,0,sM,n

n−1 Σu
0

ΣsM,n

n−1

(
Iβ2

n

[
Σsi,0

n−1 + (I − 1)Σsi,0,sj,0
n−1

]
+ Σu

0

)
−
[
IβnΣsi,0,sM,n

n−1

]2 ,

ζn =
βn

(
ΣsM,n

n−1

[
Σsi,0

n−1 + (I − 1)Σsi,0,sj,0
n−1

]
− I

[
Σsi,0,sM,n

n−1

]2)
ΣsM,n

n−1

(
Iβ2

n

[
Σsi,0

n−1 + (I − 1)Σsi,0,sj,0
n−1

]
+ Σu

0

)
−
[
IβnΣsi,0,sM,n

n−1

]2 ,

ωn =
ΣsM,n,sM,n+1

n−1

(
Iβ2

n

[
Σsi,0

n−1 + (I − 1)Σsi,0,sj,0
n−1

]
+ Σu

0

)
−
[
IβnΣsi,0,sM,n

n−1

]2
ΣsM,n

n−1

(
Iβ2

n

[
Σsi,0

n−1 + (I − 1)Σsi,0,sj,0
n−1

]
+ Σu

0

)
−
[
IβnΣsi,0,sM,n

n−1

]2 ,

δn =
IβnΣsi,0,sM,n

n−1

[
ΣsM,n

n−1 − ΣsM,n,sM,n+1
n−1

]
ΣsM,n

n−1

(
Iβ2

n

[
Σsi,0

n−1 + (I − 1)Σsi,0,sj,0
n−1

]
+ Σu

0

)
−
[
IβnΣsi,0,sM,n

n−1

]2 ,
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where the value function coefficients are given by the recursions

an−1 = an

(
1− αnψn − ζnβn

[
1 + (I − 1)φn

])2
+ βn

(
ηn − µnψn − λnβn

[
1 + (I − 1)φn

])
,

bn−1 = bn

(
1− ζn

[
γn + (I − 1)βn

])2
+ γn

(
IθI − λn

[
γn + (I − 1)βn

])
+ cnδ

2
n

[
γn + (I − 1)βn

]2
− fnδn

[
γn + (I − 1)βn

](
1− ζn

[
γn + (I − 1)βn

])
,

cn−1 = cn(1− ωn − δnρn)2 + ρn

[
(N − n+ 1)θM − µn − λnρn

]
+ bn(αn + ζnρn)2

− fn(αn + ζnρn)(1− ωn − δnρn),

dn−1 = γn

(
ηn − µnψn − λnβn

[
1 + (I − 1)φn

])
+ βn

(
IθI − λn

[
γn + (I − 1)βn

])
+
(

1− αnψn − ζnβn

[
1 + (I − 1)φn

])(
dn

(
1− ζn

[
γn + (I − 1)βn

])
− enδn

[
γn + (I − 1)βn

])
,

en−1 = ρn

(
ηn − µnψn − λnβn

[
1 + (I − 1)φn

])
+ βn

[
(N − n+ 1)θM − µn − λnρn

]
+
(

1− αnψn − ζnβn

[
1 + (I − 1)φn

])[
en(1− ωn − δnρn)− dn(αn + ζnρn)

]
,

fn−1 = ρn

(
IθI − λn

[
γn + (I − 1)βn

])
+ γn

[
(N − n+ 1)θM − µn − λnρn

]
+
(

1− ζn

[
γn + (I − 1)βn

])[
fn(1− ωn − δnρn)− 2bn(αn + ζnρn)

]
+ δn

[
γn + (I − 1)βn

][
fn(αn + ζnρn)− 2cn(1− ωn − δnρn)

]
,

gn−1 = gn + an

[
ζ2

nΣu
0 + α2

n Var
[
sM,n − rn,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1
]

+ 2(I − 1)ζnβnαn Cov
[
sj,n−1, sM,n − rn,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1
]

+ (I − 1)ζ2
nβ

2
n

(
Var

[
sj,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1
]

+ (I − 2) Cov
[
sj,n−1, sk,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1
])]

,

with terminal condition aN = bN = cN = dN = eN = fN = gN = 0. Also,

ηn = θI

[
1 + (I − 1)φn

]
+ (N − n+ 1)θMψn,

φn =
Σsi,0,sj,0

n−1
Σsi,0

n−1
,
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ψn =
Σsi,0,sM,n

n−1
Σsi,0

n−1
,

and for all i, j, k ∈ {1, . . . , I} where i 6= j 6= k, it holds that

Var
[
sM,n − rn,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1
]

= ΣsM,n

n−1 − ψ
2
nΣsi,0

n−1,

Var
[
sj,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1
]

= (1− φ2
n)Σsi,0

n−1,

Cov
[
sj,n−1, sk,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1
]

= (1− φn)Σsi,0,sj,0
n−1 ,

Cov
[
sj,n−1, sM,n − rn,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1
]

= (1− φn)Σsi,0,sM,n

n−1 .

Moreover, the second-order condition must be satisfied in every period:

λn − bnζ
2
n − cnδ

2
n − fnζnδn > 0.

Finally, conditional (co)variances must satisfy the following recursions:

Σv̂
n = Iθ2

I

[
Σsi,0

n + (I − 1)Σsi,0,sj,0
n

]
+ 2I(N − n)θIθM Σsi,0,sM,n+1

n

+ (N − n)θ2
M

[
ΣsM,n+1

n + (N − n− 1)ΣsM,n+1,sM,n+2
n

]
,

Σsi,0
n = Σsi,0

n−1 − αnΣsi,0,sM,n

n−1 − ζnβn

[
Σsi,0

n−1 + (I − 1)Σsi,0,sj,0
n−1

]
,

Σsi,0,sj,0
n = Σsi,0,sj,0

n−1 − αnΣsi,0,sM,n

n−1 − ζnβn

[
Σsi,0

n−1 + (I − 1)Σsi,0,sj,0
n−1

]
,

Σsi,0,sM,n+1
n = Σsi,0,sM,n

n−1 − ωnΣsi,0,sM,n

n−1 − δnβn

[
Σsi,0

n−1 + (I − 1)Σsi,0,sj,0
n−1

]
,

ΣsM,n+1
n = ΣsM,n

n−1 − ωnΣsM,n,sM,n+1
n−1 − IδnβnΣsi,0,sM,n

n−1 ,

ΣsM,n+1,sM,n+2
n = ΣsM,n,sM,n+1

n−1 − ωnΣsM,n,sM,n+1
n−1 − IδnβnΣsi,0,sM,n

n−1 .

Proof. See Appendix 2.A.7.

Similar to Foster and Viswanathan (1996) and Gounas (2021), Proposition 2.1

does not provide analytic results and must be evaluated numerically. Appendix 2.A.8

explains the corresponding backward induction algorithm.
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2.5 Numerical Analysis

This section studies the influence of the market maker’s short-lived signals on the

dynamic trading equilibrium. To this end, let ρx̄,ȳ
0 be the unconditional correlation

coefficient between two arbitrary variables x̄ and ȳ. The main variables of inter-

est are ρsi,0,sM,n

0 , the unconditional correlation between long-lived and short-lived

signals, and ρsM,n,sM,n+1
0 , the unconditional correlation between future short-lived

signals. Note that any given combination of ρsi,0,sM,n

0 and ρsM,n,sM,n+1
0 is only valid

if the covariance matrix in (2.1) is positive definite.

Consider the special case where the combination of long-lived and short-lived

information constitutes the truth, that is, v = ∑I
i=1 si,0 +∑N

t=1 sM,t. Thus, the true

asset value equals the sum of long-lived and short-lived signals. By Lemma 2.1,

it follows that θI = 1 and θM = 1. Additionally, assume that long-lived and

short-lived signals have the same initial uncertainty, that is, Σsi,0
0 = ΣsM,n

0 for all

informed traders i ∈ {1, . . . , I} and all periods n ∈ {1, . . . , N}. If Σv
0 is given,

then Σsi,0
0 and ΣsM,n

0 immediately follow from (2.16).

The following study considers I = 3 informed traders and N = 10 trading

periods. Moreover, the unconditional asset value variance is standardized to Σv
0 =

1, and the uninformed order flow variance in each period is set to Σu
0 = 1/N .

For long-lived signals, the unconditional correlations ρsi,0,sj,0
0 ∈ {0.25, 0,−0.25}

are studied in conjunction with different combinations of ρsi,0,sM,n

0 and ρsM,n,sM,n+1
0 .

2.5.1 Positive Initial Long-Lived Signal Correlation

This analysis sets the initial correlation between long-lived signals to ρsi,0,sj,0
0 =

0.25 and considers the following initial correlation combinations for short-lived

signals: (ρsi,0,sM,n

0 = 0.5, ρsM,n,sM,n+1
0 = 0.5), (ρsi,0,sM,n

0 = 0.25, ρsM,n,sM,n+1
0 = 0.25),

(ρsi,0,sM,n

0 = −0.1, ρsM,n,sM,n+1
0 = 0.1), and (ρsi,0,sM,n

0 = 0, ρsM,n,sM,n+1
0 = −0.1).

Figure 2.1, Panels A and B plot informed traders’ trading intensity βn and their

terminal conditional expected profits over time. First, trading intensities mono-
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tonically increase throughout the trading day. Thus, as in Kyle (1985), informed

traders submit their most aggressive orders towards the end of the trading day.

Second, trading intensities are highest and expected profits are lowest if short-

lived signals are initially highly correlated with long-lived and future short-lived

signals. In that scenario, the market maker’s signals are highly informative about

the asset value, resulting in informed traders playing a “rat race” as in Holden

and Subrahmanyam (1992).

In contrast, trading intensities are lowest and informed traders make the highest

expected profits if short-lived signals are initially independent of long-lived signals

and negatively correlated with future short-lived signals. Since short-lived infor-

mation events are not informative about long-lived signals, informed traders have

the highest monopoly power on their long-lived information. As a result, informed

traders play a “waiting game” as in Foster and Viswanathan (1996).

Finally, informed traders make approximately the same expected profits in the

cases (ρsi,0,sM,n

0 = 0.25, ρsM,n,sM,n+1
0 = 0.25) and (ρsi,0,sM,n

0 = −0.1, ρsM,n,sM,n+1
0 =

0.1). In the former case, informed traders trade more intensively on their residual

information since the market maker’s signals are strongly positively correlated

with the asset value, generating competition for informed traders. In contrast,

the market maker can only gradually learn about the asset value in the latter

case, resulting in informed traders submitting less aggressive orders to keep their

information private.

Figure 2.1, Panels C and D display the market maker’s corresponding news

parameter µn and illiquidity parameter λn over time. It can be inferred that

both parameters monotonically decrease throughout the trading day if short-lived

signals are initially positively correlated with long-lived and future short-lived

signals. In that scenario, news and aggregate order flows are most informative

about the asset value at the beginning of the trading day. Consequently, prices

are most sensitive in the first trading periods, especially towards news arrivals.

In contrast, if short-lived signals are initially negatively correlated with long-
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Figure 2.1: Trading Intensity, Expected Profits, News Parameter, and Illiquidity Pa-
rameter with Positive Initial Long-Lived Signal Correlation. Informed traders’ trading
intensity βn, informed traders’ terminal conditional expected profits, the market maker’s news
parameter µn, and the market maker’s illiquidity parameter λn are plotted over time. The model
is solved for the parameter values I = 3, N = 10, Σv

0 = 1, Σu
0 = 1/N , ρsi,0,sj,0

0 = 0.25, and the
correlation combinations (ρsi,0,sM,n

0 = 0.5, ρsM,n,sM,n+1
0 = 0.5), (ρsi,0,sM,n

0 = 0.25, ρsM,n,sM,n+1
0 =

0.25), (ρsi,0,sM,n

0 = −0.1, ρsM,n,sM,n+1
0 = 0.1), and (ρsi,0,sM,n

0 = 0, ρsM,n,sM,n+1
0 = −0.1).

lived signals but positively correlated with future short-lived signals, µn moder-

ately decreases, while λn moderately increases throughout the trading day. In that

scenario, short-lived information events and aggregate order flows remain moder-

ately informative about the asset value, which is why the market maker keeps

steady price sensitivities over time.

Finally, suppose short-lived signals are initially independent of long-lived signals

and negatively correlated with future short-lived signals. In that case, the news

parameter is close to zero throughout most of the trading day and only increases

in the final periods. Since future short-lived information events are negatively

autocorrelated, the market maker effectively smooths her incorporation of news
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into prices, resulting in the last news innovation having the highest price impact.

Simultaneously, the illiquidity parameter exhibits high values and monotoni-

cally decreases over time. Since short-lived information events are independent of

long-lived signals, the market maker can only learn through aggregate order flows

about informed traders’ information. Consequently, prices are highly sensitive to

aggregate order flows.

Figure 2.2, Panels A and B plot the conditional asset variance Σv
n and the

conditional correlation ρ
si,0,sj,0
n over time. Naturally, price discovery is highest if

the market maker’s signals are highly informative about the asset value. In the

case (ρsi,0,sM,n

0 = 0.5, ρsM,n,sM,n+1
0 = 0.5), prices reflect almost 65% of all available

information in the market after the first trading round.

In contrast, price discovery is lowest if short-lived signals are initially indepen-

dent of long-lived signals and negatively correlated with future short-lived signals.

In that case, only aggregate order flows are informative about long-lived signals,

and informed traders submit the least aggressive orders. As a result, prices are

least revealing about the asset value. Even though less pronounced in later periods,

a similar argument applies if short-lived signals are initially negatively correlated

with long-lived signals but positively correlated with future short-lived signals.

Finally, as in Foster and Viswanathan (1996), the conditional correlation be-

tween long-lived signals becomes negative over time. This result is equivalent to

informed traders developing a difference of opinion about the true asset value.

Also, it can be inferred that the higher the initial correlation between long-lived

and short-lived signals, the more significant the difference of opinion grows.

Figure 2.2, Panels C and D display the evolution of the conditional correlations

ρ
si,0,sM,n+1
n and ρsM,n+1,sM,n+2

n . If short-lived signals are initially positively correlated

with long-lived and future short-lived signals, then ρ
si,0,sM,n+1
n and ρ

sM,n+1,sM,n+2
n

monotonically decrease over time. Therefore, the market maker’s first signal con-

tains the most information about the asset value since subsequent short-lived

information events are conditionally less informative.
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Figure 2.2: Conditional Asset Variance and Conditional Correlations with Positive
Initial Long-Lived Signal Correlation. The conditional asset variance Σv

0, the conditional
correlation between long-lived signals ρsi,0,sj,0

n , the conditional correlation between long-lived and
future short-lived signals ρsi,0,sM,n+1

n , and the conditional correlation between future short-lived
signals ρsM,n+1,sM,n+2

n are plotted over time. The model is solved for the parameter values I = 3,
N = 10, Σv

0 = 1, Σu
0 = 1/N , ρsi,0,sj,0

0 = 0.25, and the correlation combinations (ρsi,0,sM,n

0 = 0.5,
ρ

sM,n,sM,n+1
0 = 0.5), (ρsi,0,sM,n

0 = 0.25, ρsM,n,sM,n+1
0 = 0.25), (ρsi,0,sM,n

0 = −0.1, ρsM,n,sM,n+1
0 =

0.1), and (ρsi,0,sM,n

0 = 0, ρsM,n,sM,n+1
0 = −0.1).

If short-lived signals are initially negatively correlated with long-lived signals

but positively correlated with future short-lived signals, ρsi,0,sM,n+1
n moderately

increases, whereas ρsM,n+1,sM,n+2
n moderately decreases throughout the trading day.

Consequently, short-lived information events stay conditionally informative about

the asset value, which is why the market maker keeps steady price sensitivities to

news innovations and aggregate order flows over time.

Finally, suppose short-lived signals are initially independent of long-lived signals

and negatively correlated with future short-lived signals. In that case, the market

maker’s signals remain conditionally independent of informed traders’ information.

78



However, the conditional correlation between future short-lived signals grows even

more negative throughout the trading day. As a result, the market maker smooths

the impact of news arrivals on prices.

2.5.2 Zero Initial Long-Lived Signal Correlation

This analysis sets the initial correlation between long-lived signals to ρsi,0,sj,0
0 = 0

and considers the following initial correlation combinations for short-lived signals:

(ρsi,0,sM,n

0 = 0.3, ρsM,n,sM,n+1
0 = 0.4), (ρsi,0,sM,n

0 = 0.2, ρsM,n,sM,n+1
0 = 0.1), (ρsi,0,sM,n

0 =

0, ρsM,n,sM,n+1
0 = 0), and (ρsi,0,sM,n

0 = −0.1, ρsM,n,sM,n+1
0 = 0.1).

Figure 2.3, Panels A and B plot informed traders’ trading intensity βn and their

terminal conditional expected profits over time. The higher the initial correlation

between the asset value and the market maker’s signals, the higher the competition

between informed traders, and thus the more significant the trading intensity.

Moreover, informed traders have an incentive to delay their trades by submitting

their most aggressive orders towards the end of the trading day. However, trading

intensities need not be monotonic, as can be inferred from the case (ρsi,0,sM,n

0 = 0.3,

ρ
sM,n,sM,n+1
0 = 0.4).

Naturally, informed traders’ expected profits are highest if either the market

maker’s signals are initially moderately informative or not informative at all about

long-lived and future short-lived signals. Intuitively, if short-lived information

events are not too informative about the asset value, informed traders enjoy some

degree of monopoly power and make high expected profits as a result.

In contrast, informed traders make the lowest expected profits in the cases

(ρsi,0,sM,n

0 = 0.3, ρsM,n,sM,n+1
0 = 0.4) and (ρsi,0,sM,n

0 = −0.1, ρsM,n,sM,n+1
0 = 0.1). In

the former case, competition deteriorates profits in later periods so that informed

traders realize most profits at the beginning of the trading day, while in the latter

case, informed traders make their largest profits in the final periods when they

submit their most aggressive orders.

Figure 2.3, Panels C and D display the market maker’s corresponding news
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Figure 2.3: Trading Intensity, Expected Profits, News Parameter, and Illiquidity
Parameter with Zero Initial Long-Lived Signal Correlation. Informed traders’ trading
intensity βn, informed traders’ terminal conditional expected profits, the market maker’s news
parameter µn, and the market maker’s illiquidity parameter λn are plotted over time. The model
is solved for the parameter values I = 3, N = 10, Σv

0 = 1, Σu
0 = 1/N , ρsi,0,sj,0

0 = 0, and the
correlation combinations (ρsi,0,sM,n

0 = 0.3, ρsM,n,sM,n+1
0 = 0.4), (ρsi,0,sM,n

0 = 0.2, ρsM,n,sM,n+1
0 =

0.1), (ρsi,0,sM,n

0 = 0, ρsM,n,sM,n+1
0 = 0), and (ρsi,0,sM,n

0 = −0.1, ρsM,n,sM,n+1
0 = 0.1).

parameter µn and illiquidity parameter λn over time. If short-lived signals are

initially positively correlated with long-lived and future short-lived signals, then

µn and λn monotonically decrease throughout the trading day. Thus, news and

aggregate order flows contain the most information about the asset value in the

first periods. In particular, prices are highly sensitive to news arrivals at the

beginning of the trading day if news arrivals are highly informative about the

asset value.

If short-lived signals are initially independent of long-lived and future short-lived

signals, the news parameter µn is equal to one in every period. Since news ar-

rives independently over time, each news has the same price impact. Even though
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visually not distinguishable due to scale, the illiquidity parameter λn exhibits a

U -shape. It initially declines because aggregate order flows are most informative

about the asset value at the beginning of the trading day. However, the illiq-

uidity parameter increases in the final periods when informed traders trade most

aggressively on their residual information.

Finally, suppose short-lived signals are initially negatively correlated with long-

lived signals but positively correlated with future short-lived signals. In that case,

µn monotonically decreases, whereas λn monotonically increases over time. Since

the market maker’s signals are informative about future short-lived signals, the

first news arrival has a price impact larger than one. In contrast, the market

maker increases her illiquidity parameter throughout the trading day since she

can extract the least information from aggregate order flows in the first periods.

Figure 2.4, Panels A and B plot the conditional asset variance Σv
n and the con-

ditional correlation ρsi,0,sj,0
n over time. The higher the initial correlation between

the asset value and the market maker’s signals, the faster information about the

asset value gets incorporated into prices. In particular, price discovery is low-

est if short-lived signals are independently distributed of long-lived and future

short-lived signals. Nonetheless, prices still reflect almost 85% of all available

information in the market at the end of the trading day.

Moreover, the conditional correlation between long-lived signals immediately

grows negative. As in Foster and Viswanathan (1996), informed traders with

long-lived independent signals develop a difference of opinion about the true asset

value after only one trading period. Also, the difference of opinion grows faster

with a higher initial correlation between long-lived and short-lived signals.

Figure 2.4, Panels C and D display the evolution of the conditional correlations

ρ
si,0,sM,n+1
n and ρsM,n+1,sM,n+2

n . If short-lived signals are initially positively correlated

with long-lived and future short-lived signals, then ρ
si,0,sM,n+1
n and ρ

sM,n+1,sM,n+2
n

monotonically decrease throughout the trading day. Since news arrivals are most

informative about the asset value in the first periods, price discovery is high.
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Figure 2.4: Conditional Asset Variance and Conditional Correlations with Zero Ini-
tial Long-Lived Signal Correlation. The conditional asset variance Σv

0, the conditional cor-
relation between long-lived signals ρsi,0,sj,0

n , the conditional correlation between long-lived and
future short-lived signals ρsi,0,sM,n+1

n , and the conditional correlation between future short-lived
signals ρsM,n+1,sM,n+2

n are plotted over time. The model is solved for the parameter values I = 3,
N = 10, Σv

0 = 1, Σu
0 = 1/N , ρsi,0,sj,0

0 = 0, and the correlation combinations (ρsi,0,sM,n

0 = 0.3,
ρ

sM,n,sM,n+1
0 = 0.4), (ρsi,0,sM,n

0 = 0.2, ρsM,n,sM,n+1
0 = 0.1), (ρsi,0,sM,n

0 = 0, ρsM,n,sM,n+1
0 = 0), and

(ρsi,0,sM,n

0 = −0.1, ρsM,n,sM,n+1
0 = 0.1).

If short-lived signals are initially independent of long-lived and future short-lived

signals, they also remain independent upon conditioning. In that scenario, news

arrives independently over time, not containing any information about informed

traders’ signals or future news. As a result, price discovery is low in comparison.

Finally, suppose short-lived signals are initially negatively correlated with long-

lived signals but positively correlated with future short-lived signals. In that case,

ρ
si,0,sM,n+1
n monotonically increases, whereas ρsM,n+1,sM,n+2

n monotonically decreases

over time. Therefore, the market maker’s signals become conditionally less infor-

mative about informed traders’ signals and future news arrivals in later periods.
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2.5.3 Negative Initial Long-Lived Signal Correlation

This analysis sets the initial correlation between long-lived signals to ρsi,0,sj,0
0 =

−0.25 and considers the following initial correlation combinations for short-lived

signals: (ρsi,0,sM,n

0 = 0.35, ρsM,n,sM,n+1
0 = 0.75), (ρsi,0,sM,n

0 = 0.25, ρsM,n,sM,n+1
0 =

0.35), (ρsi,0,sM,n

0 = 0.1, ρsM,n,sM,n+1
0 = 0), and (ρsi,0,sM,n

0 = −0.1, ρsM,n,sM,n+1
0 = 0.1).

Figure 2.5, Panels A and B plot informed traders’ trading intensity βn and

their terminal conditional expected profits over time. Similar to the previous

analysis, informed traders submit their most aggressive orders towards the end

of the trading day. Moreover, it can be inferred that a high initial correlation

between the asset value and short-lived signals implies large trading intensities

and low expected profits for informed traders.

The case (ρsi,0,sM,n

0 = −0.1, ρsM,n,sM,n+1
0 = 0.1) is of particular interest. Sur-

prisingly, trading intensities are negative in the first four periods. Thus, informed

traders initially trade against their private information. Recall that the asset value

is assumed to be the sum of long-lived and short-lived signals. Since each informed

trader’s signal is initially negatively correlated with other informed traders’ sig-

nals and the market maker’s signals, the initial correlation between each informed

trader’s signal and the asset value is also negative. Consequently, it is optimal for

informed traders to trade against their signals at the beginning of the trading day.

However, as informed traders sequentially learn about the market maker’s signals,

the conditional correlation between each informed trader’s signal and the asset

value eventually becomes positive. As a result, informed traders change trading

directions in later periods.

Figure 2.5, Panels C and D display the market maker’s corresponding news

parameter µn and illiquidity parameter λn over time. If short-lived signals are

initially positively correlated with long-lived and future short-lived signals, then

µn and λn monotonically decrease throughout the trading day. Moreover, the

magnitude of the parameters depends on the correlation between the asset value

and the market maker’s signals. Prices are especially sensitive to news arrivals if
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Figure 2.5: Trading Intensity, Expected Profits, News Parameter, and Illiquidity
Parameter with Negative Initial Long-Lived Signal Correlation. Informed traders’
trading intensity βn, informed traders’ terminal conditional expected profits, the market maker’s
news parameter µn, and the market maker’s illiquidity parameter λn are plotted over time. The
model is solved for the parameter values I = 3, N = 10, Σv

0 = 1, Σu
0 = 1/N , ρsi,0,sj,0

0 = −0.25,
and the correlation combinations (ρsi,0,sM,n

0 = 0.35, ρsM,n,sM,n+1
0 = 0.75), (ρsi,0,sM,n

0 = 0.25,
ρ

sM,n,sM,n+1
0 = 0.35), (ρsi,0,sM,n

0 = 0.1, ρsM,n,sM,n+1
0 = 0), and (ρsi,0,sM,n

0 = −0.1, ρsM,n,sM,n+1
0 =

0.1).

short-lived information events are highly informative about the asset value.

Suppose short-lived signals are initially positively correlated with long-lived sig-

nals and independent of future short-lived signals. In that case, the illiquidity pa-

rameter is high in magnitude and only gradually decreases throughout the trading

day. Since short-lived signals help the market maker extract information about

long-lived signals from aggregate order flows, the market maker keeps a steady

order flow sensitivity as a result.

Even though visually not distinguishable due to scale, the news parameter is U -

shaped in that scenario. Therefore, prices are most sensitive to news innovations
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at the beginning and end of the trading day. Similar to the previous results, µn

initially declines because the first news arrival contains the most information about

the asset value. However, since the correlation between consecutive future short-

lived information events grows negative throughout the trading day, the market

maker eventually smooths her incorporation of news into prices, resulting in µn

increasing in the final periods. To conclude, the news parameter does not need to

be monotonic.

Finally, suppose short-lived signals are initially negatively correlated with long-

lived signals but positively correlated with future short-lived signals. In that case,

µn monotonically decreases over time, while λn exhibits a clear U -shape. Note

that the evolution of λn is directly linked to informed traders’ trading intensities.

The illiquidity parameter initially declines because trading intensities decrease in

absolute value in the first periods. In the fourth trading round, λn is approxi-

mately zero and the market is most liquid because informed traders do not submit

orders in this period. Finally, the market maker increases her price sensitivity to

aggregate order flows in the final trading rounds when informed traders submit

their most aggressive orders.

Figure 2.6, Panels A and B plot the conditional asset variance Σv
n and the condi-

tional correlation ρsi,0,sj,0
n over time. The higher the initial correlation between the

asset value and the market maker’s signals, the higher the price discovery through-

out the trading day. In the case (ρsi,0,sM,n

0 = 0.35, ρsM,n,sM,n+1
0 = 0.75), prices reveal

almost 78.5% of the asset value after the first trading round. Moreover, note that

price discovery is lowest and approximately the same in the cases (ρsi,0,sM,n

0 = 0.1,

ρ
sM,n,sM,n+1
0 = 0) and (ρsi,0,sM,n

0 = −0.1, ρsM,n,sM,n+1
0 = 0.1), even though informed

traders’ expected profits are almost four times higher in the former case.

Similar to the previous findings, the conditional correlation between long-lived

signals monotonically decreases over time. Moreover, it can be inferred that the

initial correlation between long-lived and short-lived signals determines the speed

at which informed traders’ difference of opinion about the true asset value grows.
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Figure 2.6: Conditional Asset Variance and Conditional Correlations with Negative
Initial Long-Lived Signal Correlation. The conditional asset variance Σv

0, the conditional
correlation between long-lived signals ρsi,0,sj,0

n , the conditional correlation between long-lived
and future short-lived signals ρsi,0,sM,n+1

n , and the conditional correlation between future short-
lived signals ρsM,n+1,sM,n+2

n are plotted over time. The model is solved for the parameter values
I = 3, N = 10, Σv

0 = 1, Σu
0 = 1/N , ρsi,0,sj,0

0 = −0.25, and the correlation combinations
(ρsi,0,sM,n

0 = 0.35, ρsM,n,sM,n+1
0 = 0.75), (ρsi,0,sM,n

0 = 0.25, ρsM,n,sM,n+1
0 = 0.35), (ρsi,0,sM,n

0 = 0.1,
ρ

sM,n,sM,n+1
0 = 0), and (ρsi,0,sM,n

0 = −0.1, ρsM,n,sM,n+1
0 = 0.1).

Figure 2.6, Panels C and D display the evolution of the conditional correlations

ρ
si,0,sM,n+1
n and ρsM,n+1,sM,n+2

n . It can be inferred that both conditional correlations

monotonically decrease over time if short-lived signals are initially positively cor-

related with long-lived and future short-lived signals. In that scenario, short-lived

information events are most informative about the asset value at the beginning of

the trading day. Consequently, prices become less sensitive to news innovations

and aggregate order flows in later periods.

If short-lived signals are initially positively correlated with long-lived signals and

independent of future short-lived signals, then ρ
si,0,sM,n+1
n and ρ

sM,n+1,sM,n+2
n only
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slowly decrease over time. In that scenario, short-lived information events remain

consistently informative about the asset value throughout the trading day. How-

ever, the conditional correlation between the asset value and short-lived signals

remains small in magnitude, resulting in low price discovery in comparison.

Finally, suppose short-lived signals are initially negatively correlated with long-

lived signals but positively correlated with future short-lived signals. In that

case, ρsi,0,sM,n+1
n moderately increases, whereas ρsM,n+1,sM,n+2

n slowly decreases over

time. Thus, short-lived information events remain consistently autocorrelated and

become conditionally less informative about informed traders’ signals throughout

the trading day.

2.6 Conclusion

This paper has studied a strategic trading model in which the market maker has

a monopoly on short-lived information. Necessary and sufficient conditions for a

dynamic trading equilibrium were provided, and a numerical study was performed.

Interpreting short-lived information events as news, the correlation structure of

news arrivals has significant effects on trading strategies, market liquidity, and

price discovery. In particular, the model can generate new stylized facts like

negative trading intensities and increasing price sensitivities to news.

One shortcoming of this paper’s model, shared by most strategic trading models,

is that aggregate order flows are unpredictable. In contrast, empirical order flows

exhibit significant autocorrelation. Therefore, one interesting future research is to

combine this paper’s framework with the model in Gounas (2021), which explicitly

accounts for autocorrelated order flows. Moreover, the derivation of the dynamic

trading equilibrium relies on symmetry conditions for (co)variances, and it remains

an open topic whether this assumption can be relaxed without affecting tractability

in a discrete-time setting. Finally, this paper assumes that short-lived information

events arrive deterministically over time, whereas news arrivals in financial markets
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can also be stochastic. Consequently, it would be interesting to extend the model

by allowing short-lived information events to arrive stochastically throughout the

trading day.
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2.A Appendix

2.A.1 Proof of Lemma 2.1

Proof. Assume the distribution assumption (2.1) holds. Then the projection the-

orem for Gaussian random variables implies

E
[
v
∣∣∣sI , sM] =

(
Σv,sI

0 Σv,sM
0

) ΣsI
0 ΣsI ,sM

0

ΣsM ,sI
0 ΣsM

0


−1 sI

sM

 . (2.A1)

Since (co)variances are assumed to be symmetrical, it follows that

E
[
v
∣∣∣sI , sM] =

(
θIιI θMιN

) sI
sM

 , (2.A2)

where θI and θM are constants and ιI and ιN are (1× I) and (1×N) vectors of

ones, respectively. Consequently,

E
[
v
∣∣∣sI , sM] = θI

I∑
i=1

si,0 + θM

N∑
t=1

sM,t ≡ v̂. (2.A3)

Since v̂ captures all available information in the market, it is a sufficient statistic

to forecast the asset value v.
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2.A.2 Proof of Lemma 2.2

Proof. Given (2.7), applying the projection theorem for Gaussian random variables

yields for all n ∈ {1, . . . , N}:

pn = E
[
v
∣∣∣sM,1:n, y1:n

]
= pn−1 + E

[
v − pn−1

∣∣∣sM,1:n, y1:n
]

= pn−1 + E
[
v − pn−1

∣∣∣sM,1:n−1, sM,n − rn,n−1, y1:n−1, yn

]
= pn−1 + E

[
v − pn−1

∣∣∣sM,n − rn,n−1, yn

]
= pn−1 + µn(sM,n − rn,n−1) + λnyn.

(2.A4)

Moreover, the symmetry conditions for (co)variances imply for all i ∈ {1, . . . , I}

and all n ∈ {1, . . . , N}:

ti,n = E
[
si,0

∣∣∣sM,1:n, y1:n
]

= ti,n−1 + E
[
si,0 − ti,n−1

∣∣∣sM,1:n−1, sM,n − rn,n−1, y1:n−1, yn

]
= ti,n−1 + E

[
si,n−1

∣∣∣sM,n − rn,n−1, yn

]
= ti,n−1 + αn(sM,n − rn,n−1) + ζnyn.

(2.A5)

A similar analysis yields for all n ∈ {1, . . . , N − 1} and t ∈ {1, . . . , N − n}:

rn+t,n = E
[
sM,n+t

∣∣∣sM,1:n, y1:n
]

= rn+t,n−1 + E
[
sM,n+t − rn+t,n−1

∣∣∣sM,1:n−1, sM,n − rn,n−1, y1:n−1, yn

]
= rn+t,n−1 + E

[
sM,n+t − rn+t,n−1

∣∣∣sM,n − rn,n−1, yn

]
= rn,n−1 + E

[
sM,n+1 − rn,n−1

∣∣∣sM,n − rn,n−1, yn

]
= rn,n−1 + ωn(sM,n − rn,n−1) + δnyn.

(2.A6)
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Finally, to show the relations for µn and λn, the law of iterated expectations

implies
pn = E

[
v
∣∣∣sM,1:n, y1:n

]
= E

[
E
[
v
∣∣∣sI , sM]∣∣∣∣sM,1:n, y1:n

]
= E

[
v̂
∣∣∣sM,1:n, y1:n

]
= E

[
θI

I∑
i=1

si,0 + θM

N∑
t=1

sM,t

∣∣∣∣∣sM,1:n, y1:n

]

= θI

I∑
i=1

ti,n + θM

[
n∑

t=1
sM,t +

N∑
t=n+1

rt,n

]

= IθIti,n + θM

[
n∑

t=1
sM,t + (N − n)rn+1,n

]
.

(2.A7)

Consequently,

pn − pn−1 = IθI(ti,n − ti,n−1) + θM

[
sM,n − rn,n−1 + (N − n)(rn+1,n − rn,n−1)

]
=
(
IθIαn + θM

[
1 + (N − n)ωn

])
(sM,n − rn,n−1) +

[
IθIζn + (N − n)θMδn

]
yn

= µn(sM,n − rn,n−1) + λnyn,

(2.A8)

as was to be shown.
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2.A.3 Proof of Lemma 2.3

Proof. The first part of the lemma is shown in Foster and Viswanathan (1996)

and Gounas (2021), while the second part of the lemma is derived as follows:

Σv̂
n = Var

[
v̂
∣∣∣sM,1:n, y1:n

]
= Var

[
θI

I∑
i=1

si,0 + θM

N∑
t=1

sM,t

∣∣∣∣∣sM,1:n, y1:n

]

= E

(θI

I∑
i=1

si,0 + θM

N∑
t=1

sM,t − θI

I∑
i=1

ti,n − θM

[
n∑

t=1
sM,t +

N∑
t=n+1

rt,n

])2
= E

(θI

I∑
i=1

si,n + θM

N∑
t=n+1

[sM,t − rt,n]
)2

= Iθ2
I

[
Σsi,0

n + (I − 1)Σsi,0,sj,0
n

]
+ 2I(N − n)θIθMΣsi,0,sM,n+1

n

+ (N − n)θ2
M

[
ΣsM,n+1

n + (N − n− 1)ΣsM,n+1,sM,n+2
n

]
,

(2.A9)

as was to be shown.

2.A.4 Proof of Lemma 2.4

Proof. Given (2.7), (2.8), (2.9), and (2.10), applying the projection theorem for

Gaussian random variables yields for all n ∈ {1, . . . , N} and i ∈ {1, . . . , I}:

E
[
sM,n

∣∣∣si,0, sM,1:n−1, y1:n−1, xi,1:n−1
]

= E
[
sM,n

∣∣∣si,0, sM,1:n−1, y1:n−1
]

= rn,n−1 + E
[
sM,n − rn,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1
]

= rn,n−1 + E
[
sM,n − rn,n−1

∣∣∣si,n−1, sM,1:n−1, y1:n−1
]

= rn,n−1 + E
[
sM,n − rn,n−1

∣∣∣si,n−1
]

= rn,n−1 + ψnsi,n−1.

(2.A10)

A similar analysis shows that

E
[
v
∣∣∣si,0, sM,1:n−1, y1:n−1, xi,1:n−1

]
= pn−1 + E

[
v − pn−1

∣∣∣si,n−1
]

= pn−1 + ηnsi,n−1,

(2.A11)
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and

E
[
sj,0

∣∣∣si,0, sM,1:n−1, y1:n−1, xi,1:n−1
]

= tj,n−1 + E
[
sj,n−1

∣∣∣si,n−1
]

= tj,n−1 + φnsi,n−1,

(2.A12)

where j ∈ {1, . . . , I} and j 6= i.

2.A.5 Proof of Lemma 2.5

Proof. See Foster and Viswanathan (1996) and Gounas (2021).

2.A.6 Proof of Lemma 2.6

Proof. Given (2.7), (2.8), (2.9), and (2.10), assume any informed trader i ∈

{1, . . . , I} has deviated from (2.7). Then Lemma 2.5 implies for all n ∈ {1, . . . , N}:

E
[
sM,n − rn,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1
]

=E
[
sM,n − r̂i

n,n−1 + r̂i
n,n−1 − rn,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1
]

=E
[
sM,n − r̂i

n,n−1

∣∣∣si,0, sM,1:n−1, yn−1, x̃i,1:n−1
]

+
(
r̂i

n,n−1 − rn,n−1
)
.

(2.A13)

Applying the projection theorem for Gaussian random variables yields for the term

on the left-hand side:10

E
[
sM,n − r̂i

n,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1
]

=E
[
sM,n − r̂i

n,n−1

∣∣∣si,0, sM,1:n−1, ŷ
i
1:n−1, x̃i,1:n−1

]
=E

[
sM,n − r̂i

n,n−1

∣∣∣ŝi
i,n−1, sM,1:n−1, ŷ

i
1:n−1, x̃i,1:n−1

]
=E

[
sM,n − r̂i

n,n−1

∣∣∣ŝi
i,n−1, x̃i,1:n−1

]
=E

[
sM,n − r̂i

n,n−1

∣∣∣ŝi
i,n−1

]
=ψnŝ

i
i,n−1.

(2.A14)

10Recall that (2.21) has shown that the individual trading history x̃i,1:n−1 is redundant infor-
mation along equilibrium play.
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Consequently,

E
[
sM,n − rn,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1
]

= ψnŝ
i
i,n−1 +

(
r̂i

n,n−1 − rn,n−1
)
.

(2.A15)

Similarly,

E
[
v−pn−1

∣∣∣si,0, sM,1:n−1, y1:n−1, . . . , x̃i,1:n−1
]

= ηnŝ
i
i,n−1 +

(
p̂i

n−1 − pn−1
)
, (2.A16)

and

E
[
sj,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1
]

= φnŝ
i
i,n−1 +

(
t̂ij,n−1 − tj,n−1

)
, (2.A17)

where j ∈ {1, . . . , I} and j 6= i.

2.A.7 Proof of Proposition 2.1

Proof. Given (2.31), informed trader i’s Bellman equation (2.5) in trading period

n ∈ {1, . . . , N} can be expressed as

max
xi,n

E
[
(v − pn)xi,n

∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1
]

+E
[
an

(
ŝi

i,n

)2
+ bn

(
t̂ij,n − tj,n

)2
+ cn

(
r̂i

n+1,n − rn+1,n

)2
+ dnŝ

i
i,n

(
t̂ij,n − tj,n

)
+ enŝ

i
i,n

(
r̂i

n+1,n − rn+1,n

)
+ fn

(
t̂ij,n − tj,n

) (
r̂i

n+1,n − rn+1,n

)
+ gn

∣∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1

]
,

(2.A18)

where the market maker’s prices and beliefs are given by

pn = pn−1 + µn(sM,n − rn,n−1) + λnyn

= pn−1 + µn(sM,n − rn,n−1) + λn

xi,n +
∑
j 6=i

βnsj,n−1 + un

 , (2.A19)
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and

tj,n = tj,n−1 + αn(sM,n − rn,n−1) + ζnyn

= tj,n−1 + αn(sM,n − rn,n−1) + ζn

xi,n +
∑
j 6=i

βnsj,n−1 + un

 , (2.A20)

and11

rn+1,n = rn,n−1 + ωn(sM,n − rn,n−1) + δnyn

= rn,n−1 + ωn(sM,n − rn,n−1) + δn

xi,n +
∑
j 6=i

βnsj,n−1 + un

 . (2.A21)

By taking the first and second derivatives, one obtains the first-order condition

E

v − pn−1 − µn(sM,n − rn,n−1)− λn

∑
j 6=i

βnsj,n−1

∣∣∣∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1

− 2λnxi,n

+E
[
2bn

(
t̂ij,n − tj,n

)
(−ζn) + 2cn

(
r̂i

n+1,n − rn+1,n

)
(−δn) + dnŝ

i
i,n(−ζn) + enŝ

i
i,n(−δn)

+ fn

[
−ζn

(
r̂i

n+1,n − rn+1,n

)
− δn

(
t̂ij,n − tj,n

)] ∣∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1

]
= 0

(2.A22)

and the second-order condition

− 2λn + 2bnζ
2
n + 2cnδ

2
n + 2fnζnδn < 0. (2.A23)

Expanding the first-order condition yields

E

v − p̂i
n−1 − µn(sM,n − r̂i

n,n−1)− λn

∑
j 6=i

βnŝ
i
j,n−1

∣∣∣∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1


− 2λnxi,n +

(
p̂i

n−1 − pn−1
)
− µn

(
r̂i

n,n−1 − rn,n−1
)

+ λn

∑
j 6=i

βn

(
ŝi

j,n−1 − sj,n−1
)

−E
[
(dnζn + enδn)ŝi

i,n + (2bnζn + fnδn)
(
t̂ij,n − tj,n

)
+ (2cnδn + fnζn)

(
r̂i

n+1,n − rn+1,n

) ∣∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1

]
= 0.

(2.A24)

11Since the market maker does not receive a signal after trading period N , it follows that
rN+1,N = 0.
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Recall from (2.29) that

p̂i
n−1 − pn−1 = IθI

(
t̂ij,n−1 − tj,n−1

)
+ (N − n+ 1)θM

(
r̂i

n,n−1 − rn,n−1
)
. (2.A25)

Also, Lemma 2.4 implies

E
[
v − p̂i

n−1

∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1
]

= ηnŝ
i
i,n−1, (2.A26)

E
[
ŝi

j,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1
]

= φnŝ
i
i,n−1, (2.A27)

E
[
sM,n − r̂i

n,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1
]

= ψnŝ
i
i,n−1. (2.A28)

Moreover,

E
[
ŝi

i,n

∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1
]

=ŝi
i,n−1 − αn E

[
sM,n − r̂i

n,n−1

∣∣∣ŝi
i,n−1

]
− ζn E

[
βnŝ

i
i,n−1 +

∑
j 6=i

βnŝ
i
j,n−1 + un

∣∣∣∣∣ŝi
i,n−1

]

=
(

1− αnψn − ζnβn

[
1 + (I − 1)φn

])
ŝi

i,n−1,

(2.A29)

and

t̂ij,n − tj,n = t̂ij,n−1 − tj,n−1 + αn

[
sM,n − r̂i

n,n−1 − (sM,n − rn,n−1)
]

+ ζn

(
ŷi

n − yn

)
=t̂ij,n−1 − tj,n−1 − αn

(
r̂i

n,n−1 − rn,n−1
)

+ ζn

[
βnŝ

i
i,n−1 − xi,n − (I − 1)βn

(
t̂ij,n−1 − tj,n−1

) ]
,

(2.A30)

and

r̂i
n+1,n − rn+1,n = r̂i

n,n−1 − rn,n−1 + ωn

[
sM,n − r̂i

n,n−1 − (sM,n − rn,n−1)
]

+ δn

(
ŷi

n − yn

)
=r̂i

n,n−1 − rn,n−1 − ωn

(
r̂i

n,n−1 − rn,n−1
)

+ δn

[
βnŝ

i
i,n−1 − xi,n − (I − 1)βn

(
t̂ij,n−1 − tj,n−1

) ]
.

(2.A31)

Plugging these relations into the first-order condition and collecting terms yields

xi,n = βnŝ
i
i,n−1 + γn

(
t̂ij,n−1 − tj,n−1

)
+ ρn

(
r̂i

n,n−1 − rn,n−1
)
, (2.A32)
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where the coefficients βn, γn, and ρn are just as in Proposition 2.1. The value

function coefficients are derived by plugging the optimal strategy xi,n into the

Bellman equation and collecting terms, where the derivation uses the relation

E
[ (
ŝi

i,n

)2
∣∣∣∣si,0, sM,1:n−1, y1:n−1, x̃i,1:n−1

]
=
(

1− αnψn − ζnβn

[
1 + (I − 1)φn

])2 (
ŝi

i,n−1

)2

+ ζ2
nΣu

0 + α2
n Var

[
sM,n − r̂i

n,n−1

∣∣∣si,0, sM,1:n−1, ŷ
i
1:n−1

]
+ 2(I − 1)ζnβnαn Cov

[
ŝi

j,n−1, sM,n − r̂i
n,n−1

∣∣∣si,0, sM,1:n−1, ŷ
i
1:n−1

]
+ (I − 1)ζ2

nβ
2
n

(
Var

[
ŝi

j,n−1

∣∣∣si,0, sM,1:n−1, ŷ
i
1:n−1

]
+ (I − 2) Cov

[
ŝi

j,n−1, ŝ
i
k,n−1

∣∣∣si,0, sM,1:n−1, ŷ
i
1:n−1

])
.

(2.A33)

Since the remaining proof assumes equilibrium play, the “hat” notation is omitted.

The regression coefficients φn and ψn are defined by the projection theorem:

φn =
Cov

[
sj,n−1, si,n−1

]
Var

[
si,n−1

] = Σsj,0,si,0
n−1

Σsi,0
n−1

, (2.A34)

ψn =
Cov

[
sM,n − rn,n−1, si,n−1

]
Var

[
si,n−1

] = ΣsM,n,si,0
n−1

Σsi,0
n−1

, (2.A35)

while the regression coefficient ηn is computed as follows:

ηn =
Cov

[
v − pn−1, si,n−1

]
Var

[
si,n−1

]
=

Cov
[
v̂ − pn−1, si,n−1

]
Var

[
si,n−1

]
=

Cov
[
v̂ − θI

∑I
j=1 tj,n−1 − θM

[∑n−1
t=1 sM,t +∑N

t=n rt,n−1
]
, si,n−1

]
Var

[
si,n−1

]
=

Cov
[
θI
∑I

j=1 sj,n−1 + θM
∑N

t=n(sM,t − rt,n−1), si,n−1
]

Var
[
si,n−1

]
=
θI

[
Σsi,0

n−1 + (I − 1)Σsj,0,si,0
n−1

]
+ (N − n+ 1)θMΣsM,n,si,0

n−1

Σsi,0
n−1

= θI

[
1 + (I − 1)φn

]
+ (N − n+ 1)θMψn.

(2.A36)
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Moreover, note that

Var
[
sM,n − rn,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1
]

=E
[
(sM,n − rn,n−1 − ψnsi,n−1)2

]
=E

[
(sM,n − rn,n−1)2

]
− 2ψn E

[
(sM,n − rn,n−1)si,n−1

]
+ ψ2

n E
[
(si,n−1)2

]
=ΣsM,n

n−1 − 2ψnΣsM,n,si,0
n−1 + ψ2

nΣsi,0
n−1

=ΣsM,n

n−1 − ψ2
nΣsi,0

n−1,

(2.A37)

and
Var

[
sj,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1
]

=E
[
(sj,n−1 − φnsi,n−1)2

]
=E

[
(sj,n−1)2

]
− 2φn E

[
sj,n−1si,n−1

]
+ φ2

n E
[
(si,n−1)2

]
=Σsj,0

n−1 − 2φnΣsj,0,si,0
n−1 + φ2

nΣsi,0
n−1

=(1− φ2
n)Σsi,0

n−1,

(2.A38)

and

Cov
[
sj,n−1, sk,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1
]

= Cov
[
sj,n−1 − φnsi,n−1, sk,n−1 − φnsi,n−1

]
= Cov

[
sj,n−1, si,n−1

]
− 2φn Cov

[
sj,n−1, si,n−1

]
+ φ2

n Cov
[
si,n−1, si,n−1

]
=Σsj,0,si,0

n−1 − 2φnΣsj,0,si,0
n−1 + φ2

nΣsi,0
n−1

=(1− φn)Σsj,0,si,0
n−1 ,

(2.A39)
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and

Cov
[
sj,n−1, sM,n − rn,n−1

∣∣∣si,0, sM,1:n−1, y1:n−1
]

= Cov
[
sj,n−1 − φnsi,n−1, sM,n − rn,n−1 − ψnsi,n−1

]
= Cov

[
sj,n−1, sM,n − rn,n−1

]
− φn Cov

[
si,n−1, sM,n − rn,n−1

]
− ψn Cov

[
sj,n−1, si,n−1

]
+ φnψn Cov

[
si,n−1, si,n−1

]
=Σsi,0,sM,n

n−1 − φnΣsi,0,sM,n

n−1 − ψnΣsj,0,si,0
n−1 + φnψnΣsi,0

n−1

=(1− φn)Σsi,0,sM,n

n−1 .

(2.A40)

To compute the projection coefficients αn, ζn, ωn, and δn, recall that

yn =
I∑

i=1
βnsi,n−1 + un, (2.A41)

and define for all n ∈ {1, . . . , N − 1}:

Σyn
n−1 ≡ Var

[
yn

∣∣∣sM,1:n−1, y1:n−1
]

= Iβ2
n

[
Σsi,0

n−1 + (I − 1)Σsi,0,sj,0
n−1

]
+ Σu

0 ,

(2.A42)

Σsi,0,yn

n−1 ≡ Cov
[
si,0, yn

∣∣∣sM,1:n−1, y1:n−1
]

= βn

[
Σsi,0

n−1 + (I − 1)Σsi,0,sj,0
n−1

]
, (2.A43)

ΣsM,n,yn

n−1 ≡ Cov
[
sM,n, yn

∣∣∣sM,1:n−1, y1:n−1
]

= IβnΣsi,0,sM,n

n−1 , (2.A44)

ΣsM,n+1,yn

n−1 ≡ Cov
[
sM,n+1, yn

∣∣∣sM,1:n−1, y1:n−1
]

= IβnΣsi,0,sM,n

n−1 . (2.A45)

Then the projection theorem implies12

αn

ζn

 =

 ΣsM,n

n−1 ΣsM,n,yn

n−1

ΣsM,n,yn

n−1 Σyn
n−1


−1Σsi,0,sM,n

n−1

Σsi,0,yn

n−1

 , (2.A46)

ωn

δn

 =

 ΣsM,n

n−1 ΣsM,n,yn

n−1

ΣsM,n,yn

n−1 Σyn
n−1


−1ΣsM,n+1,sM,n

n−1

ΣsM,n+1,yn

n−1

 . (2.A47)

12Since the market maker does not receive a signal after trading period N , it follows that ωN = 0
and δN = 0.
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Finally, for all n ∈ {1, . . . , N − 1}, define the conditional covariance matrix Σn as

Σn ≡



Σs1,0
n . . . Σs1,0,sI,0

n Σs1,0,sM,n+1
n . . . Σs1,0,sM,N

n

... . . . ... ... . . . ...

ΣsI,0,s1,0
n . . . ΣsI,0

n ΣsI,0,sM,n+1
n . . . ΣsI,0,sM,N

n

ΣsM,n+1,s1,0
n . . . ΣsM,n+1,sI,0

n ΣsM,n+1
n . . . ΣsM,n+1,sM,N

n

... . . . ... ... . . . ...

ΣsM,N ,s1,0
n . . . ΣsM,N ,sI,0

n ΣsM,N ,sM,n+1
n . . . ΣsM,N

n



, (2.A48)

where the entries are conditional on the public histories (sM,1:n, y1:n). Let Σn−1

be the corresponding covariance matrix where the entries are conditional on the

public histories (sM,1:n−1, y1:n−1). Since long-lived and future short-lived signals

are jointly normally distributed, it follows that

Σn = Σn−1−



Σs1,0,sM,n

n−1 Σs1,0,yn

n−1
... ...

ΣsI,0,sM,n

n−1 ΣsI,0,yn

n−1

ΣsM,n+1,sM,n

n−1 ΣsM,n+1,yn

n−1
... ...

ΣsM,N ,sM,n

n−1 ΣsM,N ,yn

n−1



 ΣsM,n

n−1 ΣsM,n,yn

n−1

ΣsM,n,yn

n−1 Σyn
n


−1



Σs1,0,sM,n

n−1 Σs1,0,yn

n−1
... ...

ΣsI,0,sM,n

n−1 ΣsI,0,yn

n−1

ΣsM,n+1,sM,n

n−1 ΣsM,n+1,yn

n−1
... ...

ΣsM,N ,sM,n

n−1 ΣsM,N ,yn

n−1



′

,

(2.A49)

yielding the desired block structure for conditional (co)variances.

2.A.8 Algorithm

The algorithm for computing the equilibrium in Proposition 2.1 is similar to

Gounas (2021). Input parameters are the number of informed traders I, the

number of trading periods N , the period zero (co)variances Σv̂
0, Σv,si,0

0 , Σv,sM,n

0 ,

Σsi,0
0 , ΣsM,n

0 , Σsi,0,sM,n

0 , Σu
0 , and the constants χI and χM defined in (2.17) and

(2.18), respectively. For the input parameters to be well-defined, the covariance

matrix in (2.1) must be positive definite. If this condition is satisfied, one can
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compute θI and θM as in Appendix 2.A.1.

Using backward induction, provide initial guesses for the period N − 1 condi-

tional (co)variances Σsi,0
N−1, ΣsM,N

N−1 , and Σsi,0,sM,n

N−1 .13 Given χI , one can immediately

compute Σsi,0,sj,0
N−1 from (2.17). Since the value function coefficients aN , . . . , gN and

the projection coefficients ωN and δN are zero in period N , it follows that

βN =
Iβ2

N

[
Σsi,0

N−1 + (I − 1)Σsi,0,sj,0
N−1

]
+ Σu

0

IβN

[
2Σsi,0

N−1 + (I − 1)Σsi,0,sj,0
N−1

] . (2.A50)

Solving this quadratic equation for βN yields the solutions −
√

Σu
0/(IΣsi,0

N−1) and√
Σu

0/(IΣsi,0
N−1), where only the positive root satisfies the second-order condition.

Given βN , one can compute αN , ζN , µN , λN , γN , ρN , and the value function

coefficients aN−1, . . . , gN−1.

Iterating backward over every period n ∈ {1, . . . , N − 1}, input parameters

are βn+1, Σsi,0
n , ΣsM,n+1

n , and the value function coefficients an, . . . , gn. With these

inputs, one can simultaneously solve for βn, Σsi,0
n−1, ΣsM,n

n−1 , and Σsi,0,sM,n

n−1 . Immedi-

ately, Σsi,0,sj,0
n−1 and ΣsM,n,sM,n+1

n−1 follow from (2.17) and (2.18), respectively. Then it

is straightforward to compute αn, ζn, ωn, δn, µn, λn, γn, ρn, and the value function

coefficients an−1, . . . , gn−1, allowing one to proceed to the next iteration.

The algorithm terminates if the period zero (co)variances satisfy the initial

specification, the second-order condition holds in each period, and conditional

(co)variances and the value function are consistent over time. Otherwise, the

algorithm runs anew with adjusted initial guesses for Σsi,0
N−1, ΣsM,N

N−1 , and Σsi,0,sM,n

N−1 .

13The periodN conditional (co)variances are not necessary to compute the equilibrium in Propo-
sition 2.1.
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