PREDICTING AND DECOMPOSING THE RISK OF DATA-DRIVEN PORTFOLIOS

Sophisticated algorithmic techniques are complementing human judgement across the fund industry. Whatever the type of rebalancing that occurs in the course of a longer horizon, it probably violates ...

Auteur(s) :

Nabil Bouamara

Kris Boudt

Sophisticated algorithmic techniques are complementing human judgement across the fund industry. Whatever the type of rebalancing that occurs in the course of a longer horizon, it probably violates the buy-and-hold assumption. In this article, authors develop the methodology to predict, dissect and interpret the h-day financial risk in data-driven portfolios. Their risk budgeting approach is based on a flexible risk factor model that accommodates the dynamics in portfolio composition directly within the risk factors. Once these factors are defined, they cast portfolio risk measures, such as value-at-risk, into an additive mean-variance-skewness-kurtosis format. The simulation study confirms the gains in accuracy compared to the widespread square-root-of-time rule. Their main empirical findings rely on the two-decade performance of a portfolio insurance investment strategy. Rather than looking at total portfolio risk, they conclude that it is more informative to look inside the portfolio.

Type : Publication EDHEC
Date : le 08/03/2020
Pôle de recherche Finance

A voir également

Rencontre de l’Agora avec l’avocat et enseignant Bertrand Périer
Actualités
- 16-04-2021
Mardi 13 avril, les étudiants de l’association l’Agora ont reçu Bertrand Périer, avocat...
Une Course Croisière EDHEC virtuelle et inédite cette année
Actualités
- 15-04-2021
Après deux annulations consécutives, les étudiants organisateurs de la Course Croisière...
Tour‘ecyclable : valoriser les acteurs de l’économie solidaire
Actualités
- 13-04-2021
Jérémie Roux et Antonin Feret, étudiants en MSc in Global & Sustainable Business et...
EDHEC DataViz Challenge 2021 : Les candidatures sont ouvertes !
Actualités
- 12-04-2021
Les candidatures pour participer à l’EDHEC DataViz Challenge édition 2021 sont...