### Net Zero Investing

#### Thierry Roncalli\*

\*Amundi Investment Institute, Amundi Asset Management<sup>1</sup>, France

Speaker Series The Future of Finance — Net-zero Investing 12 March 2024, EDHEC Business School





<sup>&</sup>lt;sup>1</sup>The opinions expressed in this presentation are those of the authors and are not meant to represent the opinions or official positions of Amundi Asset Management.

#### **Publications**

#### Main references:

- Net Zero Investment Portfolios Part 1. The Comprehensive Integrated Approach. WP-135, 110 pages, October 2022
- Net Zero Investment Portfolios Part 2. The Core-Satellite Approach, WP-147, 78 pages, October 2023

https://research-center.amundi.com

## How to define a net zero investment policy?

#### Net zero portfolios vs. low-carbon portfolios

- Low-carbon portfolio: static approach of decarbonization
- Net-zero portfolio: dynamic approach of decarbonization in order to reach net zero by 2050
- Confusion between net zero and decarbonization?

#### At least two main differences:

- $\bullet$  Net zero implies a self-decarbonization of the portfolios ( $\neq$  sequence of decarbonization rates)
- The transition must be financed ( $\Rightarrow$  greenness of the economy)

Exogenous decarbonization pathway  $\Rightarrow$  endogenous decarbonization pathway

Carbon Intensity + Green Intensity

# Rebalancing vs. self-decarbonization

- The decarbonization rate at the beginning of year *t* is equal to 30%
- The objective of the NZE policy is to have a decarbonization rate equal to 35% at the beginning of year t+1

#### Bad case

- The effective decarbonization is equal to 25% at the end of year t
- Self-decarbonization = 0%& Relabancing = -10%

#### Mixed case

- The effective decarbonization is equal to 33% at the end of year t
- Self-decarbonization = 3%& Relabancing = -2%

#### Good case

- The effective decarbonization is equal to 36% at the end of year t
- Self-decarbonization =
   6% & Relabancing = 0%

We can always reach a decarbonization pathway by rebalancing the portfolio!

# Decarbonization pathway(s)

#### Table: Reduction $\mathcal{R}(2020,t)$

| Year                 | СТВ   | PAB   | NZE      |
|----------------------|-------|-------|----------|
| $\mathcal{R}^-$      | 30%   | 50%   | IEA      |
| $\Delta \mathcal{R}$ | 7%    | 7%    | Scenario |
| 2021                 | 30.0% | 50.0% | 3.1%     |
| 2022                 | 34.9% | 53.5% | 6.2%     |
| 2023                 | 39.5% | 56.8% | 9.4%     |
| 2024                 | 43.7% | 59.8% | 12.5%    |
| 2025                 | 47.6% | 62.6% | 15.6%    |
| 2026                 | 51.3% | 65.2% | 20.5%    |
| 2027                 | 54.7% | 67.7% | 25.4%    |
| 2028                 | 57.9% | 69.9% | 30.3%    |
| 2029                 | 60.8% | 72.0% | 35.2%    |
| 2030                 | 63.6% | 74.0% | 40.1%    |
| 2035                 | 74.7% | 81.9% | 61.8%    |
| 2040                 | 82.4% | 87.4% | 78.4%    |
| 2045                 | 87.7% | 91.2% | 88.0%    |
| 2050                 | 91.5% | 93.9% | 94.6%    |

#### What are the issues?

- We have to compare apples with apples ⇒ emissions vs. intensity
- Transition policy sequencing:
  - Decarbonization and then financing?
  - Financing and then decarbonization?
- Decarbonization policy sequencing:
  - Utilities & Energy (85% before 2035)
  - Materials (70% before 2035)
  - Buildings (60% before 2035)
  - Transport (55% after 2035)
  - Industrials (60% after 2035)

# Decarbonization pathway(s)

Figure: IEA, AO, CTB and PAB pathways

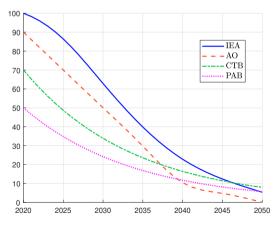
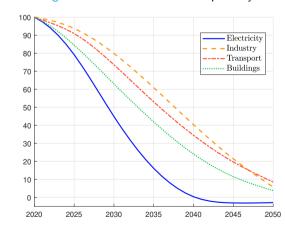




Figure: Sectoral decarbonization pathways



# The financial cost of climate change

#### The Net Zero Transition: What it would Cost, What it could Bring

- McKinsey' Report (2022)
- Capital requirements under the NGFS Net Zero 2050 scenario: \$275 trillion in cumulative spending on physical assets over the next 30 years
- This represents approximately \$9.2 trillion per year between 2021 and 2050

"[...] The transition to net-zero greenhouse emissions by 2050 will require an extra \$3.5 trillion a year in capital spending on physical assets for energy and land-use systems"

#### That amount is the equivalent of:

- 1/2 of global corporate profits,
- 1/4 of total tax revenue,
- 7% of household spending in 2020,
- 4.1% of the world GDP

### Two approaches

#### Integrated approach

- Equity and bond mutual funds
- ETFs
- Indexes

#### Core-satellite approach

- Multi-asset portfolios
- Thematic investment
- Strategic asset allocation

# The integrated approach

⇒ Extension of portfolio decarbonization by considering self-decarbonization and transition issues

### What are the issues?

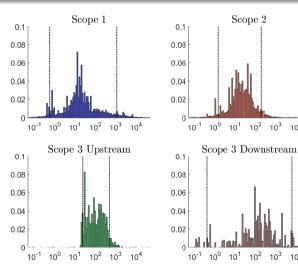
- Measurement definition
  - Scope 3 vs. scopes  $1+2 \Rightarrow$  closed system
  - Location-based vs market-based scope 2 emissions ⇒ Carbon emissions may be negative!
  - Forward-looking vs. current values
- Oata gaps
  - Noisy data & manual/human errors
  - Scope 3 emissions (15 categories)
  - Transition metrics: green revenues, green opex, green capex, green R&D

### Static measure of carbon footprint

The GHG Protocol corporate standard classifies a company's greenhouse gas emissions in three scopes<sup>2</sup>:

- Scope 1: Direct GHG emissions (o)
- Scope 2: Consumption of purchased energy (00)
- Scope 3: Other indirect GHG emissions (●●)
  - Scope 3 upstream: emissions associated to the supply side
    - First tier direct (•)
    - Tier 2 and 3 suppliers (••)
  - Scope 3 downstream: emissions associated with the product sold by the entity
    - Use of the product (•••)
    - Waste disposal & recycling (••••)

<sup>&</sup>lt;sup>2</sup>Measurement robustness: from oooo (very high) to •••• (very low)


Scope 2

10<sup>1</sup> 10<sup>2</sup>

> 10<sup>2</sup> 10<sup>3</sup>

10<sup>3</sup> 10<sup>4</sup>

## Carbon intensity distribution by scope



# Importance of the value chain

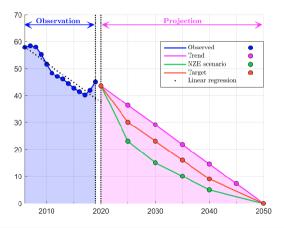
Table: Examples of 2019 carbon emissions and intensity

| C                   |                  | Emission         | (in tCO <sub>2</sub> e)        |                               | Revenue    | Int              | ensity (i        | in tCO <sub>2</sub> e/\$       | mn)                           |
|---------------------|------------------|------------------|--------------------------------|-------------------------------|------------|------------------|------------------|--------------------------------|-------------------------------|
| Company             | $\mathcal{SC}_1$ | $\mathcal{SC}_2$ | $\mathcal{SC}_3^{\mathrm{up}}$ | $\mathcal{SC}_3^{	ext{down}}$ | (in \$ mn) | $\mathcal{SC}_1$ | $\mathcal{SC}_2$ | $\mathcal{SC}_3^{\mathrm{up}}$ | $\mathcal{SC}_3^{	ext{down}}$ |
| Amazon              | 5760000          | 5 500 000        | 20054722                       | 10438551                      | 280522     | 20.5             | 19.6             | 71.5                           | 37.2                          |
| Apple               | 50549            | 862127           | 27624282                       | 5470771                       | 260 174    | 0.2              | 3.3              | 106.2                          | 21.0                          |
| BNP Paribas         | 64829            | 280789           | 1923307                        | 1884                          | 78244      | 0.8              | 3.6              | 24.6                           | 0.0                           |
| BP                  | 49 199 999       | 5 200 000        | 103840194                      | 582639687                     | 276850     | 177.7            | 18.8             | 375.1                          | 2104.5                        |
| Caterpillar         | 905 000          | 926 000          | 15197607                       | 401 993 744                   | 53800      | 16.8             | 17.2             | 282.5                          | 7472.0                        |
| Danone              | 722122           | 944877           | 28 969 780                     | 4464773                       | 28 308     | 25.5             | 33.4             | 1 023.4                        | 157.7                         |
| Exxon               | 111000000        | 9000000          | 107282831                      | 594 131 943                   | 255 583    | 434.3            | 35.2             | 419.8                          | 2324.6                        |
| JPMorgan Chase      | 81655            | 692299           | 3101582                        | 15448469                      | 115627     | 0.7              | 6.0              | 26.8                           | 133.6                         |
| LVMH                | 67613            | 262609           | 11853749                       | 942520                        | 60 083     | 1.1              | 4.4              | 197.3                          | 15.7                          |
| Microsoft           | 113414           | 3556553          | 5977488                        | 4003770                       | 125 843    | 0.9              | 28.3             | 47.5                           | 31.8                          |
| Nestle              | 3291303          | 3206495          | 61 262 078                     | 33900606                      | 93 153     | 35.3             | 34.4             | 657.6                          | 363.9                         |
| Pfizer              | 734638           | 762840           | 4667225                        | 133468                        | 51750      | 14.2             | 14.7             | 90.2                           | 2.6                           |
| Samsung Electronics | 5067000          | 10998000         | 33 554 245                     | 60978947                      | 197733     | 25.6             | <b>55.6</b>      | 169.7                          | 308.4                         |
| Volkswagen          | 4 494 066        | 5 973 894        | 65335372                       | 354913446                     | 282817     | 15.9             | 21.1             | 231.0                          | 1254.9                        |
| Walmart             | 6101641          | 13057352         | 40651079                       | 32346229                      | 514405     | 11.9             | 25.4             | 79.0                           | 62.9                          |

Source: Trucost (2022) & Authors' calculations.

## On the difficulty of estimating emissions from scope 3 activities

- S&P500: 53 companies have reported Scope 3 in 2022, 11 companies in 2021
- Scope 3 upstream emissions vs. Scope 3 downstream emissions
- Estimated vs. reported emissions


#### All upstream Scope 3 emissions in commercial databases are estimated using input-output analysis

- Purchased goods and services
- Capital goods
- Fuel and energy related activities
- Upstream transportation and distribution

- Waste generated in operations
- Business travel
- Employee commuting
- Upstream leased assets

### Measuring self-decarbonization with carbon momentum

Figure: Illustration of the  $\mathcal{PAC}$  framework



 We assume a linear constant trend model:

$$\mathcal{CE}(t) = \beta_0 + \beta_1 \cdot t + u(t)$$

 The carbon momentum is the ratio between the slope and the current carbon emissions:

$$\mathcal{CM}(t) = rac{\hat{eta}_1(t)}{\mathcal{CE}(t)}$$

### Measuring self-decarbonization with carbon momentum

Table: Statistics (in %) of carbon momentum  $\mathcal{CM}(t)$ , whole Trucost database

| Statistics | Ca               | rbon emis            | sions                              | Carbon intensity |                      |                                    |  |
|------------|------------------|----------------------|------------------------------------|------------------|----------------------|------------------------------------|--|
| Statistics | $\mathcal{SC}_1$ | $\mathcal{SC}_{1-2}$ | $\mathcal{SC}_{1-3}^{\mathrm{up}}$ | $\mathcal{SC}_1$ | $\mathcal{SC}_{1-2}$ | $\mathcal{SC}_{1-3}^{\mathrm{up}}$ |  |
| Median     | 1.7              | 2.6                  | 2.6                                | -2.3             | -1.7                 | -1.6                               |  |
| Negative   | 43.3             | 37.7                 | 34.9                               | 69.5             | 66.6                 | 72.0                               |  |
| Positive   | 56.7             | 62.3                 | 65.1                               | 30.5             | 33.4                 | 28.0                               |  |
| <-10%      | 22.7             | 17.5                 | 13.3                               | 21.1             | 14.4                 | 6.5                                |  |
| <-5%       | 30.0             | 24.4                 | 19.9                               | 31.5             | 22.1                 | 13.3                               |  |
| > +5%      | 34.5             | 37.6                 | 35.6                               | 11.6             | 13.2                 | 7.5                                |  |
| > +10%     | 17.1             | 17.6                 | 15.0                               | 5.8              | 6.5                  | 3.3                                |  |

Source: Trucost (2022) & Authors' calculations.

Sequential decarbonization (portfolio rebalancing)

versus

Self-decarbonization

### Static measures of greenness

 3-step approach of the EU taxonomy for defining the green intensity:

$$\mathcal{GI} = rac{\mathcal{GR}}{\mathcal{TR}} \cdot (1 - \mathcal{P}) \cdot \mathbb{1} \left\{ \mathcal{S} \geq \mathcal{S}^- 
ight\}$$

 The first term is a proxy of the turnover KPI and corresponds to the green revenue share:

$$\mathcal{GRS} = rac{\mathcal{GR}}{\mathcal{TR}}$$

By construction, we have  $0 \leq \mathcal{GRS} \leq 1$ 



# Dynamic measures of greenness

### Green intensity trend

$$\mathcal{GI}(t) = \gamma_0 + \gamma_1 \cdot t + v(t)$$

- $\hat{\gamma}_1$  is a dynamic measure of greenness
- no deep history

#### Green CAPEX

- Early indicator
- Data availability: very weak
- Mandatory to disclose under the EU taxonomy
- Does not necessarily result in innovation

#### Low carbon patent

- Lagging indicator
- Data availability : good
- A company may decide not to file a patent and still benefit from its innovation

## Portfolio decarbonization problem

The goal is to minimize the tracking error variance under a decarbonization constraint:

$$x^{\star} = \arg\min \frac{1}{2} (x - b)^{\top} \Sigma (x - b)$$
s.t. 
$$\begin{cases} \mathcal{C}\mathcal{I}(x) \leq (1 - \mathcal{R}) \cdot \mathcal{C}\mathcal{I}(b) & \longleftarrow \text{ Decarbonization (static)} \\ x \in \Omega_1 \cap \Omega_2 & \longleftarrow \text{ Portfolio constraints (diversification, liquidity, etc.)} \end{cases}$$

where  $\Sigma$  is the covariance matrix, b is the benchmark,  $\mathcal{R}$  is the reduction rate,  $\mathcal{CI}(b)$  is the carbon intensity of the benchmark b and  $\mathcal{CI}(x)$  is the carbon intensity of the portfolio x

## Portfolio decarbonization (equity portfolios)

Table: Sector allocation in % (MSCI World, Jun. 2022,  $\mathcal{C}_0$ , scope  $\mathcal{SC}_{1-3}$ )

| Sector                 | Index | Reduction rate ${\cal R}$ |       |       |       |       |       |       |  |
|------------------------|-------|---------------------------|-------|-------|-------|-------|-------|-------|--|
| Sector                 | index | 30%                       | 40%   | 50%   | 60%   | 70%   | 80%   | 90%   |  |
| Communication Services | 7.58  | 7.95                      | 8.15  | 8.42  | 8.78  | 9.34  | 10.13 | 12.27 |  |
| Consumer Discretionary | 10.56 | 10.69                     | 10.69 | 10.65 | 10.52 | 10.23 | 9.62  | 6.74  |  |
| Consumer Staples       | 7.80  | 7.80                      | 7.69  | 7.48  | 7.11  | 6.35  | 5.03  | 1.77  |  |
| Energy                 | 4.99  | 4.14                      | 3.65  | 3.10  | 2.45  | 1.50  | 0.49  | 0.00  |  |
| Financials             | 13.56 | 14.53                     | 15.17 | 15.94 | 16.90 | 18.39 | 20.55 | 28.62 |  |
| Health Care            | 14.15 | 14.74                     | 15.09 | 15.50 | 16.00 | 16.78 | 17.77 | 17.69 |  |
| Industrials            | 9.90  | 9.28                      | 9.01  | 8.71  | 8.36  | 7.79  | 7.21  | 6.03  |  |
| Information Technology | 21.08 | 21.68                     | 22.03 | 22.39 | 22.88 | 23.51 | 24.12 | 24.02 |  |
| Materials              | 4.28  | 3.78                      | 3.46  | 3.06  | 2.56  | 1.85  | 1.14  | 0.24  |  |
| Real Estate            | 2.90  | 3.12                      | 3.27  | 3.41  | 3.57  | 3.72  | 3.71  | 2.51  |  |
| Utilities              | 3.21  | 2.28                      | 1.79  | 1.36  | 0.90  | 0.54  | 0.24  | 0.12  |  |

Source: MSCI (2022), Trucost (2022) & Barahhou et al. (2022).

Strategy long on Financials and short on Energy, Materials and Utilities

### Portfolio decarbonization (bond portfolios)

Table: Sector allocation deviation in % (Global Corp., Jun. 2022, scope  $\mathcal{SC}_{1-3}$ )

| Sector                 | Index |       |       | Redi  | uction rat | e ${\cal R}$ |       |       |
|------------------------|-------|-------|-------|-------|------------|--------------|-------|-------|
| Sector                 | maex  | 30%   | 40%   | 50%   | 60%        | 70%          | 80%   | 90%   |
| Communication Services | 7.34  | 0.01  | 0.00  | 0.03  | 0.09       | 0.09         | -0.03 | -0.04 |
| Consumer Discretionary | 5.97  | 0.00  | -0.01 | -0.03 | -0.04      | -0.51        | -1.49 | -2.42 |
| Consumer Staples       | 6.04  | 0.00  | 0.00  | 0.00  | 0.00       | -0.02        | -0.65 | -1.98 |
| Energy                 | 6.49  | -1.00 | -2.07 | -2.65 | -2.80      | -3.26        | -3.91 | -3.97 |
| Financials             | 33.91 | 0.73  | 1.75  | 2.05  | 2.18       | 3.45         | 4.95  | 5.09  |
| Health Care            | 7.50  | 0.00  | 0.00  | 0.00  | 0.00       | 0.00         | 0.02  | -0.02 |
| Industrials            | 8.92  | 0.46  | 0.70  | 1.27  | 2.42       | 3.15         | 4.63  | 9.21  |
| Information Technology | 5.57  | 0.00  | 0.02  | 0.02  | 0.03       | 0.03         | -0.05 | -0.30 |
| Materials              | 3.44  | -0.01 | -0.13 | -0.26 | -0.32      | -0.80        | -1.19 | -1.58 |
| Real Estate            | 4.76  | -0.02 | -0.02 | -0.02 | -0.02      | -0.10        | -0.15 | -0.83 |
| Utilities              | 10.06 | -0.17 | -0.24 | -0.42 | -1.54      | -2.02        | -2.14 | -3.18 |

Source: ICE (2022), Trucost (2022) & Barahhou et al. (2022).

Strategy long on Financials and Industrials and short on Energy, Materials and Utilities

# Portfolio decarbonization (equity portfolios)

Table: Green intensity in % (MSCI World, Jun. 2022,  $\mathcal{C}_0$ )

|                | Cana In                                                                         | In day |      |      | Redu | ction ra | te ${\cal R}$ |      |      |
|----------------|---------------------------------------------------------------------------------|--------|------|------|------|----------|---------------|------|------|
|                | Scope                                                                           | Index  | 30%  | 40%  | 50%  | 60%      | 70%           | 80%  | 90%  |
|                | $\mathcal{SC}_1$                                                                |        | 5.21 | 5.19 | 5.18 | 5.16     | 5.12          | 5.08 | 5.01 |
| CT             | $\mathcal{SC}_{1-2}$                                                            | 5.24   | 5.17 | 5.14 | 5.09 | 4.99     | 4.83          | 4.64 | 4.52 |
| $\mathcal{GI}$ | $egin{array}{c} \mathcal{SC}_{1-2} \ \mathcal{SC}_{1-3}^{	ext{up}} \end{array}$ | 5.24   | 5.15 | 5.07 | 4.89 | 4.69     | 4.42          | 3.90 | 0.68 |
|                | $\mathcal{SC}_{1-3}$                                                            |        | 5.17 | 5.12 | 5.05 | 4.97     | 4.80          | 4.55 | 3.73 |

Source: MSCI (2022), Trucost (2022) & Barahhou et al. (2022).

Positive correlation between carbon intensity and green intensity?

The goal is to minimize the tracking error variance under net zero constraints:

$$x^{*}(t) = \arg\min \frac{1}{2} (x - b)^{\top} \Sigma(t) (x - b)$$
s.t. 
$$\begin{cases} \mathcal{CI}(t, x) \leq (1 - \mathcal{R}(t_{0}, t)) \cdot \mathcal{CI}(t_{0}, b(t_{0})) & \longleftarrow \\ x \in \Omega_{\mathcal{T}ransition}(t) & \longleftarrow \\ x \in \Omega_{1} \cap \Omega_{2}(t) & \longleftarrow \end{cases}$$
 Decarbonization (dynamic)

The transition constraints can encompass:

- **a** self-decarbonization maximum threshold:  $\{x : \mathcal{CM}(t,x) \leq \mathcal{CM}^{*}\}$
- **a greenness** minimum threshold :  $\{x : \mathcal{GI}(t,x) \ge (1+\mathcal{G}) \cdot \mathcal{GI}(t,b(t))\}$
- **3** an **exclusion** constraint:  $\{\mathcal{CM}_i(t) \geq \mathcal{CM}^+ \Rightarrow x_i = 0\}$

Tracking error volatility of net zero portfolios (MSCI World, Jun. 2022,  $\mathcal{G} = 100\%$ ,  $\mathcal{CM}^* = -5\%$ , PAB)

Figure:  $\mathscr{C}_0$  constraint

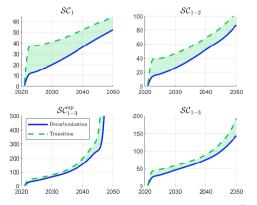
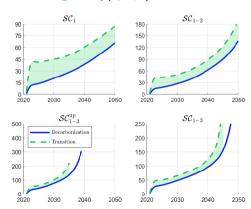




Figure:  $\mathcal{C}_3(0,10,2)$  constraint



Tracking error volatility of net zero portfolios (MSCI EMU, Jun. 2022,  $\mathcal{G} = 100\%$ ,  $\mathcal{CM}^* = -5\%$ , PAB)

Figure:  $\mathscr{C}_0$  constraint

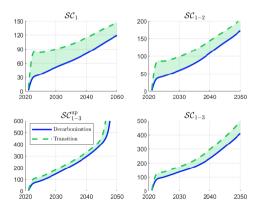
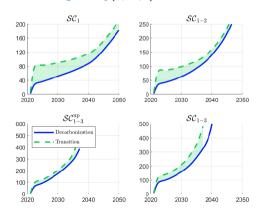




Figure:  $\mathcal{C}_3(0,10,2)$  constraint



Tracking error volatility of net zero portfolios (MSCI USA, Jun. 2022,  $\mathcal{G} = 100\%$ ,  $\mathcal{CM}^* = -5\%$ , PAB)

Figure:  $\mathscr{C}_0$  constraint

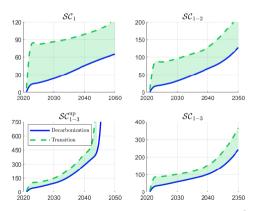
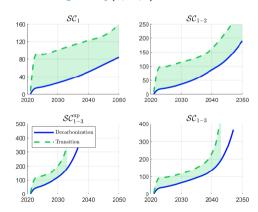
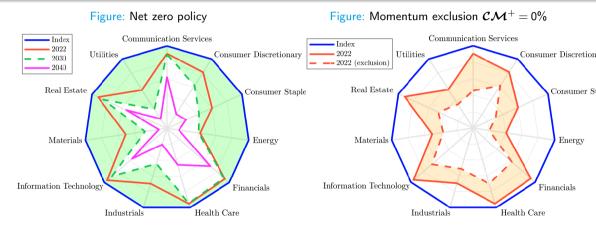




Figure:  $\mathcal{C}_3(0,10,2)$  constraint

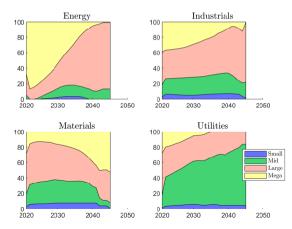



### What about other costs?

The tracking risk seems manageable. However, net zero alignment bears two hidden risks:

- **Diversification cost**: due to sectoral concentration
- Liquidity cost: companies providing solution to tackle the climate change are often pure players (small cap stocks)

# Investment universe shrinkage


MSCI World, Jun. 2022,  $\mathscr{C}_3$  (0,10,2) constraint,  $\mathcal{G}=100\%$ ,  $\mathcal{CM}^{\star}=-5\%$ , scope  $\mathcal{SC}_{1-3}$ 



## Liquidty risk

MSCI World, Jun. 2022,  $\mathscr{C}_3(0,10,2)$ ,  $\mathcal{G}=100\%$ ,  $\mathcal{CM}^{\star}=-5\%$ , PAB, scope  $\mathcal{SC}_{1-3}$ 

#### Figure: Breakdown of net zero allocation with respect to the market capitalization



## The core-satellite approach

#### Two building blocks of NZE portfolios

#### Decarbonized portfolio

- Carbon intensity
- Decarbonization pathway(s)
- Top-down approach
- Portfolio construction
- Net zero carbon metrics



#### • Gree

Green intensity

Transition portfolio

- Financing the transition
- Bottom-up approach
- Security selection
- Net zero transition metrics

$$1-\alpha(t)\%$$

$$\alpha(t)\%$$

### The core portfolio

#### Optimization problem (core equity portfolio)

The objective function is to minimize the tracking error variance:

$$x(t) = \arg\min \frac{1}{2} (x - b)^{\top} \Sigma(x - b)$$
s.t. 
$$\begin{cases} \mathbf{1}_{n}^{\top} x = 1 \\ \mathcal{C} \mathcal{I}(t)^{\top} x \leq (1 - \mathcal{R}(t_{0}, t)) \mathcal{C} \mathcal{I}(t_{0}, b, \mathscr{F}_{t_{0}}) \\ \mathbf{0}_{n} \leq x \leq \mathbf{1}_{n} \end{cases}$$

- Problem  $\mathcal{P}_1$ : optimization with  $\mathcal{C}_0$  constraint;
- Problem  $\mathscr{P}_2$ : optimization with  $\mathscr{C}_3(0,10,2)$  constraint,  $\mathcal{CM}^* = -3.5\%$ ,  $\mathcal{CM}^+ = 10\%$ ;
- Problem  $\mathscr{P}_3$ : optimization with  $\mathscr{C}_3(0,10,2)$  constraint,  $\mathcal{CM}^{\star}=-3.5\%$ ,  $\mathcal{CM}^{+}=10\%+1$  IEA NZE scenario for the electricity sector

### The core portfolio

#### Optimization problem (core bond portfolio)

The objective function is to minimize the active risk:

$$\mathscr{R}(x \mid b) = \varphi \underbrace{\sum_{s=1}^{n_{\mathscr{S}ector}} \left| \sum_{i \in s} (x_i - b_i) \cdot \mathrm{DTS}_i \right|}_{\mathrm{DTS \ component}} + \underbrace{\frac{1}{2} \sum_{i \in b} |x_i - b_i|}_{\mathrm{AS \ component}} + \underbrace{\mathbb{1}_{\Omega_{\mathrm{MD}}}(x)}_{\mathrm{MD \ component}}$$

where DTS<sub>i</sub> and MD<sub>i</sub> are the duration-times-spread and modified duration factors,  $\Omega_{\text{MD}} = \{x : \sum_{i=1}^{n} (x_i - b_i) \cdot \text{MD}_i = 0\}$  and  $\mathbb{1}_{\Omega}(x)$  is the convex indicator function

- Problem  $\mathcal{P}_1$ : optimization with  $\mathcal{C}_0$  constraint;
- Problem  $\mathscr{P}_2$ : optimization with  $\mathscr{C}_0$  constraint,  $\mathcal{CM}^* = -3.5\%$ ,  $\mathcal{CM}^+ = 10\%$ ;
- Problem  $\mathscr{P}_3$ : optimization with  $\mathscr{C}_0$  constraint,  $\mathcal{CM}^* = -3.5\%$ ,  $\mathcal{CM}^+ = 10\% + \text{IEA NZE}$  scenario for the electricity sector

### The core portfolio

Without the IEA NZE scenario for the electricity sector (Problem  $\mathcal{P}_2$ )

Figure: Decarbonization pathway of the electricity sector (MSCI World, Dec. 2021)

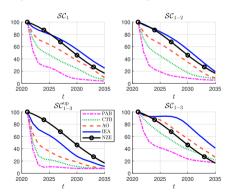
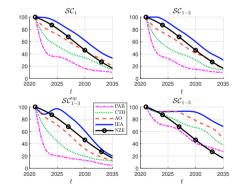




Figure: Decarbonization pathway of the electricity sector (Global Corporate, Dec. 2021)



Source: MSCI (2023), Trucost (2023), Bloomberg (2023) & Ben Slimane et al. (2023).

## Implications for strategic asset allocation

Figure: Implied risk premium  $\Delta \tilde{\pi}_j$  in bps of the Utilities sector (MSCI World, Dec. 2021, Scope  $\mathcal{SC}_{1-2}$ )

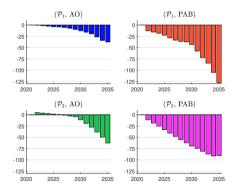
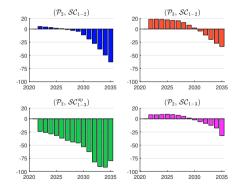




Figure: Implied risk premium  $\Delta \tilde{\pi}_j$  in bps of the Utilities sector (MSCI World, Dec. 2021, AO pathway)



Source: Ben Slimane et al. (2023).

### How to achieve net zero emissions

The main transformation involves the power sector in two directions:

- Massive electrification of the world economy
- Greening electricity to achieve clean power generation

Table: The 2050 net zero scenarios

|            | 2020             |                        |            | 2050      |                       |
|------------|------------------|------------------------|------------|-----------|-----------------------|
| Production | Energy           | Carbon                 | Production | Energy    | Carbon                |
| Froduction | Intensity        | Intensity Emissions    | Froduction | Intensity | Emissions             |
| 30000 TWh  | <b>500</b> g/kWh | 15 GtCO <sub>2</sub> e | 100000 TWh | 20 g/kWh  | 2 GtCO <sub>2</sub> e |

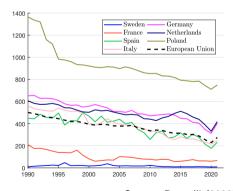
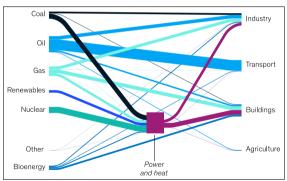
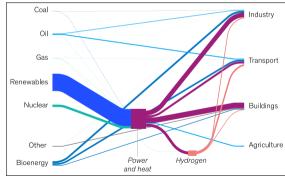

### How to achieve net zero emissions

Table: Emission factor in gCO<sub>2</sub>e/kWh of electricity generation in the world

| Region        | $\mathcal{EF}$ Country | $\mathcal{EF}$ Country | $\mathcal{E}\mathcal{F}$ | Country        | $\mathcal{E}\mathcal{F}$ |
|---------------|------------------------|------------------------|--------------------------|----------------|--------------------------|
| Africa        | 484   Australia        | 531   Germany          | 354                      | Portugal       | 183                      |
| Asia          | 539 Canada             | 128   India            | 637                      | Russia         | 360                      |
| Europe        | 280 China              | 544 i Iran             | 492                      | Spain          | 169                      |
| North America | 352 ¦ Costa Rica       | 33 ¦ Italy             | 226                      | Switzerland    | 47                       |
| South America | 204   Cuba             | 575 Japan              | 479                      | United Kingdom | 270                      |
| World         | 442   France           | 58   Norway            | 26                       | United States  | 380                      |

Source: Roncalli (2023).


Figure: Emission factor in gCO<sub>2</sub>e/kWh of electricity generation (European Union, 1990 – 2022)

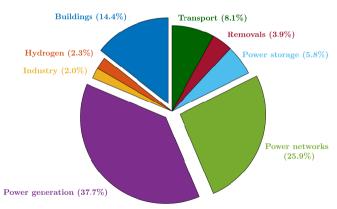



Source: Roncalli (2023).

## Transforming the global value chain into a net zero economy

Figure: 2017 Figure: 2050

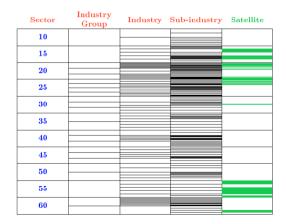





Source: McKinsey (2023, Exhibit 6B, page 12).

Source: McKinsey (2023, Exhibit 6B, page 12).

## Funding requirements


Figure: Net zero capital investments



Source: Energy Transitions Commission (2023a, page 6) & Authors' calculations.

## Narrow definition of the satellite investment portfolio

Figure: Narrow specification of the satellite investment universe



### Other net zero issues

- Materials and critical minerals, e.g. rare earths (⇒ geopolitical issues)
- Who will finance the transition? (⇒ debt sustainability issues)
- How to track net zero progress? (⇒ monitoring issues)

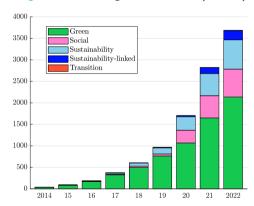

- Green, sustainability and sustainability-linked bonds
- Green stocks
- Green infrastructure
- Sustainable real estate

Table: GSS+ bond issuance

|      | GB   |       | SB  |       | SuB |       | SLB |       |
|------|------|-------|-----|-------|-----|-------|-----|-------|
| Year | #    | \$ bn | #   | \$ bn | #   | \$ bn | #   | \$ bn |
| 2022 | 1784 | 531.6 | 542 | 152.8 | 614 | 174.8 | 382 | 144.3 |
| 2021 | 1971 | 686.1 | 554 | 242.1 | 646 | 233.2 | 343 | 161.5 |
| 2020 | 1076 | 291.2 | 273 | 172.0 | 308 | 154.8 | 47  | 16.5  |
| 2019 | 877  | 268.0 | 99  | 22.2  | 333 | 85.2  | 18  | 8.9   |
| 2018 | 582  | 165.3 | 48  | 16.5  | 52  | 22.1  | 1   | 2.2   |
| 2017 | 472  | 160.9 | 46  | 11.8  | 17  | 9.2   | 1   | 0.2   |
| 2016 | 285  | 99.7  | 14  | 2.2   | 16  | 6.6   | 0   | 0.0   |

Source: Bloomberg, GSS+ Instrument Indicator

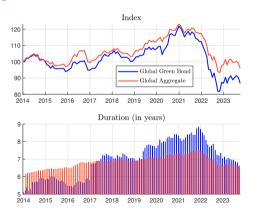
Figure: Outstanding of GSS+ debt (in \$ bn)



https://www.climatebonds.net/market/data.

#### Table: What the GSS+ bond market does and does not finance

| Sector           | (1a) | $(1b) \mid (2a)$ | (2b)  | (3a) | (3b)  | 4     |
|------------------|------|------------------|-------|------|-------|-------|
| Power generation | 1310 | 37.7%   207      | 6.0%  | 1103 | 31.7% | 15.8% |
| Power networks   | 900  | 25.9%   135      | 3.9%  | 765  | 22.0% | 15.0% |
| Power storage    | 200  | 5.8%   27        | 0.8%  | 173  | 5.0%  | 13.5% |
| Buildings        | 500  | 14.4% 225        | 6.5%  | 275  | 7.9%  | 45.0% |
| Transport        | 280  | 8.1%   180       | 5.2%  | 100  | 2.9%  | 64.3% |
| Removals         | 135  | 3.9%   90        | 2.6%  | 45   | 1.3%  | 66.7% |
| Hydrogen         | 80   | 2.3% 9           | 0.3%  | 71   | 2.0%  | 11.3% |
| Industry         | 70   | 2.0%   27        | 0.8%  | 43   | 1.2%  | 38.6% |
| Total            | 3475 | 100.0%   900     | 25.9% | 2575 | 74.1% | 25.9% |

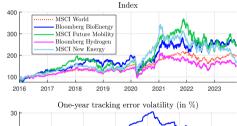

- Upper bound  $\approx$  \$900 bn (25%)
- Lower bound  $\approx$  \$400 bn (12%)

Source: Authors' calculations.

(1a) Funding requirement (in \$ tn), (1b) Break-down (in %), (2a) Financed (in \$ tn), (2b) Financed (in %), (3a) Non-financed (in \$ tn), (3b) Non-financed (in %), (4) Funding ratio (in %)

# Investment universe Green bonds

Figure: Performance and duration of the bond indices



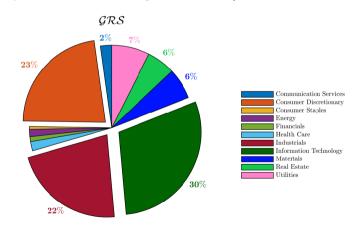

Tracking error volatility  $\approx 3\%$ 

Source: Bloomberg (2023).

Green equities

Figure: Performance and tracking error volatility of thematic equity indices






Tracking error volatility  $\approx 20\%$ 

Source: Bloomberg (2023) & MSCI (2023).

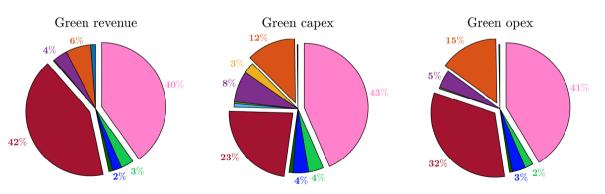

# Investment universe Green equities

Figure: Breakdown in % of green intensities (MSCI World, Dec. 2021)



# Investment universe Green equities

Figure: Breakdown in % of green intensities (MSCI World, Dec. 2021)



- Sustainable infrastructure
- Sustainable real estate
  - CRREM (Carbon Risk Real Estate Monitor) ⇒ whole-building approach for in-use emissions
  - GRESB ⇒ GHG Protocol principles to the real estate industry (corporate approach)
  - SBTi Building Guidelines
  - PCAF/CRREM/GRESB joint technical guidance 

     Accounting and reporting of financed
     GHG emissions from real estate operations (GHG Protocol)

## Tracking error risk of the core/satellite portfolio

#### Assumptions

#### Tracking error

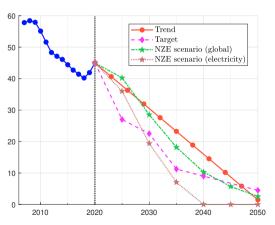
- Core equity portfolio = 2%
- Core bond portfolio = 25 bps
- Satellite equity portfolio = 20%
- Satellite bond portfolio = 3%

#### Correlation

- Lower bound:  $\rho = 0\%$
- Upper bound:  $\rho_{intra-class} = 80\%$

Table: Estimation of the tracking error volatility of the core/satellite portfolio (in %)

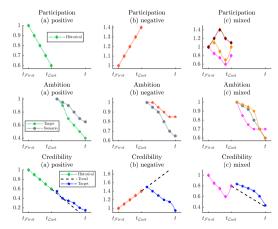
|    | $\alpha$ | Bond | Defensive | Balanced | 60/40 | Dynamic | Equity |
|----|----------|------|-----------|----------|-------|---------|--------|
|    | 10%      | 0.38 | 0.62      | 1.36     | 1.62  | 2.15    | 2.69   |
| LB | 20%      | 0.63 | 1.00      | 2.18     | 2.60  | 3.45    | 4.31   |
|    | 30%      | 0.92 | 1.43      | 3.11     | 3.71  | 4.93    | 6.16   |
|    | 10%      | 0.53 | 1.18      | 2.16     | 2.49  | 3.15    | 3.80   |
| UB | 20%      | 0.80 | 1.76      | 3.20     | 3.68  | 4.64    | 5.60   |
|    | 30%      | 1.07 | 2.34      | 4.24     | 4.87  | 6.13    | 7.40   |
|    |          |      |           |          |       |         |        |


## Conclusion

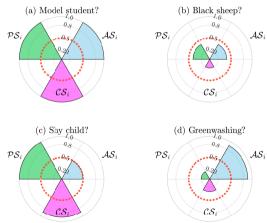
- Net zero investment strategy ≠ low-carbon investment strategy
  - Static exogenous decarbonization ⇒ Dynamic endogenous decarbonization
  - How to assess self-decarbonization?
  - Transition matters!
  - Issues on the short run will decrease on the long run if the finance economy decarbonizes
- The additional cost for equity portfolios will be greater than for bond portfolios (wrt to business-as-usual investing)
  - We must distinguish stock of capital and new fresh capital
  - Equity market portfolios are driven by old capital (secondary market)
  - Bond market portfolios are driven by fresh capital (primary market)
  - The structure of bond benchmarks changes faster than the structure of equity benchmarks
- There are solutions
  - Don't go too fast in terms of decarbonization pathway
  - Deeply understand the transition dimension and the relationships between net zero metrics
  - Less is more

## Self-decarbonization

The  $\mathcal{PAC}$  framework


Figure: Carbon trend, targets and NZE scenario of company A




#### Three pillars:

- Participation
- Ambition
- Credibility

#### Figure: Assessment of the $\mathcal{PAC}$ pillars



#### Figure: The $\mathcal{PAC}$ scoring system



### Self-decarbonization Using temperature ratings

Table: Frequency of temperature ratings (in %)

| Pango                                                            | <del>.</del><br>  | looborg    |          |           |         |
|------------------------------------------------------------------|-------------------|------------|----------|-----------|---------|
| Range                                                            | Scope $1 + 2 + 3$ | Short-term | Mid-term | Long-term | Iceberg |
| $\mathcal{T} \leq 1.0^{\circ}\mathrm{C}$                         | 0.00              | 0.00       | 0.00     | 0.00      | 1.01    |
| $1.0^{\circ}\mathrm{C} < \mathcal{T} \leq 1.5^{\circ}\mathrm{C}$ | 1.44              | 2.92       | 10.68    | 2.71      | 2.60    |
| $1.5^{\circ}\mathrm{C} < \mathcal{T} \leq 2.0^{\circ}\mathrm{C}$ | 6.20              | 1.26       | 13.03    | 3.94      | 3.14    |
| $2.0^{\circ}\mathrm{C} < \mathcal{T} \leq 2.5^{\circ}\mathrm{C}$ | 6.86              | 3.07       | 7.46     | 2.68      | 21.76   |
| $2.5^{\circ}\mathrm{C} < \mathcal{T} \leq 3.0^{\circ}\mathrm{C}$ | 7.64              | 1.99       | 4.21     | 0.48      | 30.87   |
| $3.0^{\circ}\mathrm{C} < \mathcal{T} \leq 3.5^{\circ}\mathrm{C}$ | 76.95             | 89.77      | 62.80    | 90.07     | 32.30   |
| $3.5^{\circ}\mathrm{C} < \mathcal{T} \leq 4.0^{\circ}\mathrm{C}$ | 0.78              | 0.81       | 1.44     | 0.09      | 2.23    |
| $4.0^{\circ}\mathrm{C} < \mathcal{T} \leq 4.5^{\circ}\mathrm{C}$ | 0.12              | 0.18       | 0.36     | 0.03      | 3.31    |
| $4.5^{\circ}\mathrm{C} < \mathcal{T} \leq 5.0^{\circ}\mathrm{C}$ | 0.00              | 0.00       | 0.00     | 0.00      | 0.77    |
| $\mathcal{T} = 3.2^{\circ} \text{C}$                             | 52.09             | 88.50      | 61.39    | 89.95     | 0.01    |

Source: CDP Temperature Ratings Dataset, version 1.1, February 2021 & Iceberg Data Lab (2021).

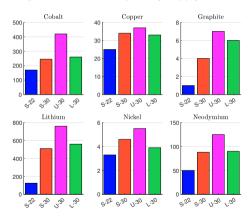
Material and resource requirements

Table: Mineral requirements for clean energy technologies

|                         | Aluminium | Chromium | Copper | Cobalt | Graphite | Lithium | Neodymium |
|-------------------------|-----------|----------|--------|--------|----------|---------|-----------|
| Bioenergy               | 0         | 0        | •      | 0      | 0        | 0       | 0         |
| CSP                     | •         | •        |        | 0      | 0        |         | $\circ$   |
| Electricity Networks    | •         |          |        | 0      | 0        |         | $\circ$   |
| EVs and Battery storage | •         |          |        |        | •        |         | •         |
| Geothermal              |           | •        |        | 0      | 0        |         | $\circ$   |
| Hydrogen                |           |          |        | 0      | 0        |         | $\circ$   |
| Hydropower              |           |          |        | 0      | 0        |         | $\circ$   |
| Nuclear                 |           |          |        | 0      | 0        |         |           |
| Solar PV                | •         |          |        | 0      | 0        |         | $\circ$   |
| Wind                    |           |          |        | 0      | 0        |         | •         |

Source: IEA (2022, page 45).

Material and resource requirements


Table: Mineral requirements for clean energy technologies

|                         | Nickel | Platinum | Polysilicon | REEs    | Silver | Steel   | Uranium | Zinc    |
|-------------------------|--------|----------|-------------|---------|--------|---------|---------|---------|
| Bioenergy               | 0      | 0        | 0           | 0       | 0      | 0       | 0       | 0       |
| CSP                     |        |          | $\circ$     | $\circ$ | 0      | $\circ$ |         |         |
| Electricity Networks    |        |          | $\circ$     | $\circ$ | 0      |         |         | $\circ$ |
| EVs and Battery storage |        |          | $\circ$     |         | 0      | $\circ$ | 0       | $\circ$ |
| Geothermal              |        | 0        | 0           | $\circ$ | 0      | $\circ$ | 0       | $\circ$ |
| Hydrogen                |        |          | 0           |         | 0      |         | 0       | $\circ$ |
| Hydropower              |        |          | 0           | $\circ$ | 0      |         | 0       |         |
| Nuclear                 |        |          | 0           | $\circ$ |        |         |         | $\circ$ |
| Solar PV                |        |          | •           | $\circ$ |        |         |         | $\circ$ |
| Wind                    |        |          | 0           |         | 0      |         | 0       |         |

Source: IEA (2022, page 45).

# How to achieve net zero emissions Material and resource requirements

#### Figure: Demand and primary supply in 2030



Source: Energy Transitions Commission (2023a).

### How to achieve net zero emissions Funding requirements — global analysis

Total investment: 3.5 trillion per year to 2050

Funding requirements — sector analysis

#### Power (\$2 400 bn)

- Total electricity supply from around 30 000 TWh today to over 100 000 TWh by mid-century
- Extension of transmission and distribution networks from about 70 million km to up to 200 million km
- Green hydrogen production of 500-800 Mt per year

#### Buildings (\$500 bn)

- Need to retrofit older buildings and create new carbon-efficient buildings
- \$500 bn per year invested in the buildings sector: incorporate new green technologies (\$230 bn), purchase renewable heat (\$130 bn) and install new heat pumps (\$150 bn)

Funding requirements — sector analysis

#### Mobility (\$280 bn)

- The largest part of the transition from ICE (internal combustion engines) to EVs will require \$130 bn per year to develop charging and refuelling facilities
- \$70 bn will be spent on sustainable aircraft manufacturing facilities and aircraft batteries
- \$40 bn will be spent on greening the shipping system through new infrastructure, vessels and investments

## Sustainable agriculture and land use requirements (\$50 bn)

- The demand for wind and solar farms is far greater than the previous demand based on the fossil fuel system, but still far less than the demand for agriculture
- Agriculture is the largest driver of deforestation

Funding requirements — sector analysis

### Hydrogen (\$80 bn)

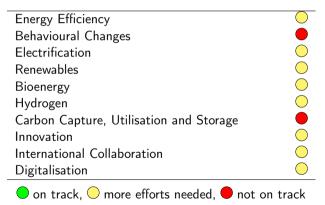
- \$80 bn investment will be allocated to the production and distribution of hydrogen
- \$40 bn will be used to produce green and blue hydrogen and to recycle grey hydrogen
- \$40 bn will help build pipelines, refuelling stations, exchange terminals and storage capacity

### Industry (\$70 bn)

- \$10 bn will be used to decarbonise steel
- \$10 bn for cement plants
- \$40 bn to fully develop and integrate CCS and other decarbonisation technologies
- \$10 bn to deploy low-carbon technologies in smelters and refineries

Funding requirements — sector analysis

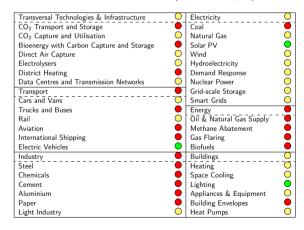
### Waste management and circular economy (\$135 bn)


- Waste is generated at every stage of the transition, from food waste from agriculture to waste from solar panels, wind farms or even mining
- The energy transition will generate up to 13 billion tonnes of waste from all materials by 2050

### Water management (\$25 bn)

- Global water consumption will be 4000 billion m<sup>3</sup> per year in 2050, of which 70% is used for agriculture (2800 billion  $m^3$ ), 58 billion  $m^3$  for clean energy production and 37 billion  $m^3$  for fossil fuels
- For clean energy production, water is used for nuclear power generation (14 billion  $m^3$  per year), hydrogen production by electrolysis (11 billion  $m^3$  per year), carbon capture (19–29 billion m<sup>3</sup> per year) and cleaning solar panels
- Global energy use in the water sector expected to double by 2040

Tracking net zero progress


Table: What's on track (energy system overview)



Source: IEA (2023).

# How to achieve net zero emissions Tracking net zero progress

#### Table: What's on track (sector analysis)



Public vs. private investments

Figure: Public investment – relative difference in % compared with the baseline scenario

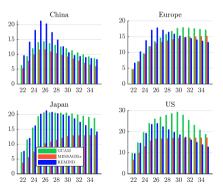
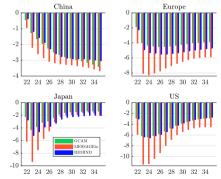



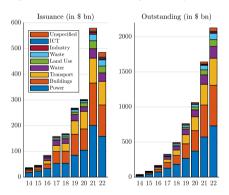

Figure: Private investment – relative difference in % compared with the baseline scenario



Source: NGFS (2022) & https://data.ene.iiasa.ac.at/ngfs.

Public vs. private investments

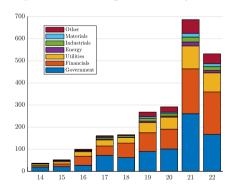
#### What are the narratives


- Net zero emissions scenario ⇒ Huge cost
- This cost mainly concerns the Utilities sector
- Utilities  $\Rightarrow$  Huge capex  $\Rightarrow$  ROE  $\searrow$
- Private investors are reluctant to finance the utilities sector
- Private investment \

- A strong increase of public investment
- Debt  $\nearrow \Rightarrow$  Interest rates  $\nearrow$
- Investors prefer to invest in sovereign bonds than financing directly net zero

Vase communication between public investment and private investment

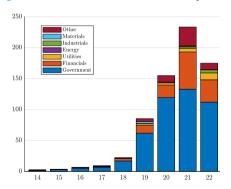
# Investment universe of the satellite portfolio


#### Figure: Issuance of GBs by use of proceeds



Source:

https://www.climatebonds.net/market/data.


#### Figure: Issuance of green bonds by sectors



Source: Bloomberg, GSS+ Instrument Indicator.

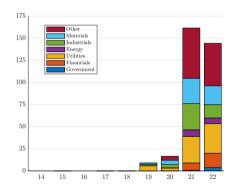

# Investment universe of the satellite portfolio

Figure: Issuance of sustainable bonds by sectors



Source: Bloomberg, GSS+ Instrument Indicator.

Figure: Issuance of SLBs by sectors



Source: Bloomberg, GSS+ Instrument Indicator.

### Investment universe Green equities

Table: Statistics of the narrow definition (MSCI World, Dec. 2021)

|                        | <i>c</i> . |        | ld        | Satellite |          |
|------------------------|------------|--------|-----------|-----------|----------|
| Sector                 | Code       | CW     | Alignment | Breakdown | Target   |
| Communication Services | 50         | 8.35%  |           |           |          |
| Consumer Discretionary | 25         | 12.25% | 28.62%    | 30.9%     | 5 - 15%  |
| Consumer Staples       | 30         | 6.91%  | 1.32%     | 0.8%      | 0 - 5%   |
| Energy                 | 10         | 3.12%  |           |           |          |
| Financials             | 40         | 13.16% |           |           |          |
| Health Care            | 35         | 12.62% |           |           |          |
| Industrials            | 20         | 10.21% | 38.97%    | 35.0%     | 10 - 20% |
| Information Technology | 45         | 23.68% |           |           |          |
| Materials              | 15         | 4.10%  | 29.42%    | 10.6%     | 5 - 15%  |
| Real Estate            | 60         | 2.79%  | 1.32%     | 0.3%      | 0 - 5%   |
| Utilities              | 55         | 2.74%  | 92.80%    | 22.3%     | 50 – 70% |
| Total                  |            |        | 11.37%    | 100.0%    |          |

# Investment universe Green equities

#### Net zero contribution metrics

- Green revenue share
- Green turnover (EU taxonomy)
- Green Opex (EU taxonomy)
- Green Capex (EU taxonomy)

#### Table: Average green intensities in % (MSCI World, Dec. 2021)

| Sector                 | Code | GRS   | Revenue | Capex | Opex  |
|------------------------|------|-------|---------|-------|-------|
| Communication Services | 50   | 2.79  | 0.07    | 0.02  | 0.02  |
| Consumer Discretionary | 25   | 19.59 | 0.25    | 0.98  | 0.89  |
| Consumer Staples       | 30   | 0.85  | 0.00    | 0.40  | 0.00  |
| Energy                 | 10   | 4.79  | 0.57    | 2.46  | 1.06  |
| Financials             | 40   | 0.77  | 0.01    | 0.03  | 0.02  |
| Health Care            | 35   | 1.52  | 0.00    | 0.07  | 0.00  |
| Industrials            | 20   | 22.86 | 1.98    | 2.21  | 2.34  |
| Information Technology | 45   | 13.28 | 0.02    | 0.04  | 0.02  |
| Materials              | 15   | 15.41 | 0.26    | 0.92  | 0.59  |
| Real Estate            | 60   | 21.18 | 0.56    | 1.33  | 0.55  |
| Utilities              | 55   | 28.88 | 7.08    | 15.46 | 11.13 |
| Total                  |      | 10.64 | 0.48    | 0.97  | 0.73  |

### Disclaimer

The information contained in this document is confidential and shall not, without the prior written approval of "Amundi", be copied, reproduced, modified or distributed to any third person or entity in any country. This material is for information purposes only and should not be used as the basis of making any decision. It cannot be considered as a recommendation, financial analysis or advice. It does not constitute a solicitation, invitation or offer to purchase or sell any of the Funds or services described herein in any jurisdiction where such offer, solicitation or invitation would be unlawful

This information is not for distribution and does not constitute an offer to sell or solicitation of any offer to buy any securities or services in the United States or in any of its territories or possessions subject to its jurisdiction to or for the benefit of any U.S. Person (as defined in the prospectus of the Funds).

This material is based on sources that Amundi considers to be reliable at the time of publication. Data, opinions and analysis may be changed without notice. Amundi accepts no liability whatsoever, whether direct or indirect, that may arise from the use of information contained in this material. Amundi cannot be held responsible for any decision or investment made on the basis of information contained in this material.

Amundi Asset Management, French "Société par Actions Simplifiée" (SAS) with capital of € 1,143,615,555.

Portfolio Management Company approved by the AMF under number GP 04000036.

Registered office: 91-93, boulevard Pasteur - 75015 Paris - France - 437 574 452 RCS Paris.

The information contained in this brochure is deemed accurate as of 31 December 2022 (source: Amundi) amundi com