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“Principle of Parsimony” (Tukey, 1961)

Textbook Rule #1

“It is important, in practice, that we employ the smallest possible number of parameters for adequate

representations” (Box and Jenkins, Time Series Analysis: Forecasting and Control)

Principle clashes with massive parameterizations adopted by modern ML algorithms

I Leading LLMs (e.g., GPT) use 1012+ parameters

I Return prediction neural networks (Gu, Kelly, and Xiu, 2020) use 30,000+ parameters

I To Box-Jenkins econometrician, seems profligate, prone to overfit, and likely disastrous out-of-sample...

...But this is incorrect!

I Image/NLP models with astronomical parameterization—and exactly fit training data—are best

performing models out-of-sample (Belkin, 2021)

I Evidently, modern machine learning has turned the principle of parsimony on its head
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... And It’s Happening In Finance Too

I Finance lit: Rapid advances in return prediction/portfolio choice using ML

I Large empirical gains over simple models

I Little theoretical understanding of why, and significant skepticism from old guard

What We Do: Building the “Case” for Financial ML

I Main theoretical result

I Portfolio performance (Sharpe ratio) generally increasing in model complexity

I Explain the intuition, answer the skeptics

I Prior evidence of empirical gains from ML are what we should expect

I Provide direct empirical support for theory



Problem Formulation

True Model: Rt+1 = f (Gt) + εt+1

I Predictors G may be known to the analyst, but the prediction

function f is unknown

I Analyst cannot know true model, so instead she approximates f

with large neural network:

f (Gt) ≈
P∑
i=1

Si,tβi

I Each Si,t = f̃ (w ′i Gt) is a known nonlinear function of original

predictors

Empirical Model: Rt+1 =
∑P

i=1 Si,tβi + ε̃t+1

St=f̃ (w′Gt )Gt S′t β
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Problem Formulation

True Model: Rt+1 = f (Gt) + εt+1

Empirical Model: Rt+1 =
∑P

i=1 Si,tβi + ε̃t+1, where Si,t = f̃ (w ′i Gt)

The Choice:

I Given T data points, decide on “complexity” (number of features P) to use in approximating model

The Tradeoff:

I Simple model (P << T ) has low variance thanks to parsimony, but is coarse approximator of f

I Complex model (P > T ) is good approximator, but may behave poorly (and requires shrinkage)

Our Central Research Question:

I Which P should analyst opt for? Does benefit of more parameters justify their cost?

Answer:

I Use the largest P you can compute
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Environment
Model and Strategy

Model

Rt+1 = S ′tβ + εt+1

I Single asset, Rt+1

I P × 1 vector of predictor variables, St

I Linearity is without loss of generality

I Assumptions on β

I Predictability identically distributed across signals (in expectation)
I Total predictability is fixed

Timing Strategy

Rπt+1 = πtRt+1, πt = β′St .

I πt : Timing weight scales asset position up/down to exploit time variation in expected return

I (Approximately) optimal for unconditional Sharpe maximization, convenient to analyze

I Results not sensitive to details of π function



Environment
Big Data + Big Model Limits

Goals of Theoretical Analysis

1. Characterize expected out-of-sample behaviors (prediction and portfolio performance)

I All moments reported in “expected out-of-sample” form, nothing in-sample

2. Emphasize behavior of machine learning models, i.e., when number of parameters P is large

I Differentiate between correctly specified versus mis-specified models

Tools

I Joint limits as numbers of observations and parameters are large, T ,P →∞
I Model complexity, defined as c = P/T , arises as primary determinant of out-of-sample behaviors

I We leverage limiting results of random matrix theory



Why Do Big Models “Work”? Background From Least Squares

Rt+1 = β′St + εt+1

I Estimator when P ≤ T : OLS

β̂ =

(
1

T

∑
t

StS
′
t

)−1
1

T

∑
t

StRt+1

I T equations in P unknowns ⇒ Unique solution for β̂

I Estimator when P > T : Ridge Regression

β̂(z) =

(
zI +

1

T

∑
t

StS
′
t

)−1
1

T

∑
t

StRt+1

I More unknowns (P) than equations (T ) ⇒ Multiple solutions for β̂
I “Ridgeless” regression, limz→0 β̂(z) ≡ β̂(0+). Smallest variance solution that exactly fits training data
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I P,T →∞ and P/T → c

I c = 0: “Standard” asymptotics

I As c → 1, expected out-of-sample R2 tends

to −∞
I Wild variance of estimates
I Common interpretation is overfit:

Exactly fit training data, but poor

generalization out-of-sample

I Worrisome for trading strategy!

I Regularization helps mitigate



Why Do Big Models “Work”? Background From Least Squares

R
2

0 2 4 6 8 10

-0.30

-0.20

-0.10

0.00

0.10

0.20

‖β̂
‖

0 2 4 6 8 10

0.00

1.00

2.00

3.00

4.00

5.00

6.00

I P,T →∞ and P/T → c

I c = 0: “Standard” asymptotics

I As c → 1, expected out-of-sample R2 tends

to −∞
I Wild variance of estimates
I Common interpretation is overfit:

Exactly fit training data, but poor

generalization out-of-sample

I Worrisome for trading strategy!

I Regularization helps mitigate



Why Do Big Models “Work”? Background From Least Squares

R
2

0 2 4 6 8 10

-0.3

-0.2

-0.1

0.0

0.1

0.2

‖β̂
‖

0 2 4 6 8 10

0.00

1.00

2.00

3.00

4.00

5.00

6.00

I When c > 1, “ridgeless” is limz→0 β(z)

I Counter-intuitively, OOS R2 begins to rise

with model complexity! Why?

I Many β’s exactly fit training data, ridgeless

selects one with smallest ‖β‖
I Higher c ⇒ more solutions to search over

⇒ smaller ‖β‖ with perfect training fit

I Shrinking β estimate despite z → 0 ⇒
forecast variance drops, R2 improves

I Active topic of research in ML literature

(“benign overfit,” “double descent,” ...)

I Challenges dogma of parsimony



Why Do Big Models “Work”? Background From Least Squares

R
2

0 2 4 6 8 10

-0.3

-0.2

-0.1

0.0

0.1

0.2

‖β̂
‖

0 2 4 6 8 10

0.00

1.00

2.00

3.00

4.00

5.00

6.00

I When c > 1, “ridgeless” is limz→0 β(z)

I Counter-intuitively, OOS R2 begins to rise

with model complexity! Why?

I Many β’s exactly fit training data, ridgeless

selects one with smallest ‖β‖
I Higher c ⇒ more solutions to search over

⇒ smaller ‖β‖ with perfect training fit

I Shrinking β estimate despite z → 0 ⇒
forecast variance drops, R2 improves

I Active topic of research in ML literature

(“benign overfit,” “double descent,” ...)

I Challenges dogma of parsimony



Why Do Big Models “Work”? Background From Least Squares

R
2

0 2 4 6 8 10

-0.3

-0.2

-0.1

0.0

0.1

0.2

‖β̂
‖

0 2 4 6 8 10

0.00

1.00

2.00

3.00

4.00

5.00

6.00

I When c > 1, “ridgeless” is limz→0 β(z)

I Counter-intuitively, OOS R2 begins to rise

with model complexity! Why?

I Many β’s exactly fit training data, ridgeless

selects one with smallest ‖β‖
I Higher c ⇒ more solutions to search over

⇒ smaller ‖β‖ with perfect training fit

I Shrinking β estimate despite z → 0 ⇒
forecast variance drops, R2 improves

I Active topic of research in ML literature

(“benign overfit,” “double descent,” ...)

I Challenges dogma of parsimony



Why Do Big Models “Work”? The Trading Strategy Perspective
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I c = P/T

1. Strategy variance

I As c → 1, strategy variance blows up.

One β exactly fits training data, but it

has high variance
I When c > 1, variance drops with

model complexity! Why?
I Many β’s exactly fit training data,

ridge selects one with small variance

2. Strategy expected returns

I ER low for c ≈ 0 due to poor

approximation of true model
I Raising model complexity

monotonically increases ER
I Note the contrast with R2!
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Main theory result

I Expected return always rises with model

complexity (benefit of improved

approximation)

I At same time, complex models have

surprisingly low variance

I As a result, Sharpe ratio strictly increases

with complexity

Complexity is a virtue. Approximation benefits dominate costs of heavy parameterization

I Paper provides general, rigorous theoretical statements and proofs that underlie plots

I Plots calculated from our theorems in a reasonable calibration
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Empirical Analysis

I Analyze exact empirical analogues to theoretical comparative statics

I Focus on a cornerstone of empirical finance research—forecasting aggregate market return

I To make conclusions as easy to digest as possible, study conventional setting with conventional data

I Forecast target is monthly return of CRSP value-weighted index 1926–2020
I Info set consists of 15 predictor variables† from Welch and Goyal (WG, 2008)

†This list includes (using mnemonics from their paper): dfy, infl, svar, de, lty, tms, tbl, dfr, dp, dy, ltr, ep, b/m, and ntis, as well as one lag of the market return.



Empirical Analysis
Random Fourier Features

I Empirical model: Rt+1 = S ′tβ + εt+1

I Need framework to smoothly transition from low to high complexity

I Adopt ML method known as “random Fourier features” (RFF)

I Let Gt be 15× 1 predictors. RFF converts Gt into

Si,t = sin(ω′iGt), ωi ∼ iidN(0, γI )

I Si,t : Random lin-combo of Gt fed through non-linear activation

I For fixed inputs, can create arbitrarily large (or small) feature set

I Low-dim model (say P = 1) draw a single random weight
I High-dim model (say P = 10,000) draw many weights

I In fact, RFF is two-layer neural network with fixed weights (ωi ) in

first layer and optimized weights (regression β) in second layer

RFFs

St=sin(ω′Gt )

WG Data

Gt

Prediction

S′t β
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Empirical Analysis
Training and Testing

I One-year rolling training window (T = 12) and large set of RFFs

i. Reach extreme levels of model complexity with smaller P and thus less computing burden

ii. Demonstrates virtue of complexity can be enjoyed in shockingly small samples

I Draw plots with model complexity P = 1, ..., 12,000 and shrinkage of log10(z) = −3, ..., 3

Empirical Procedure

i. Generate 12,000 RFFs

ii. Fix model defined by choice of (P, z)

iii. For each model (P, z), conduct recursive OOS prediction/timing strategy

iv. From OOS predictions, calculate ER, vol, and Sharpe of timing strategy
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Out-of-sample Market Timing Performance

I Broadly: OOS behavior

of ML predictions closely

matches theory

I Variance explodes at

c ≈ 1 and recovers in

high complexity regime

I Most importantly: OOS

ER is increasing in

complexity

I Sharpe of 0.4 p.a. for

high complexity model.

Mostly alpha/IR versus

buy-and-hold with

t(α) = 2.9

Panel A: Expected Return Panel B: Volatility
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Some Extensions

Virtue of Complexity Everywhere (Kelly, Malamud, and Zhou, 2022)

I Document identical pattern—OOS Sharpe ratio increasing in model complexity—in many asset classes

I US equities, international equities, bonds, commodities, currencies, and interest rates

APT or “AIPT”? The Surprising Dominance of Large Factor Models (Didisheim, Ke, Kelly, and

Malamud, 2024)

I Complexity in the cross section prediction

Artificial Intelligence Asset Pricing Models (Kelly, Kuznetsov, Malamud, Xu, 2024)

I “Deep” VoC. Embeds transformer architecture within asset pricing model



“The Virtue of Complexity Everywhere”
Kelly, Malamud, and Zhou

Panel A: Equities, WG Signals Panel B: Equities, Momentum Signals
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“APT or ‘AIPT’? The Surprising Dominance of Large Factor Models”
Kelly, Malamud, Didisheim, and Ke

I Ross’s (1976) APT conjectures small number of factors govern the joint variation of returns

I This premise + no-arbitrage arguments ⇒ E [R] given by exposures to few common risk factors

I Most AP empirics in past fifty years occur within confines of APT—small linear factor models.

This paper

I Different conjecture: AP models with exorbitant number of factors better describe asset returns

I Rooted in theory of ML/AI: Complex’ statistical models universally outperform smaller models

I “AIPT”



Complexity in the Cross Section: A Brief History

E [M?
t+1Ri,t+1|Xt ] = 0 ∀i

SDF representable as managed portfolio: M?
t+1 = 1−

∑n
i=1 wi (Xt)Ri,t+1, s.t.

I Cross-sectional asset pricing is about wt = w(Xt)

I Fundamental challenge in cross-sectional asset pricing: w must be estimated

I This is a high-dimensional (complex) problem

I Standard approach: Restrict w ’s functional form and conditioning information

I E.g., Fama-French: wi,t = b0 + b1Sizei,t + b2Valuei,t (Brandt et al. 2007 generalize)
I Reduces parameters, implies factor model: Mt+1 = 1− b0MKT − b1SMB − b2HML
I “Shrinking the cross-section” Kozak et al. (2020) — use a few PCs of anomaly factors
I The role of theory



Complexity in the Cross Section: Machine Learning Perspective

SDF representable as managed portfolio: M?
t+1 = 1−

∑n
i=1 wi (Xt)Ri,t+1, s.t. E [M?

t+1Ri,t+1|Xt ] = 0 ∀i

Rather than restricting w(Xt) ...

I ... expand parameterization, saturate with conditioning information

I E.g. approximation via neural network: w(Xi,t) ≈ λ′Si,t , where P × 1 vector Si,t is known nonlinear

function of original predictors Xi,t

wi,t=λ′Si,t

Si,t=f (Xi,t )

Xi,t

I Implies that empirical SDF is a high-dimensional factor model with factors Ft+1 :

M?
t+1 ≈ Mt+1 = 1− λ′ S ′tRt+1︸ ︷︷ ︸

=Ft+1 ∈ RP×1

= 1− λ′Ft+1 (1)
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Traditional (“Fama-French style”) empirical asset pricing:

Ft+1 =
∑

i chari,tRi,t+1 e.g., char ∈ {rank(B/M), rank(Size), rank(Prof.), rank(Inv.)}

I SDF is MVE portfolio of factors

I Evaluation:

I Sharpe ratio of MVE
I Pricing Error among test assets

(∑
j∈test assets α

2
j

)

Complex version: Rather than plain B/M etc., build thousands of nonlinear composite signals

Sk,t = sin(wk,B/MB/M + wk,SizeSize + wk,Prof .Prof .+ wk,Inv.Inv .)

Ft+1 =
∑

i chari,tRi,t+1 e.g., char ∈ {rank(Sk), k = 1, ..., 10,000}

I Ft+1 =
∑

i chari,tRi,t+1

I Still, SDF is MVE portfolio of factors

I Out-of-sample evaluation is critical
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Empirical Analysis

I Study conventional setting with conventional data

I Monthly return of US stocks from CRSP 1963–2021
I Conditioning info (Xi,t): 130 stock characteristics from Jensen, Kelly, and Pedersen (2023)

I Out-of-sample performance metrics are:

I SDF Sharpe ratio
I Mean squared pricing errors (alphas of test assets)



Out-of-sample Performance of Complex Factor Models
Panel A: Expected Return Panel B: Standard Deviation

Panel C: Sharpe Ratio Panel D: Pricing Error



Performance Comparison of Complex and Benchmark Factor Models
Panel A: Sharpe Ratio Panel B: Cumulative Return

Panel C: Pricing Error

∗FF6: Fama and French (2015), SY: Stambaugh and Yuan (2017), HXZ: Hou et al. (2015, 2021), DHS: Daniel et al. (2020), BS: Barillas and Shanken (2018)



The Nonlinear Fama-French Model
I Restrict input data to model-specific characteristics (e.g., size, value, prof., inv., mom. for FF6)

I Generate many nonlinear basis functions (a neural network) of these 5 characteristics

I Evaluate out-of-sample Sharpe ratio:



Economics of the Complex SDF

What is responsible for mean-variance efficiency of complex SDF?

At statistical level: Complex SDF more successfully optimizes the Sharpe ratio objective

At economic level:

I SDF ↔ IMRS, shaped by investors’ info/expectations about future macroeconomic conditions

I MVE portfolio is projection of the IMRS onto the space of traded assets

I More efficient tradable SDF ↔ better honing in on expectations about future economy

I Fama (1991) study of market returns and the macroeconomy:

“the general hypothesis ... is that information about the production of a given period is spread

across preceding periods and so affects the stock returns of preceding periods.”

I Approach: Impulse response functions using the method of local projections (Jorda, 2005)

yt+h − yt = ah + bSDF ,h

(
11∑
j=0

RM
t−j

)
/σM +

2∑
j=0

bj,hyt−j + et+h, h = 1, ..., 36.

I yt contains measures of macro activity in monthly log levels (ind. prod. macro uncertainty, Fed Funds

rate, empl., cons. sentiment, CPI, housing starts, credit spread, oil prices, exchange rate index.
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Economics of the Complex SDF

1σ rise in annual SDF returns

predicts...

I 3% rise in IP over three

years

I 7.5% drop in macro

uncertainty over two

years

I Large and significant rise

in employment (1.25%),

sentiment (9%), housing

(9%), and dollar (2.5%)

over three years

I Fall in inflation and

credit spread



Conclusions, I

I Asset pricing and asset management in midst of boom in ML research

I We provide new, rigorous theoretical insight into the behavior of ML models/portfolios

I Contrary to conventional wisdom: Higher complexity improves model performance

Virtue of Complexity: Performance of ML portfolios can be improved by pushing model parameterization

far beyond the number of training observations

I Not license to add arbitrary predictors to model. Instead, we recommend

i. including all plausibly relevant predictors

ii. using rich non-linear models rather than simple linear specifications
I Doing so confers prediction/portfolio benefits, even when training data is scarce and particularly

when accompanied by shrinkage

I In canonical empirical problems we find

I OOS performance roughly doubles relative status quo models
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Conclusions, II

I Clashes with philosophy of parsimony frequently espoused by economists

I Two oft-repeated quotes from famed statistician George Box:

All models are wrong, but some are useful.

Since all models are wrong the scientist cannot obtain a ‘correct’ one by excessive elaboration. On the

contrary, following William of Occam, he should seek an economical description of natural phenomena. Just

as the ability to devise simple but evocative models is the signature of the great scientist so overelaboration

and overparameterization is often the mark of mediocrity.

Occam’s Blunder? Small model is preferable only if it is correctly specified. But models are never

correctly specified. Logical conclusion?
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Appendix Slides



SDF Sharpe Ratio By Market Capitalization
“VoC” is not about limits to arbitrage
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