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Abstract

In Paper 1 of this dissertation, I propose a risk-based explanation of the value premium

with two equity risk premia; a larger premium for near-term systematic cashflow risk and

a smaller one for distant cashflow risks. I contend that value stocks have higher sensitivity

to near-term risks, and are duly discounted. I show that an Epstein-Zin representative agent

prices innovations in both near-term consumption growth and anticipated future consump-

tion growth (or wealth). I hypothesize that negative near-term cashflow shocks adversely

impact value stocks through both a price and a cashflow channel, while growth stocks have

a hedging quality that makes them less sensitive to shocks. To test these ideas, I develop

an exactly-solved linear present value model of the price-dividend ratio which disentangles

near-term and future cashflows with two time-varying risk premia, and I use an Unscented

Kalman Filter to estimate the model on US market data historically. I find evidence of a

dual risk premium structure in asset prices, with the dividend-level premium being larger. I

then measure the sensitivity of sorted-portfolio returns to the estimated premia and find that

(a) expected returns of value stocks have higher loadings on the larger premium, and (b)

unexpected value returns are more sensitive to dividend-level shocks. Thus, value stocks

are found to be more prone to cashflow and price declines in recessionary times when they

become riskiest and discount rates are high, while growth stocks are less risky during re-

cessions but become most sensitive to shocks during booms, when discount rates are low.

In Paper 2, I seek to identify the decisive factors causing value stocks to be especially

threatened by near-term cashflow shocks. I argue that value stocks possess intrinsic at-

tributes which induce high sensitivity of firm cashflows (and prices) to shocks. First, I

relate the risk premium for near-term shocks to an original asset risk measure, the Cashflow

Shock Elasticity of Price, and I measure components of this elasticity for sorted portfolios

historically. I find that value stocks have a significantly larger elasticity than growth stocks,

due primarily to the sensitivity of asset cashflows to shocks. Second, I present a compar-

ative static model of the firm which pinpoints the fundamental determinants of cashflow

shock elasticity (i.e., revenue beta, operating & financial leverage, and low profit margins)

and I measure these attributes in sorted portfolios historically. I find compelling evidence

that these characteristics are far more abundant in value firms than growth firms. Value

stocks are shown to possess inherent fundamental traits that cause them to be highly sen-

sitive to aggregate cashflow events, rendering them poor economic hedges at inopportune

times, and therefore riskier and more discounted.
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Abstract

I propose a risk-based explanation of the value premium in which there are two components

of the equity risk premium; a larger premium for near-term systematic cashflow risk and a

smaller one for distant risks. I hypothesize that value stocks have higher sensitivity to near-

term cashflows, and are duly discounted. I show how a representative agent with Epstein

Zin preferences prices risky assets based on their exposures to innovations in both near-

term consumption growth and anticipated future consumption growth (or wealth).1 In this

economy, the SDF is high when near-term consumption is shocked negatively, and also

when wealth is negatively shocked for other reasons. I hypothesize that negative near-term

cashflow shocks bring low payoffs for value stocks due to their high cash flow elasticity

of price (i.e., both their cashflows and market-to-cashflow ratio can decline in response to

the aggregate shock).2 In contrast, the cashflows and multiples of growth stocks have a

hedging quality that makes them less sensitive to near-term aggregate shocks.

To test these ideas, I develop an exactly-solved linear present value model of the price-

dividend ratio which disentangles near-term cash flows from expected future cash flow

growth with two time-varying risk premia. I use an Unscented Kalman Filter to estimate

the model on US market data. I find strong evidence of the existence of two different

risk premia, with the premium for near-term cashflow risks being larger. I measure the

sensitivity of value and growth stocks to the estimated premia and find that (a) the expected

returns of value stocks have higher loadings on the larger risk premium, and (b) unexpected

value returns are more sensitive to near-term cashflow shocks. In this sense, value stocks

are more prone to cashflow, and price, declines during (and in anticipation of) recessions

when they are riskiest and discount rates are high. Growth stocks are less risky during

recessions but become most sensitive to shocks during booms, when discount rates are low.

1It is also be possible to derive this result with time-additive utility - see Appendix.

2The positive correlation between cashflow shocks and market-to-cashflowmultiples for value stocks may

derive from their excess operating leverage, financial leverage, industry maturity, obsolescence risk, implied

equity duration, and earnings reinvestment risk. These ideas are explored in O’Neill (2022) Paper 2.

2



1.1 Introduction

For close to a century, there has been compelling evidence of an equity value premium (the

tendency of high book to market stocks to earn higher average returns than stocks with low

ratios). From the early writings of Benjamin Graham in 1934 and 1949, strong empirical

support of the value effect has been found in numerous studies using data frommany differ-

ent time periods and countries.3 Examples of this empirical research include Fama&French

(1992, 1998, 2012), Lakonishok, Schleifer & Vishny (1994), Daniel & Titman (1997), Let-

tau &Wachter (2007) and Asness, Moskowitz, & Pedersen (2013). From 1926 to 2018, the

decile of US equities with the highest book-to-market ratio outperformed the decile with the

lowest ratio by a statistically significant 5% to 14% per year on average.4 These premium

returns were earned without proportionately higher return volatility or CAPM beta.5

Given these long-term average returns, many investors have embraced value strategies

as a cornerstone of their long-term investment policies. However, value stocks have also

had prolonged periods when they underperformed the broad market and growth stocks,

including the decade ending in the internet bubble in 2000 and the decade following the Fi-

nancial Crisis in 2009. From 2009 to 2019, for example, large growth stocks returned 308%

including reinvested dividends, while large value stocks returned 202%. In the same period,

small growth stocks (a notorious underperformer historically) returned 236% compared to

169% for small value stocks.6

While these recent perverse returns have caused some to question the persistence of the

value premium, there have been at least four other occasions since 1926 when the premium

3Security Analysis, with David Dodd (1934) and The Intelligent Investor (1949).

4Depending on portfolio weighting method. Data from Ken French, univariate book-to-market sorts.

5See Lettau & Wachter (2007), Fama & French (1992, 1993) and O’Neill (2022).

6Total value-weighted returns, 12/31/2009 through 12/31/2019. Source FTSE Russell (indexcalculator.ft-

serussell.com). Russell style indices, Russell 1000 for large stocks and Russell 2000 for small, are industry

standard benchmarks for value and growth funds.
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has been negative over a decade.7 In fact any serious investigation of the value premium

must address not only long-term average excess returns to value stocks, but also the long

cycles of relative returns between value and growth stocks that we see in the data.

Despite its longevity, the cause of the observed value premium in long-term average

returns is disputed. There are two competing theories; risk-based theories argue that value

stocks possess systematic risks which rational investors must be compensated for, while

behavioral theories point to irrational investors and temporary mis-pricing as the expla-

nation.8 Whatever the explanation for the value premium in the cross-section of returns,

history also suggests that it is time-varying and the underlying mechanisms for this time-

variability are also disputed. Research on time variability has focused mainly on aggregate

market risk premia.9

This paper is not intended to arbitrate between these competing theories of the source of

the value premium. Instead, I propose an explanation of the premium in which value stocks

are fundamentally more risky than growth stocks, and their relative riskiness can be time

varying. Although behavioral theories have intuitive appeal (because people are prone to

judgement errors) and are likely to be at least a part of the story, I do not study them here.

I emphasize risk-based explanations because I find them more convincing and enduring.

The value effect is well known and has been an investible strategy since at least Graham

& Dodd (1934), so the fact that the premium has not been competed away, suggests that it

has rational underpinnings. The premium must represent compensation for some unwanted

risks of value stocks; otherwise, intelligent investors in pursuit of higher returns would

exploit repeating patterns of mis-pricing and the value premium would disappear.

7See Fama & French (2020) for a discussion of the persistence of the value premium. See O’Neill (2022)

for some additional historical empirical perspectives on the value premium.

8For examples of risk-based research, see Fama & French (1992, 1993, 1995, 1996, 1998, 2006, 2012),

Carlson, Fisher & Giammarino (2004), Zhang (2005), Lettau &Wachter (2007). For examples of behavioral

research, see DeBondt & Thaler (1985, 1987), Lakonishok, Shleifer & Vishny (1994) and Daniel & Titman

(1997, 1998).

9Bansal & Yaron (2004) and Campbell & Cochrane (1999) propose competing mechanisms for time-

varying risk premia, though neither focuses on the value premium per se.
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Inmymodel, unexpected equity returns are driven by near-term cashflow shocks, shocks

to expected future cashflow growth and shocks to risk premia. The elasticity of an asset’s

price to cashflow shocks depends on the sensitivity of its cashflow to aggregate cashflow

shocks, its proximity to financial distress, and the market-implied duration of its cash flows.

Value stocks are intrinsically riskier than growth stocks because they are more sensitive to

near-term aggregate cash flow shocks for which investors require a large risk premium.

(Growth stocks may be more sensitive to shocks to expected future aggregate cashflow

growth, but such shocks require a smaller risk premium.) My results suggest that value

stocks earn a premium return over growth stocks because they are more prone to cashflow

and stock price declines during (and in anticipation of) cashflow recessions when they be-

come riskiest and discount rates are high. Growth stocks are less risky during recessions

but become most sensitive to future growth expectation shocks and risk premium shocks

during booms, when discount rates are low.

This paper is organized as follows. In the next section, I provide updated summary

data on the history of the value premium and a brief review of some prior research.10 In

Section 1.3 (and also in the Appendix), I derive a stochastic discount factor (SDF) with two

risk premia from a model of preferences for a representative agent who prices both shocks

to current consumption and shocks to wealth (future consumption). This SDF provides

the theoretical underpinning for the having two risk premia in my exactly-solved linear

present value model of the price-dividend (PD) ratio in Section 1.4. Section 1.5 describes

the Unscented Kalman Filter I use to estimate the model as well as the tests of the relative

riskiness of value and growth stocks, and discusses key results. Section 1.6 concludes.

10See O’Neill (2022) for a more thorough empirical treatment of the history of the value premium including

some non-standard perspectives.
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1.2 History of Value Premium & Prior Research

1.2.1 Summary Statistics

In this section, I present data on the long-term history of the value premium in US stock

prices since 1952. Table 1.1 shows summary return statistics for capitalization-weighted

univariate sorted-decile portfolios of US equities for the period from January 1952 to De-

cember 2019.11 On average, for the period from 1952 to 2019, capitalization-weighted ex-

cess returns to US value stocks have exceeded the returns to growth stocks by approximately

4-5% per annum, which is an amount that is both economically and statistically meaning-

ful.12 All portfolio return data for univariate sorts on earnings-to-price (E/P), cashflow-

to-price (C/P), dividend-to-price (D/P) and book-to-market (B/M) in Table 1.1 are taken

from Ken French’s website,13 which in turn takes its fundamental data from Compustat and

its pricing data from CRSP, covering most NYSE, AMEX and NASDAQ stocks.14 Panel

A shows that mean excess returns are consistently increasing in deciles as we move from

growth (Decile 1) to value (Decile 10). Depending on the univariate ratio used for the

portfolio sorts, the value-minus-growth excess return spread ranges between 4 and 5% per

year over this period.15 The value premium over this long period is economically large and

statistically significant (as shown by the standard errors in Panel C). The Sharpe ratios in

Panel D of Table 1.1 are also generally increasing in deciles, indicating that value stocks

11This is an updated and expanded version of Table 1 in Lettau & Wachter (2007).

12Excess returns are defined as equity returns in excess of the risk-free rate.

13See https : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

14Except book value data which is hand collected from Moody’s Manuals and is available back to 1926.

Also, although I include statistics for D/P for comparison to Table 1.1 in Lettau &Wachter (2007), this ratio is

less useful than the others as a measure of value since a high dividend yield can just reflect a firm’s dividend

payout policy, rather than indicating a discounted stock.

15It is notable that the average annual excess return spread that I observe is 1 - 3% lower than the observa-

tions reported in Lettau &Wachter (2007). This decline is fully explained by the perverse value-growth port-

folio return spread for US equities over the period 2010 to 2019. This is shown in the right-hand column Table

1.1. See O’Neill (2022) for an elaboration of this point and other aspects of the history and time-variability

of the value premium.
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have delivered larger excess returns per unit of standard deviation. Table 1.2 presents simi-

lar summary statistics for equal-weighted portfolios. In general, equal-weighted returns are

larger than capitalization-weighted returns across all deciles and for the value-minus-growth

spread, which averages 7 to 10% per year depending on the univariate sorting ratio used.

The standard deviations are also higher but the standard errors in Panel C indicate high levels

of statistical significance and the Sharpe ratio for the equal-weighted value-minus-growth

portfolio is 0.75, which is twice as large as for the comparable capitalization-weighted port-

folio.

At least two factors explain the higher observed value premium using equal-weighting

versus capitalization-weighting. First, equal-weighted portfolios have larger weightings

in stocks with smaller market capitalizations, and small cap equities had higher returns

than large cap equities over this time period.16 Second, the monthly equal-weighted return

calculation used in Ken French’s data library (and in many of the Fama & French papers)

reapplies equal weighting to the portfolio every month, not just at the annual June sorted

portfolio rebalancing. Such a return calculation will benefit from the implicit buying and

selling that the portfolio does each month to re-equalize the weights: each month it will

(costlessly) sell down stocks that were up the most during the previous month and buy

stocks that were down the most, thereby benefitting from any short-term price reversal

effects.17

Table 1.1 & Table 1.2 lend strong support to the existence of a value premium in the

16From January 1952 to December 2019, the annualized capitalization-weighted monthly average return to

a portfolio of the smallest 30% of US stocks, by market cap, exceeded returns for the largest 30% by 2.5%

per annum, according to data from Ken French’s website.

17There is strong evidence of profitability of short-term price reversal strategies in US equities over this

period. See, for example, Nagel (2011) and de Groot, Huij & Zhou (2012). Furthermore, comparing equal-

weighted to capitalization-weighted returns, it is worth noting that these two factors add 300 basis points

to mean value returns (Decile 10) while mean growth returns (Decile 1) are little changed. I believe that

a price momentum effect partly explains why growth portfolios benefit less from the change in weighting

method. The growth portfolios, in general, have larger weightings in stocks with positive price momentum, a

factor that produced positive excess returns in this period. As a result, re-equalizing the weights each month

requires selling stocks with positive momentum and buying stocks with negative momentum, which likely

lowers portfolio returns compared to a buy-and-hold portfolio.

7



pricing of US equities. The excess return premium earned by value stocks is economically

and statistically large and is not explained by either the volatility of their returns or a small

cap effect. This paper addresses this observed anomaly by proposing a framework in which

value stocks earn premium returns because they are riskier than growth stocks in ways that

investors care about.

It bears noting, however, that in the decade following the Great Recession in 2007-

2009, value stocks materially underperformed the market averages, and growth stocks in

particular. During this period, capitalization-weighted returns on value stocks were more

than 5% less per year than growth stock returns.18 This ”lost decade” in the profitability of

value strategies has raised questions about the persistence of the value premium and even

whether it has ever existed (see, for example, Lev & Svristava (2019) and Fama & French

(2020)). I do not address this issue directly in this paper. Given the long-term evidence

in Table 1.1 & Table 1.2, I take it as given that the value premium exists, albeit with time-

variability, and that its existence requires an explanation. However, O’Neill (2022) offers

a more comprehensive perspective on the recent challenging performance of value stocks

and the persistence of the value premium. In the context of a risk-based explanation of the

value premium, I also point out that the chronic negative returns to value stocks after 2008

coincided with two extreme contractionary shocks to the US economy (the Great Recession

and the Coronavirus pandemic and related lockdowns). If these shocks are the types of

unanticipated negative risk events that value stocks are more exposed to and are discounted

for, then a decade of negative relative returns for value strategies can be entirely consistent

with risk-discounting of value stocks and above-average expected returns for (risky) value

stocks going forward.19

18Data from Ken French’s website for the period 12/31/2009-12/31/2019 using univariate sorts on market-

book ratios and simple annualization, taking 12 times the monthly average return of growth decile minus the

value decile.

19To use an insurance analogy, a similar phenomenon occurs in the property & casualty insurance market

when, after a large natural catastrophe like a hurricane or an earthquake, prior written insurance policies turn

out to be unprofitable for the insurers and lead to in a ”hard-pricing” cycle of higher insurance premiums.
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1.2.2 Risk versus Behavior: A Brief Literature Review

There is not enough space in this paper for a comprehensive review of all prior research

on the value premium. Beginning with the early exposition on fundamental value investing

in Graham & Dodd (1934), many studies have documented the value effect. It has been

observed in many geographies, across many time periods and within many asset classes.20

This section provides a summary of the salient strands of research that have been proposed

to explain the effect. Broadly speaking, explanations of the value premium have sought

to identify either the systematic risks that value stocks possess or the systematic pricing

errors that investors make. Basu (1977 &1983) were early papers to document the positive

association between measures of cheapness (earnings yield in this case) and subsequent

excess returns. This work suggested that the existing asset pricing models could not account

for the returns generated by cheap stocks.

1.2.3 Systematic Risks

Fama & French (1992) is regarded as a seminal paper for risk-based explanations of the

value premium. They identify large value (and size) premia in the pricing of US equities

which cannot be easily explained by the capital asset pricing model (CAPM ). Subsequent

work in Fama & French (1993, 1995, 1996, 1998, 2006, 2012) show the robustness of

these pricing anomalies across time periods and countries and have spawned a series of

factor-pricing models which have become alternative lenses to CAPM to view the pricing

of equities. An important underlying theme in this work is that the value premium represents

compensation for priced risks (e.g., distress risk). In fact, a recent paper by Kapadia (2011)

argues that the premium to the Fama & French HML factor can be explained by exposure

to an aggregate distress risk factor linked to business failures.

Zhang (2005) takes the risk explanation of the value premium in a different direction.

20See Asness, Moskowitz, & Pedersen (2013) for a recent discussion of the ubiquity of the effect.
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He shows how the premium can emerge in a neoclassical, rational expectations framework

where asset-heavy value stocks face capital reversibility costs, particularly in bad times

when risk is priced high. Subsequent work by Xing (2008) and Zhang (2017) and Hou et al.

(2017) incorporate contemporary Q-theory into asset pricing. Zhang’s Investment CAPM

derives asset-pricing relationships (including equilibrium expected risk premia) from real

investment decisions of individual firms. Related work in this area by Lettau & Wachter

(2007), Campbell & Vuolteenaho (2004) and Carlson, Fisher & Giammarino (2004) also

emphasizes the role of cash flow characteristics of firms in risk-based explanations of the

value premium. I build on this work to develop of my present-value cashflow model in

Section 1.4.

1.2.4 Systematic Mispricing

Early work by DeBondt & Thaler (1985, 1987) takes issue with the risk-based explana-

tion of the value premium. They find evidence, instead, that investor over-reaction and

under-reaction to earnings and price news, caused by common psychological biases, are

consistent with observed anomalies in returns. One of the most prominent papers in be-

havioral explanations of the value premium, Lakonishok, Shleifer & Vishny (1994), argues

that portfolios of value stocks outperform glamor (growth) portfolios because they exploit

cognitive biases of investors and not because the portfolios are riskier. Subsequent work in

Shleifer & Vishny (1997) and LaPorta, Lakonishok, Shleifer & Vishny (1997) provide fur-

ther theoretical and empirical support for a ’persistent mispricing’ explanation of the value

effect.

Daniel & Titman (1997, 1998) also take issue with the Fama-French risk-based and

factor-based explanations. They find no evidence that value stocks have a separate distress

risk factor and, instead, introduce a characteristics model of mispricing (i.e., the shared

common characteristics of cheap stocks, not their risk, explains the value premium). Davis,

Fama & French (2000) offer a counter argument and rebuttal. Daniel, Hirshleifer & Sub-
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rahmanyam (1998) develop an influential model of asset pricing in which psychological

biases of investors lead directly to observed patterns of under and over-reaction in prices

while a paper by the same authors in 2001 introduces a framework for security pricing in

which covariance risks and mis-valuation can coexist in equilibrium.

In terms of theory, this paper draws on all of this prior work. The papers of Fama &

French laid the important groundwork for thinking about the value premium as a compen-

sation for risk. For the specific risk framework I propose in this paper, the papers on equity

duration by Cornell (1999) and Lettau & Wachter (2007) are important building blocks,

as is the work on ‘cash flow beta’ in Campbell & Vuolteenaho (2004) and Cohen, Polk &

Vuolteenaho (2002). My model is closely related to the Linearity Generating (LG) model

class proposed by Gabaix (2007, 2009) and also draws on the present-value models in van

Binsbergen & Koijen (2011). This paper is also consistent with recent literature arguing

that claims to near-term dividends are riskier than claims to distant future dividends (see,

for example, van Binsbergen, Brandt & Koijen (2012), Giglio, Maggiori & Stroebel (2015),

and Gormsen & Lazarus (2021)).

For now, I turn my attention to the preferences of a representative investor who con-

sumes the aggregate dividend, in order to derive an SDF that prices shocks to near term

consumption and cashflow separately from shocks to long-term consumption and cashflow

growth.

1.3 A Stochastic Discount Factor with Two Risk Premia

In this section, I propose a model of preferences for a representative agent who consumes

the aggregate dividend, in which the stochastic discount factor covaries with near-term ag-

gregate consumption and also with anticipated future aggregate consumption growth. The

agent fears, and prices, near-term consumption shocks to the extent that they disrupt his

optimal current lifestyle, while he fears (and prices) shocks to expected future consumption

11



growth to the extent that they disrupt his preferences to sustain and grow his desired lifestyle

in the future. This framework provides a theoretical foundation for using two time-varying

risk premia in my linear present value model of the price-to-dividend (PD) ratio derived in

Section 1.4 and tested in Section 1.5.

The dual-premium SDF that I derive below assumes that the representative agent has

Epstein-Zin preferences. However, it is also possible to derive a similar two-factor SDF

assuming time-additive utility where felicity in any period derives from consumption in

that period and from post-consumption wealth. With time-additive utility, the inclusion

of wealth in the periodic utility function captures the idea that the agent cares about his

anticipated future consumption and that fluctuations in wealth (caused, for example, by

changes in long-term expected consumption growth in the economy) can affect his utility

today, even if his current consumption does not change.21 See Appendix for this alternative

derivation.

I begin by assuming there is a representative investor with recursive Epstein-Zin-Weil

(EZW) recursive preferences, as proposed in Epstein & Zin (1989, 1991) and Weil (1990).

Specifically, the agent’s utility at time t is given by equation (1),

Ut = [(1− α)C
1−γ
θ

t + αEt[U
1−γ
t+1 ]

1
θ ]

θ
1−γ (1)

where γ is risk aversion, α is the elasticity of intertemporal substitution, and θ = 1−γ

1− 1
α

.

Under these preferences, the SDF can be written as follows.

Mt+1 = α(
Ct+1

Ct

)
−1
α (

Ut+1

Et[U
1−γ
t+1 ]

1
1−γ

)−γ+ 1
α (2)

21This model of felicity is also consistent with the ”spirit of capitalism” framework of Bakshi & Chen

(1996) in which agents care about wealth as a measure of social status. However, the agent in my model cares

about the information that current wealth conveys about his future consumption plans, rather than his social

standing.
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Epstein & Zin (1989, 1991) then showed that when the agent satisfies the intertemporal

budget constraint in (3), the unobservable continuation utility in SDF (2) can be replaced

with the return on wealth and consumption growth, leading to the restated SDF in (4).

Wt+1 = (Wt − Ct)(1 +Rw,t+1) (3)

whereWt+1 and Rw,t+1 represent the time t+1 wealth and return on wealth respectively.

Mt+1 = (α(
Ct+1

Ct

)
−1
α )θ(

1

1 +Rw,t+1

)1−θ (4)

According to this SDF, marginal utility is a function both of current consumption growth

and the return on wealth. It follows that the covariance of asset returns with shocks to either

of these factors will be priced. Taking logs of (4), the innovations in the log SDF can be

written as

m̂t+1 = −θ(
ĉt+1

α
)− (1− θ)r̂w,t+1 (5)

where ct+1 = log(Ct+1

Ct
), ĉt+1 = ct+1 − Et[ct+1], rw,t+1 = log(1 + Rw,t+1) and r̂w,t+1 =

rw,t+1 − Et[rw,t+1].

Then, if I assume that consumption growth rates and returns on wealth (and other assets)

are lognormal, the premium on an arbitrary risky asset i is given by (6) and the premium on

the wealth return specifically is given in (7).

Et[ri,t+1]− rf,t+1 +
σ2
i

2
=

θ

α
σi,c + (1− θ)σi,w (6)
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Et[rw,t+1]− rf,t+1 +
σ2
w

2
=

θ

α
σw,c + (1− θ)σ2

w (7)

where σi,j is a covariance between innovations in log quantities i and j.

I can also use the SDF in (4) and (5), together with my lognormality assumption, to

write the log risk free rate in this economy, as shown in (8).

rf,t+1 = −θlog(α)+
θ

α
Et[ct+1]+(1−θ)Et[rw,t+1]−(

θ

α
)2
σc

2

2
−(1−θ)2

σw
2

2
− θ(1− θ)

α
σc,w

(8)

Then, using (7) to substitute for Et[rw,t+1] in (8) and simplifying, I can express the risk free

rate as a function of expected log consumption growth and several constants.

rf,t+1 = −log(α) +
1

α
Et[ct+1]− (

θ

α2
)
σc

2

2
− (1− θ)

σw
2

2
(9)

If I take this expression for the risk-free rate and substitute it back into (7), I can show that

the expected log return on wealth can also be expressed as a constant plus 1
α
times expected

consumption growth. Then, when this insight is combined with a Campbell-Shiller log-

linearization of returns and decomposition of returns into cashflow news and discount rate

news, as in Campbell & Shiller (1988a) and Campbell (1991), I can show that the premium

on risky assets depends on the covariance of the asset’s returns with current consumption

growth and changes in anticipated future consumer growth, which is what I want.

Equation (10) uses the Campbell-Shiller loglinearization and the return decomposition

to write surprises in the (log) return on wealth as

r̂w,t+1 = (Et+1 − Et)
∞∑
j=0

ρjdw,t+j+1 − (Et+1 − Et)
∞∑
j=1

ρjrw,t+j+1 (10)
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where dw is log dividend growth and ρ can be interpreted as a discount factor. In this rep-

resentative agent setting, the dividend on the wealth portfolio is also equal to aggregate

consumption. Combining this fact with the observation above that the expected log return

on wealth can also be expressed as a constant plus 1
α
times expected consumption growth,

I can rewrite (10) as

r̂w,t+1 = ĉt+1 + (1− 1

α
)(Et+1 − Et)

∞∑
j=1

ρjct+j+1 (11)

r̂w,t+1 = ĉt+1 + (1− 1

α
)ĝt+1 (12)

where ĝt+1 reflects revisions in expectations of future consumption growth. Armed with

this expression, it is straightforward to rewrite the log SDF in (5) and the premium on an

arbitrary risky asset i as follows.

m̂t+1 = −γĉt+1 − (γ − 1

α
)ĝt+1 (13)

Et[ri,t+1]− rf,t+1 +
σ2
i

2
= γσi,c + (γ − 1

α
)σi,g (14)

Equations (13) and (14) show that in a lognormal model for a representative agent with

EZW preferences, risky assets are priced in a two-factor model where the factors are inno-

vations in near-term consumption growth and innovations in anticipated future consumption

growth. Such a model represents a hybrid of the Capital Asset Pricing Model (CAPM ) and

the Consumption CAPM (CCAPM ) in that marginal utility varies with shocks to current

consumption and also shocks to wealth (and in particular the wealth shocks that are driven

by revisions to future growth expectations).
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For the remainder of this paper, I assume the existence of an SDF with this dual-risk

premium structure in order to derive a testable, linear present value model of asset prices.

1.4 A Closed-Form Linear Present Value Model of Asset

Prices with Two Time-Varying Risk Premia

In this section I develop an exactly-solved, affine model of the price-to-dividend (PD) ratio.

The great advantage of having a closed-form model is that it can be estimated and tested

against real historical data, without any need for approximations or simulations. My model

is in the class of Linearity Generating (LG) processes introduced in Gabaix (2007, 2009),

with some modified linearity-generating twists in the spirit of those used in Van Binsbergen

& Koijen (2011) and elsewhere. Unlike those papers, my model has risk premiums for both

innovations in near-term dividends (cashflows) and innovations in expected future dividend

growth. Specifically, the PD ratio is shown to be a function of time-varying expected growth

rates and two time-varying risk premia. Together with the simple return decomposition in

Section 1.4.1 below, this will allow for an exact decomposition of unexpected returns into

dividend shocks, shocks to expected growth, and shocks to risk premia. The sensitivity

of value stocks and growth stocks to these components of unexpected returns can then be

measured.

1.4.1 Return Decomposition and Present Value Relation

I begin with a simple decomposition of next period’s gross return, Rt+1, and a rearrange-

ment of terms.
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Rt+1 =
Dt+1

Pt

+
Pt+1

Pt

=
Dt+1

Pt

+ (
Dt+1

Pt

)(
Pt+1

Dt+1

)

=
Dt+1

Pt

(1 +
Pt+1

Dt+1

)

(15)

Equation (15) says that realized returns can be expressed as the product of the realized

dividend yield and the terminal PD ratio plus one.

Equation (16) takes conditional expectations of (15) and then (17) rewrites the covari-

ance component of (16) in terms of deviations from expected values.

Et[Rt+1] = Et[
Dt+1

Pt

]Et[1 +
Pt+1

Dt+1

] + Covt[
Dt+1

Pt

,
Pt+1

Dt+1

] (16)

Et[Rt+1] = Et[
Dt+1

Pt

]Et[1 +
Pt+1

Dt+1

] + Covt[
Dt+1

Pt

− Et[
Dt+1

Pt

],
Pt+1

Dt+1

− Et[
Pt+1

Dt+1

]] (17)

Equation (17) says that conditional expected returns can be expressed as a sum of two com-

ponents: a predicted component based on the expected dividend and (one plus) the expected

PD ratio, and a covariance adjustment component based on the comovement of unantici-

pated dividends with unanticipated PD ratios.22 If shocks to dividends and shocks to PD

ratios are uncorrelated, we only need to know expected dividends and the expected PD ra-

tio to calculate expected returns (let us call this expected return µρ=0). However, assets for

which dividend and PD shocks are negatively correlated have a hedging quality that lowers

expected returns below µρ=0, ceteris paribus, while a positive correlation between dividend

and PD shocks raises expected returns above µρ=0. These are not risk-based asset-pricing

22When next period’s PD ratio is expected to be unchanged from this period, the predicted component of

returns is given by the expected dividend yield plus the expected dividend growth rate.
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results; these claims derive only from the statistical properties of expectations and covari-

ances.23 The covariance adjustment component of expected returns may be particularly

pertinent to the value premium. If the dividends of value stocks are highly sensitive to ag-

gregate dividend shocks and also positively correlated with innovations in PD ratios (i.e.,

they have a high cashflow elasticity of price), then the covariance adjustment component

of expected returns for value stocks will be positive.24 I will return to this point later in this

paper.

In order to developmymodel of the PD ratio, I will also employ a commonly-used result

that takes conditional expectations of equation (15), rearranged to derive another present

value relation. This relation expresses the current period’s PD ratio as a function of expec-

tations of next period’s PD ratio.

Pt

Dt

=
Et[

Dt+1

Dt
(1 + Pt+1

Dt+1
)]

Et[Rt+1]
(18)

1.4.2 Processes and Linearity-Inducing Devices

Throughout Section 1.4, my goal is to develop a time-varying, affine model of the PD ratio

that will have the following structure.

Pt

Dt

= α + β′Xt (19)

Here,Xt is a vector of state variables, α is a constant, and β is a vector of parameter values.

23If investors believe that positive dividend shocks will be magnified by higher unanticipated PD ratios

(and vice versa) for certain assets, then expectations of returns on those assets (i.e., Et[(
Dt+1

Pt
)(1 + Pt+1

Dt+1
)]),

must be higher than the product of the expectations of
Dt+1

Pt
and 1 + Pt+1

Dt+1
.

24The elasticity of an asset’s price to an aggregate cashflow shock depends on (a) the response of the asset’s

cashflow to aggregate cashflows and (b) the response of the asset’s price-to-cashflow multiple to the shock.

Assets with high elasticity will experience large price declines after a negative aggregate cashflow shock,

attributable to a disproportionate decline in the asset’s cashflows, exacerbated by a decline in the price-to-

cashflow ratio.
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The simple Gordon growth model (which does not allow for time-variability) provides the

intuition for the choice of state variables in my model. In the Gordon model, the PD ratio is

a positive function of the expected dividend growth rate, g, and a negative function of the

discount rate (or expected return), µ.

P

D
=

1 + g

µ− g
(20)

For my model, I conjecture that the PD ratio is an affine function of time-varying expected

dividend growth rates and time-varying discount rates. I assume, for now, that the risk-free

rate, rf , is constant. I also assume that there are two risk premia embedded in discount rates

(expected returns); θd is a premium on innovations in current dividends and θg is a premium

on innovations in expected future dividend growth.

Discount Rate = rf + θdt + θgt (21)

My model is different than the good beta-bad beta framework in Campbell & Vuolteenaho

(2004) in that different types of ”cashflow news” (e.g, news about current cashflows, and

news about future expected cashflow growth) can have different effects on asset prices.

Using this conjecture, the time-varying affine PD ratio in my model can be written as fol-

lows (noting that I now define the state variables as deviations from their unconditional

mean values, the magnitude of which is captured in the α term).

Pt

Dt

= α + β1ĝt + β2θ̂
d
t + β3θ̂

g
t (22)

where ĝt, θ̂dt and θ̂gt are time-varying deviations of expected growth rates and risk premia

from long-term average values (ḡ, θ̄d, θ̄g). (Not surprisingly, α, representing a long run av-
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erage PD ratio, is expected to be positive and I also expect β1 > 0, β2 < 0, and β3 < 0.)

Substituting this into the present value relation in equation (18), I get

α + β1ĝt + β2θ̂
d
t + β3θ̂

g
t =

Et[
Dt+1

Dt
(1 + α + β1ĝt+1 + β2θ̂

d
t+1 + β3θ̂

g
t+1)]

Et[Rt+1]
(23)

To solve equation (23) for α, β1, β2, and β3, I will need to take the expectation on the right

hand side. For this, I will need to define the processes for dividends, expected growth

rates and risk premia. The essence of the LG class of models in Gabaix (2007, 2009) is

to introduce some devices or ”tricks” into otherwise standard AR(1) processes in order to

induce linearity and a closed-form solution. I use these techniques here to derive an exactly-

solved affine function of the PD ratio.

My model proposes the following process for dividends.

Dt+1

Dt

= (1 + gt)(1 + εdt+1) (24)

where gt = ḡ+ ĝt and ε
d
t+1 is an innovation with zero mean and standard deviation σd. This

multiplicative structural form is not essential but is helpful for producing a clean closed-

form solution. For now, I make no assumptions about εdt+1 except that the innovations have

a zero expected value. As in Van Binsbergen & Koijen (2011), I also introduce a slightly

twisted definition of expected returns that will help to induce linearity in the PD ratio more

easily. Specifically, I define another expected return, µ′
t, such that

1 + gt
Et[Rt+1]

≡ 1 + gt − µ′
t (25)

In most circumstances, Et[Rt+1] and µ′
t are very similar and either can be referred to as
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expected return.25 Using this definition, the unconditional mean expected return and the

conditional expected return can be decomposed as

µ̄′ = rf + θ̄d + θ̄g (26)

µ′
t = rf + θdt + θgt (27)

The final trick required to produce an affine PD ratio is to gently twist the processes for the

de-meaned expected growth rates and risk premia away from a traditional AR(1) structure.

Specifically, I introduce a time-varying parameter, Φt, such that

ĝt+1 = ρgΦtĝt + εgt+1

θ̂dt+1 = ρθ
d

Φtθ̂
d
t+1 + εθ

d

t+1

θ̂gt+1 = ρθ
g

Φtθ̂
g
t+1 + εθ

g

t+1

(28)

where Φt is given by

Φt =
1 + ḡ − µ̄′

1 + gt − µ′
t

(29)

and |ρi| < 1, Et[ε
i
t+1] = 0, (i = g, θd, θg). Standard deviations of the noises are given

by σg, σθd , σθg . In most situations involving growth rates and expected returns, which are

typically close to zero, Φt will be close to 1 and the processes in (28)will behave like AR(1)

processes up to second order terms.26

Substituting the process for dividends into (23) and using definition (25) for expected

returns, I can now write

25Van Binsbergen & Koijen (2011) measure the empirical correlation of the the two definitions at 0.998.

26The online appendix for Gabaix (2009) provides simulation results that support the claim that, in practice,

the twist introduced byΦt is small. In my own estimation work described in Section 1.5, I find that the average

value of Φt is 0.99 with a standard deviation of 0.03.
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α + β1ĝt + β2θ̂
d
t + β3θ̂

g
t = (1 + gt − µ′

t)Et[(1 + εdt+1)(1 + α + β1ĝt+1 + β2θ̂
d
t+1

+ β3θ̂
g
t+1)]

(30)

In order to expand the expectation on the right hand side of equation (30), the covariance

structure between shocks to dividends and shocks to expected growth rates and risk premia

must be specified. While it is often assumed (e.g., in Lettau & Wachter (2007) and Van

Binsbergen & Koijen (2011)) that near-term dividend shocks and expected future dividend

growth shocks are uncorrelated (i.e., Cov(εdt+1, ε
g
t+1) ≡ σdg = 0), I do not make this as-

sumption in my model. I do not have an a priori belief about this covariance and I prefer to

let the data speak for themselves.27 Similarly, the covariance between dividend shocks and

shocks to risk premia (σdθd and σdθg respectively) are allowed to enter the model. There

is ample evidence in macro finance literature (return predicability literature in particular)

that asset returns correlate with the business cycle so the inclusion of these covariances will

enhance the model’s ability to explain important asset pricing dynamics.

Using this assumed covariance structure and the processes defined in (28) (and recalling

that Et[ε
i
t+1] = 0, (i = d, g, θd, θg)), equation (30) is expanded as follows.

α + β1ĝt + β2θ̂
d
t + β3θ̂

g
t =

π

Φt

[1 + α + β1(ρ
gΦtĝt + σdg) + β2(ρ

θdΦtθ̂
d
t + σdθd)

+ β3(ρ
θgΦtθ̂

g
t + σdθg)]

(31)

I note that, in equation (31), π ≡ 1 + ḡ − µ̄′. I also note the following relation.

π

Φt

= 1 + gt − µ′
t

= 1 + ḡ − µ̄′ + (gt − ḡ)− (µ′
t − µ̄′)

= π + ĝt − θ̂dt − θ̂gt

(32)

27It will be possible later to explore the implications of alternative assumptions for this covariance.
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Combining (31) and (32), I get

α + β1ĝt + β2θ̂
d
t + β3θ̂

g
t =(π + ĝt − θ̂dt − θ̂gt )(1 + α + β1σdg + β2σdθd + β3σdθg)

+ π(β1ρ
gĝt + β2ρ

θd θ̂dt + β3ρ
θg θ̂gt )

(33)

Now I can gather terms in ĝt, θ̂dt and θ̂gt and then I can solve for α, β1, β2, and β3.

α = π(1 + α + β1σdg + β2σdθd + β3σdθg)

β1 = 1 + α + β1σdg + β2σdθd + β3σdθg + πβ1ρ
g

β2 = −(1 + α + β1σdg + β2σdθd + β3σdθg − πβ2ρ
θd)

β3 = −(1 + α + β1σdg + β2σdθd + β3σdθg − πβ3ρ
θg)

(34)

Following some straightforward algebra, the coefficient values are identified as follows.

α =
π

1− π − σdg

1−πρg
+

σdθd

1−πρθd
+ σdθg

1−πρθ
g

β1 =
α

π(1− πρg)

β2 =
−α

π(1− πρθd)

β3 =
−α

π(1− πρθg)

(35)

Finally, I can write the PD ratio, as an affine function of expected growth and the compo-

nents of expected returns, in the following way.

Pt

Dt

=
1

1− π − δ
(π +

ĝt
1− πρg

− θ̂dt
1− πρθd

− θ̂gt
1− πρθg

) (36)

where δ(≡ σdg

1−πρg
− σdθd

1−πρθd
− σdθg

1−πρθ
g ) is a covariance adjustment factor.
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Despite the algebra and LG twists required to get to this point, the interpretation of

(36) is quite straightforward. In general, the PD ratio will be an increasing function of

expected growth rates and a decreasing function of risk premia. The degree to which a

current deviation of expected growth (or risk premia) from its long term average impacts

the PD ratio is controlled by the persistence factor of shocks, ρg (or ρθ
d
or ρθ

g
). When

expected growth and risk premia are not allowed to be time varying, the PD ratio is given by

π
1−π

which is essentially the Gordon growth model. When expected growth and risk premia

can vary over time, but their values are currently resting at their long-term average, the PD

ratio becomes π
1−π−δ

where δ is a covariance adjustment factor. If dividend shocks covary

positively with innovations in the PD ratio (via shocks to expected growth and risk premia),

δ will be positive. The degree of the covariance adjustment will, again, be controlled by

the persistence of the shocks to expected growth and risk premia. Importantly, for a given

observed PD ratio and average expected growth rate (ḡ), the larger is δ, the larger must

be 1 − π(≡ µ̄ − ḡ). This implies that the more positive the covariance between dividend

shocks and PD ratio shocks, the higher expected returns, µ̄, must be. This is the analog

to the covariance adjustment component of expected returns that was discussed in Section

1.4.1.

The linear closed-form model of the PD ratio in equation (36) is the primary target of

the model estimation techniques described in the next section. There, I use a long history

of US market data to estimate both the model parameters and the unobservable variables.

These estimated values will, in turn, be used to test the central idea of the paper that value

stocks earn higher returns than growth stocks because they are riskier.
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1.5 Model Estimation, Testing & Results

In this section, I estimate the closed-form model of the PD ratio in equation (36) and use

the estimated parameter values and latent variables (i.e., expected future growth and risk

premia) to test the relative riskiness of value and growth stocks in the context of the model’s

shocks.

My estimation and testing strategy is done in two parts. First, I use an Unscented

Kalman Filter to estimate the unobservable time series of expected growth rates and the

two risk premia (and to estimate the model parameters) on a deep history of aggregate US

stockmarket data. This will reveal the degree to which themarket prices near-term cashflow

shocks differently from expected future cashflow growth shocks. It will also estimate, by

maximum likelihood, the persistence of each shock in the data and the covariance between

them. The behavior of estimated expected growth and risk premia at important moments in

US stock market history (e.g., the internet bubble in 1999 & 2000 and the financial crisis

in 2008 & 2009) will also be instructive. Given that my present value model is exactly

solved, these estimation results can be used to generate an exact decomposition of realized

market returns into expected and unexpected returns, and the latter can be further decom-

posed into each of the model’s shocks. Second, I test the relative riskiness of value stocks

and growth stocks by running standard Ordinary Least Squares time series regressions of

sorted-portfolio returns against the components expected market returns (i.e., the two risk

premia). If value stocks earn premium returns because they are more risky than growth

stocks, this should be evident in the loadings of expected value returns on the risk premia

(e.g., value stocks should have a higher loading on the higher risk premium). In addition,

unexpected returns to value stocks (calculated as realized returns minus expected returns

from the aforementioned regression) should demonstrate higher sensitivity to shocks in fac-

tors that carry a higher risk premium.
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1.5.1 The Unscented Kalman Filter

While the price-to-dividend ratio and actual realized dividend growth are observable, the

other key state variables in my model (gt, θ
d
t , and θgt ) are not observed and must be esti-

mated. In a completely linear system of transition and measurement equations, the standard

Kalman filter would be optimal. However, given the multiplicative measurement equation

for dividends in my model (equation (24)) and the time-varying LG twists to the transi-

tion equations (equation (28)), non-linear filtering techniques are required to estimate my

model. It is possible to use an Extended Kalman Filter for this non-linear problem, but that

approach has some well-documented weaknesses (see, for example, Wan &Merwe (2002))

and is only first-order accurate. Instead, I use the Unscented Kalman Filter (UKF) as pro-

posed in Julier & Uhlman (1997) and described in Wan & Merwe (2002), which achieves

third order accuracy for any non-linearity without burdensome additional computational ef-

fort.28 Specifically, I use a UKF with scaled unscented transform and also an augmented

state vector (to handle the non-additive noise in the dividend measurement equation).29

1.5.1.1 Data

Themodel described in Section 1.4 has two primary observables; the price-to-dividend ratio

(Pt/Dt) and the realized gross dividend growth rate (Dt/Dt−1). All other time series and

parameters must be estimated from these observables. In this study, which is based on

US equity prices, the observable data are taken from Prof. Robert Shiller’s website.30 Prof.

Shiller’s data has beenwidely vetted and is both high in quality and deep in history. The data

28Fernandez-Villaverde & Rubio-Ramırez (2004, 2006) and van Binsbergen & Koijen (2011) demonstrate

that a particle filter could also be used for this estimation problem.

29The scaled unscented transform was intially proposed in Julier (2000) who found this algorithm to be

superior to the unscaled version ”in all respects”. The use of the augmented state (to include the process and

measurement noises in the state vector) is in line with the original formulation of the unscented Kalman filter

in Wan & Merwe (2002).

30See http://www.econ.yale.edu/ shiller/data.htm and, in particular, U.S. Stock Markets 1871-Present and

CAPE Ratio.
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are availablemonthly (interpolatedwhere necessary) with a history back to 1871. U.S. stock

market average prices are represented by the value-weighted S&P Composite. Monthly

composite prices reflect the average of daily closing levels each month and dividends reflect

rolling four-quarter totals for the composite. The UKF is estimated on annual (December)

data for the period from 1950 to 2019, largely mirroring the time period and data frequency

for the value premium summary statistics in Table 1.1 & Table 1.2. The choice of annual

frequency for this study reflects a balance of competing considerations; I would like to have

a large enough sample of data points to estimate the model efficiently while also leaving

sufficient time between data points for aggregate fundamentals and expectations to evolve

and for prices to react.

Definition of Dividends/Cashflow: This study uses actual paid-out cash dividends for

the S&P Composite to represent aggregate equity cashflows, although other definitions

of cashflow were also considered. Some studies include share repurchases in corporate

payouts (e.g., ’total payout yields’ as in Boudoukh, Michaely, Richardson, and Roberts

(2007)). As noted by van Binsbergen & Koijen (2011), there ”is an increasing amount

of evidence that firms prefer stock repurchases over dividend payments” such that they

”consider total payout data to be the relevant source of data”.31

While share repurchases are important for shareholder returns and total shareholder pay-

outs may be a more accurate measure of corporate cashflows, I use simple dividend payouts

in this study because my model, as written in Section 1.4, does not include non-dividend

corporate outlays in payout yields. Instead, the effect of these expenditures (including share

buybacks) is intended to be captured in price changes rather than dividend yields. Mine is a

present value model whose foundation is the definition of a gross return (return = dividend

yield + capital appreciation, as in equation (15)). Thus, if I included share repurchases in

paid-out cashflows, I would be double counting their contributions to returns because they

31van Binsbergen & Koijen (2011), Section 2.2.
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would be included in the dividend yield and in the price changes they induce.32

1.5.1.2 The Non-Linear Dynamic System & Filter Setup

To initiate the recursions of the UKF, the measurement (i.e., observation) equations, tran-

sition (i.e., process) equations, augmented state covariances, and the initial state means and

covariances must be specified. This is done in this section. Table 1.3 shows the measure-

ment and transition equations, as well as the covariance matrix of the augmented state. The

augmented state covariance matrix, Σa
t , concatenates the covariance matrix of the measure-

ment equation noises (εd) and the transition equation noises (ε
g, εθ

d
, εθ

g
) to the filtered state

covariance, Σt.
33

Table 1.4 shows the values for the state means and covariances that I use to initiate

the UKF. Given that the state variables are defined as deviations from long-term average

values, it is reasonable to set the initial values of ĝ0, θ̂
d
0 , and θ̂

g
0 to zero. Likewise, the state

covariance is initialized with a diagonal matrix with the parameterized state variances on

the diagonal.34

1.5.1.3 Parameter Estimation: Maximum Likelihood

In order for the UKF to generate a series of filtered values for the unobserved expected

growth rates and risk premia, all of the parameters in the model (including the unconditional

32Broader definitions of corporate payouts can be used, although I do not do so here. Companies often set

payout policies with a view to sustaining and growing dividends over time, even in adverse circumstances.

As a result, paid-out dividends may not fluctuate as freely with the economy as corporate operating cashflows

do. It is possible to define a hybrid payout measure that applies an average payout ratio to actual operating

earnings in order to create a time series of pseudo distributable cashflow that fluctuates with the economy.

Even in this case, however, the model may need to be re-specified since the definition of a return in equation

(15) would not be satisfied.

33Note that there is no noise in the observation of the PD ratio, so only εd is included in the measurement
noise.

34For any run of the UKF, the exact values for the variances on the diagonal are provided by the optimization

algorithm that drives the maximum likelihood estimation of the model’s parameters. This is described in more

detail later.
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means of the latent variables as well as variances, correlations and persistence terms) must

be specified. Table 1.5 lists all of the model’s parameters. Of course the true parameter

values are unknown and so they must be estimated. The only exception to this is the risk-

free rate, rf , which in this study is assumed to be constant at 4.17% per year, reflecting the

average observed t-bill rate over the study period.35

The parameters in my model are estimated by maximum likelihood. I use an optimiza-

tion algorithm which estimates the filtered states of my model for a wide range of candi-

date parameter values and selects an optimum based on maximizing the likelihood of the

observed data, given those selected parameter values and estimated filtered states. Specifi-

cally, I use theDifferential Evolution (DE) metaheuristic search and optimization algorithm

attributed to Storn & Price (1997). This is a global, derivative-free, black-box optimization

technique for multi-dimensional real-valued functions, such asmine. Unlike gradient-based

optimizers, it uses an evolutionary process to iteratively search for and improve candidate

solutions over wide spaces. DE is a leading state-of-the-art optimization technique that is

used widely in various fields includingmachine learning and electrical engineering. Further

details of the algorithm’s implementation and applications can be found in Storn & Price

(1997) and Das & Suganthan (2011).36

From among the wide universe of candidate solutions considered by the DE algorithm,

the set of parameter values which generates filtered states estimates that maximize the

(log)likelihood of observing the observed price-to-dividend ratio (Pt/Dt) and the realized

gross dividend growth rate (Dt/Dt−1), is considered optimal. As in the standard Kalman

Filter the log likelihood is constructed from a multivariate normal log probability density of

a particular observation vector given the filtered state mean vector and covariance matrix.

354.17% is the arithmetic average of the annual t-bill rate from 1950-2019 in Prof. Aswath Damodaran’s

Historical Returns on Stocks, Bonds and Bills - United States (see www.damodaran.com). In a subsequent

study, I hope to estimate a variant of my price-dividend model with stochastic short rates, which may enable

the model to capture other pricing dynamics.

36I implemented the Differential Evolution algorithm using the SciPy Optimize module in Python. The

reference guide for this implementation is available at https://docs.scipy.org.
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1.5.2 Estimation & Testing Results

Table 1.6 shows the values of the UKF parameters that maximize the likelihood of the

observed data using the Differential Evolution optimization algorithm (together with the

standard errors in parentheses). Using these parameter values, Figure 1.1 charts the time

series of the filtered latent variables, gt, θ
d
t , and θ

g
t .

(It must be noted that since the two risk premia in equation (36) enter mymodel symmet-

rically, and since no additional information is provided to the Unscented Kalman Filter to

specifically link the less persistent risk premium component with near-term cashflow shocks

(as opposed to distant shocks), when interpretingmy estimation results, I must choosewhich

component to label as the near-term cashflow risk premium and which to label as the dis-

tant cashflow risk premium. Despite this model limitation, my decision to label the less

persistent component (which has a larger average premium) as the dividend-level premium

is not arbitrary. Using an equity duration argument, if the larger risk premium compensates,

instead, for future dividend growth shocks, then I would expect growth stocks to be more

sensitive to this premium than I found, and that growth stocks would have higher average

returns than value stocks. My labeling decision is also supported by (a) my overarching

thesis about value stock risk (that it derives from cashflow shock sensitivity), (b) the OLS

regression results in Tables 1.7 & 1.8 of this paper, and (c) the results in Tables 2.2, 2.3, 2.4,

2.5, 2.6, 2.7 & 2.8 (fromO’Neill (2022), Paper 2) which clearly show that value stock prices

and cashflows are more sensitive to near-term aggregate cashflow shocks than growth stock

prices and cashflows.)

Unconditional Means

The estimated value of the unconditional mean expected growth rate parameter is 7.9%.

This compares to a mean realized dividend growth rate of 6% over this period. While there

is no requirement that average expected growth equals realized growth, the average value

of the filtered time series of expect growth rates (i.e., ḡ plus the average of ĝt) is 6.5%which
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is rather close to the realized growth rate over this time period (and was estimated without

any data calibration efforts). More pertinently, the unconditional mean risk premia, θ̄d and

θ̄g, are estimated at 5.8% and 0.5% respectively, indicating a significant difference between

the pricing of near-term cashflow risk and distant cashflow risk. The averages of the time

series of filtered values of θdt and θgt , 4.7% and 1.7% respectively, offer a similar result.

Together with the unconditional expected growth rate, the unconditional risk premia imply

an estimated unconditional mean PD ratio of 36.1 which compares favorably to the mean

observed PD ratio of 37.4 in this period.

Persistence of Shocks

The model has three persistence terms; ρg, ρθd , and ρθg . Shocks to expected growth are

found to have a persistence of 0.395. This somewhat surprising result suggests that ex-

pected growth shocks, while impactful, do not have a long memory. If such shocks wear

off after only a few years, it is possible that they can be more impactful to stocks with a

low implied duration of cashflows (i.e., value stocks) than stocks with high duration (i.e.,

growth stocks). The persistence of shocks to ρθd , estimated at 0.255, is also low. When

economic events or news cause investors to become more or less fearful of near-term cash

flows, such changes of opinion appear to be short-lived. This is consistent with the esti-

mated standard deviation of θd shocks of 8.9% which is twice the estimated volatility of θg

shocks (4.5%). Shocks to the risk premium for expected future growth are the most persis-

tent at 0.871. Investors fears about distant cashflow growth are slow to change but when

they do, they are long-lasting.

Correlation of Shocks

The estimated correlation parameters in the model are also revealing. Near-term cash flow

shocks are found to be negatively correlated with the risk premium for near-term cashflows

(ρdθ
d
= -44%). This result is entirely consistent with evidence in macro finance literature
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that investors become more fearful during recessions and more courageous during eco-

nomic booms. The correlation of near-term cash flow shocks with θg is found to be positive

at 72%. At first glance, this result appears to contradict the observation that investors be-

come more cautious in bad economic times. However, it is also evident Table 1.6 that θd

and θg are negatively correlated (ρθ
dθg = -0.680). Thus, the overall comovement of risk

premia with economic events depends on the relative magnitude of the innovations in the

two risk premia and how those are weighted by investors in market prices. This result also

allows for the impact of near-term cashflow shocks to be offset to some degree by opposite

revisions to long-term expected growth, an effect that will be more pronounced for assets

that have low exposure to near-term cashflow risk but high exposure to distant cashflow

risk.37 Shocks to expected growth rates are found to be positively correlated with near-term

cashflow shocks (ρdg = 0.374), suggesting, perhaps unsurprisingly, that investors tend to

extrapolate good (and bad) near-term economic times to long-term growth expectations.

I also find that shocks to expected growth are positively correlated with both risk premia

(ρgθ
d ≈ ρgθ

g ≈ 0.4).

Gathering all of these parameter estimates together, I can write the following estimated

equation for the PD ratio in Equations (22) and (36).

Pt

Dt

= 36.1 + (60.1× ĝt)− (246.9× θ̂dt )− (49.2× θ̂gt ) (37)

Equation (37) says that when gt, θ
d
t , and θgt are sitting at their unconditional means, the

value of the PD ratio is 36.1 based on the data used in this study. Deviations of gt above

ḡ lead to higher PD ratios while deviations of risk premia above their unconditional means

lead to lower PD ratios, as one would expect. Importantly, the coefficient on θ̂dt , at -246.9,

37This is precisely the ”hedging quality” of growth stocks that gives them a lower cashflow elasticity of

price than value stocks, as discussed in Section 1.4.1.
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is five times larger than the coefficient on θ̂gt , at -49.2. Thus, even though shocks to θ
d
t are

negatively correlated θgt , the former will dominate in terms of their effect on market prices.

Figure 1.1 charts the filtered values for gt, θ
d
t , and θgt for the time period of this study,

1950 - 2019. Much of the discussion above concerning the relative magnitude of each factor

and the correlations between them are evident in the chart. Some additional observations are

worth making. From 1950 to 1995, all three filtered series have markedly lower volatility

than 1996 - 2019. Beginning in the late 1990’s, θg becomes increasingly smaller while θd

becomes larger and expected growth, g, is revised upwards. This divergence coincides with

the divergence between the returns to growth and value stocks during the internet bubble

period that reached a peak in March 2000. The sharp rise in θg and fall in θd following that

peak also mirror the selloff in growth stocks and resurgence in value stocks that occurred

during that period. The financial crisis in 2008 & 2009 is notable in the chart for the sharp

decline in expected growth rates followed by a sharp increase in θd, likely reflecting ongoing

elevated fear of recession. Following the financial crisis, expected growth returns to its

normal range but θg remains below its long-term average and θd remains above its long-

term average, which is consistent with the positive relative returns of growth versus stocks

in the decade following the Great Recession.

1.5.3 Relative Riskiness of Value & Growth Stocks

These estimation results support the idea that the market prices near-term cashflow risk dif-

ferently than distant cashflow risk and that shocks to the former carry a higher risk premium

than shocks to the latter. These results were estimated from the time series of PD ratios and

realized dividend growth rates for the aggregatemarket, represented by the S&PComposite

in Prof. Robert Shiller’s data. However, if value stocks earn premium returns over growth

stocks because they are riskier, it must be the case that the discount rates (i.e., expected

returns) of value stocks have a higher loading on θd than θg.

To test this, I ran OLS regressions of the annual realized returns (at time t+1) of each
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of the ten decile B/M-sorted portfolios from Prof. Ken French’s website (in excess of the

risk-free rate) against the filtered values (at time t) for θd than θg from the UKF (as in equa-

tion (37)).

Ri
t+1 − rf = (βd

i × θdt ) + (βg
i × θgt ) + εit+1 (i = 1, ..., 10) (38)

The predicted values from this regression represent the expected returns/discount rates for

each of the ten sorted portfolios and the estimated regression coefficients represent the load-

ings on the two aggregate risk premia. Table 1.7 summarizes the results from these regres-

sions for both value-weighted and equal-weighted portfolio returns.

A number of results are evident in Table 1.7. First, for most portfolios, the loading on θd

exceeds the loading on θg. This is consistent with the finding that investors are more fearful

of near-term cashflow risk than expected future growth risk. Second, the loading on θd for

value portfolios is economically and statistically much larger than for growth portfolios.

For both value-weighted and equal-weighted returns, the coefficient on θd for the deepest

value portfolios (Decile 10) is about twice the loading for the growth portfolios (Decile 1).

This result offers strong support for the idea that value stocks have higher expected returns

because they are riskier, in that they have a higher exposure to near-term cashflow risk

which command a high risk premium. It may also be the case that value portfolios have a

marginally higher coefficient on θg than growth stocks but this is ambiguous; it is somewhat

true for value-weighted portfolios, but is not true for equal-weighted portfolios.

To investigate further, I subtracted the predicted returns from each of the regressions in

Table 1.7 from the realized return for the ten B/M-sorted portfolios to create a time series on

unexpected portfolio returns, R̃i (see equation (39)). Then I conducted univariate regres-

sions of the unexpected portfolio returns on the four shocks from the UKF model, εd, εg, εθ
d

and εθ
g
(see equation (40)). The slope coefficients from these univariate regressions are
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shown in Table 1.8.38

R̃i
t+1 − rf = (Ri

t+1 − rf )− (β̂d
i × θdt + β̂g

i × θgt ) (39)

R̃i
t+1 = β̃j

i × εjt+1 + ε̃jt+1, (i = 1, ..., 10; j = d, g, θd, θg) (40)

The results support the primary finding from Table 1.7. Unexpected returns to value port-

folios are significantly more sensitive to near-term cash flow shocks than growth portfolio

returns. For both value-weighted and equal-weighted returns, the coefficient on εd is higher

for higher B/M portfolios. This result is precisely what would be expected if value stocks

have a higher cashflow elasticity of price than growth stocks; when near-term cashflow

shocks occur, value stock prices move in the same direction as the shock (and growth stock

prices move less and/or in the opposite direction), even though value stocks were already

discounted for the possibility. Once again, I find that shocks to expected growth have an

ambiguous, and not statistically significant, effect on growth and value returns. (The fact

that there is no discernible pattern to the coefficients on εθ
d
and εθ

g
in Table 1.8 is some-

what surprising and may merit a further, multivariate empirical analysis of the relationship

between unexpected portfolio returns and the four model shocks which contemplates the

covariance structure between the shocks.)

1.6 Conclusion

In this paper, I proposed a risk-based explanation of the value premium in which there are

two components of the equity risk premium; a larger premium to compensate for near-

38Given the covariance structure between the four shocks, the absolute value of the coefficients in these

univariate regressions is of less interest here. Rather, I am interested in the difference in the coefficients

between growth and value portfolios.
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term systematic cashflow risk and a smaller one for distant cashflow risks. I justified this

dual-risk-premium SDF by showing how a representative agent (either with Epstein-Zin

preferences or time-additive utility with wealth in the utility function) will price assets based

on their exposures to innovations in near-term consumption growth and also innovations in

anticipated future consumption growth (or wealth). To test these ideas, I developed an

exactly-solved linear present value model of the price-dividend ratio which disentangles

near-term cash flows from expected future cash flow growth with two time-varying risk

premia and I used an Unscented Kalman Filter and Maximum Likelihood optimization to

estimate the model on a long history of US market data.

I found evidence that strongly supports the existence of two different risk premia in the

pricing of US stocks, with the premium for near-term cashflow risks being meaningfully

larger than the premium for risks to expected future cash flow growth. I also measured the

relative riskiness of value and growth stocks in this framework by running regressions of

value-sorted portfolio returns on the filtered risk premia. These regressions revealed that

expected returns for value stocks have a significantly higher loading on the risk premium

for near-term cash flows, than growth stocks. I also found that unexpected returns for value

stocks are more sensitive to near-term cashflow shocks than growth stocks. Taken together,

these results support the idea that value stocks earn higher returns than growth stocks be-

cause they are riskier in ways that investors care about.
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1.8 Appendix: Alternative Derivation of SDF with Two

Risk Premia

In this appendix, I derive an SDF with two risk premia similar to that in Section 1.3 above,

but without assuming the representative agent has EZW preferences. I begin with an agent

whose utility in any period derives from consumption in that period and from post-consumption

wealth in that period. As before, the inclusion of wealth in periodic utility means that this

agent cares about his anticipated future consumption and that fluctuations in wealth (e.g.,

caused by changes in long-term consumption growth in the economy) can affect his utility

today, even if his current consumption does not change. Specifically, the agent’s felicity in

any period is represented as follows.39

ut = (
Ct

1−γ

1− γ
)Wt

α (41)

where γ is risk aversion and α measures how much the agent cares about wealth. Utility

is also time additive and the agent seeks to maximize lifetime utility (42) subject to his

intertemporal budget constraint for post-consumption wealth (43).

max
Ct

Ut =
∞∑
t=0

δtut (42)

Wt+1 = WtRw,t+1 − Ct+1 (43)

Importantly, the growth rate of post-consumption wealth is different from the return on

39This model of felicity is also consistent with the ”spirit of capitalism” framework of Bakshi & Chen

(1996) in which agents care about wealth as a measure of social status. However, the agent in my model cares

about the information that current wealth conveys about his future consumption plans, rather than his social

standing.
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wealth in this model. That is, the return on wealth is the growth rate of wealth plus the

propensity to consume.

Rw,t+1 =
Wt+1

Wt

+
Ct+1

Wt

(44)

Because the agent’s utility is time additive, we can use a simple variational argument to

derive the Euler equation. Assume the agent has an optimal consumption and investment

path. Now consider a deviation from that optimum that reduces current consumption by

one unit, which is then invested for one period at rate Rw,t+1 before being consumed in the

next period. Given that we are at an optimum, such a deviation will have a zero effect on

the agent’s lifetime utility. That is

0 = −Uc,t + Uw,t + Et(Uc,t+1Rw,t+1) (45)

where Uc and Uw are marginal utilities. Rewriting this condition with the utility function in

(41) and (42), the Euler equation is given by

1 = Et(
Ct+1

−γWt+1
−αRw,t+1

Ct
−γWt

−α + α(Ct
1−γ

1−γ
)Wt

−α−1
) (46)

Simplifying the ratio of marginal utilities on the right hand side of the Euler equation,

the stochastic discount factor, Mt+1, in this economy shows that the agent cares about the

growth rate of consumption and the growth rate of wealth. That is

Mt+1 = (
Ct+1

Ct

)γ(
Wt+1

Wt

)α(1 +
α

1− γ

Ct

Wt

) (47)
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Indeed, taking logs of (47) and expressing the result in terms of innovations (i.e., m̂t+1 =

mt+1 − Et(mt+1)), the log SDF simplifies to

m̂t+1 = −γĉt+1 − αŵt+1 (48)

where ĉt+1 and ŵt+1 represent innovations in log(Ct+1

Ct
) and log(Wt+1

Wt
) respectively. Fur-

thermore, if I assume now that growth rates and returns are lognormal, I can write the log

risk premium for any arbitrary asset, i, as in (49).

Et(ri,t+1)− rf,t+1 +
σ2
i

2
= γσri,c + ασri,w (49)

where σri,c and σri,w are the covariances between log asset returns and innovations in log

consumption growth and log wealth growth respectively. Importantly, equation (49) can be

applied directly to the wealth portfolio also. In this case, I will make use of a multiplicative

decomposition of wealth returns by rewriting equation (44) above.

Rw,t+1 = (1 +
Ct+1

Wt+1

)
Wt+1

Wt

(50)

Taking logs of (50) and using zt+1 = log(1 + Ct+1

Wt+1
) and gwt+1 = log(Wt+1

Wt
)

rw,t+1 = zt+1 + gwt+1 (51)

Now I can rewrite (49) specifically for the wealth asset, using the decomposition in (51).
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[Et(gwt+1) + Et(zt+1)]− rf,t+1 +
σ2
rw

2
= γσrw,c + ασrw,w (52)

I use the SDF in (47) and the rule for taking logs of expected values of lognormal variables

to find the risk-free rate in this economy (i.e., rf,t+1 = −log(Et(Mt+1))).

rf,t+1 = γEt(gct+1) + αEt(gwt+1) + qt −
γ2σgc

2

2
− α2σgw

2

2
− γασgc,gw (53)

where qt = log(1 + α
1−γ

Ct

Wt
) and gct+1 = log(Ct+1

Ct
). Equation (53) says that the risk-free

rate in this economy is a function of some constants and expectations of log consumption

growth and log wealth growth.

Substituting for Et(gwt+1) from (52) into (53) and rearranging/simplfying, I derive an

expression for the risk-free rate in terms of some known values as well as Et(gct+1) and

Et(zt+1).

rf,t+1 =
γ

1− α
Et(gct+1)−

α

1− α
Et(zt+1) + known values (54)

This is shown in (54), which I can then substitute back into (52) to show that innovations

in expected log returns on wealth are also a function of the same variables. When this

insight is combinedwith a Campbell-Shiller loglinearization of returns (Campbell & Shiller,

1988a) and the decomposition of returns into cashflow news and discount rate news in

Campbell (1991), I can show that the premium on risky assets depends on the covariance

of the asset’s returns with current consumption growth and changes in anticipated future

consumer growth (and a third variable that is likely to be less significant).

Equation (55) uses the Campbell-Shiller loglinearization and the return decomposition

to write surprises in the (log) return on wealth as
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r̂w,t+1 = (Et+1 − Et)
∞∑
j=0

ρjdw,t+j+1 − (Et+1 − Et)
∞∑
j=1

ρjrw,t+j+1 (55)

where dw is log dividend growth and ρ can be interpreted as a discount factor. In this

representative agent setting, the dividend on the wealth portfolio is also equal to aggregate

consumption. Combining this fact with the observation above that the expected log return

on wealth can be written as a function of Et(gct+1), Et(zt+1) and some known values, I can

rewrite (55) as

r̂w,t+1 = ĉt+1+(1− γ

1− α
)(Et+1−Et)

∞∑
j=1

ρjgct+ j + 1−(1− α

1− α
)(Et+1−Et)

∞∑
j=1

ρjzt+j+1

(56)

r̂w,t+1 = ĉt+1 + (1− 1

α
)ĝt+1 + (1− α

1− α
)ẑt+1 (57)

where ĝt+1 reflects revisions in expectations of future consumption growth. In practice,

ẑt+1 is likely to be close to zero.
40 Armed with this expression and ignoring the last term

in (57), it is straightforward to rewrite the log SDF in (48) and the premium on an arbitrary

risky asset i in (49) as follows.

m̂t+1 = −γĉt+1 − (γ − 1

α
)ĝt+1 (58)

Et(ri,t+1)− rf,t+1 +
σ2
i

2
= γσi,c + (γ − 1

α
)σi,g (59)

40ẑt+1 = log(1 + Ct+1

Wt+1
)− Et[log(1 +

Ct+1

Wt+1
)] which equals log(

(1+
Ct+1
Wt+1

)

(1+Et[
Ct+1
Wt+1

]
)− σ2

z

2 .
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Table 1.3: Unscented Kalman Filter Setup Equations

Measurement Equations

Pt

Dt

=
1

1− π − δ
(π +

ĝt
1− πρg

− θ̂dt
1− πρθd

− θ̂gt
1− πρθg

)

Dt+1

Dt

= (1 + gt)(1 + εdt+1)

Transition Equations
ĝt+1 = ρgΦtĝt + εgt+1

θ̂dt+1 = ρθ
d

Φtθ̂
d
t+1 + εθ

d

t+1

θ̂gt+1 = ρθ
g

Φtθ̂
g
t+1 + εθ

g

t+1

Covariance Matrix

Σa
t =


Σt 0 0 0 0
0 σ2

g σgθd σgθg σdg

0 σgθd σ2
θd

σθdθg σdθd

0 σgθg σθdθg σ2
θg

σdθg

0 σdg σdθd σdθg σ2
d
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Table 1.4: Unscented Kalman Filter Initial Values

Initial State Means
ĝ0 = 0

θ̂d0 = 0

θ̂g0 = 0

Initial State Covariance

Σ0 =

σ2
g 0 0
0 σ2

θd
0

0 0 σ2
θg
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Table 1.5: Unscented Kalman Filter Pre-specified Paramaters

Risk-Free Rate rf

Unconditional mean expected growth ḡ

Unconditional mean near-term cashflow risk premium θ̄d

Unconditional mean future cashflow growth risk premium θ̄g

Persistence of expected growth shocks ρg

Persistence of θd shocks ρθd

Persistence of θg shocks ρθg

Variance of expected growth σ2
g

Variance of θd σ2
θd

Variance of θg σ2
θg

Variance of realized dividend growth σ2
d

Correlation of near-term dividend growth and θd ρdθ
d

Correlation of near-term dividend growth and θg ρdθ
g

Correlation of expected growth and θd ρgθ
d

Correlation of expected growth and θg ρgθ
g

Correlation of θd and θg ρθ
dθg

Correlation of dividend growth and expected growth ρdg
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Table 1.6: UKF Optimal Paramater Values & Standard Errors

Risk-Free Rate rf 4.17%

Unconditional mean expected growth ḡ 0.079 (0.009)

Unconditional mean near-term cashflow risk premium θ̄d 0.058 (0.015)

Unconditional mean future cashflow growth risk premium θ̄g 0.005 (0.011)

Persistence of expected growth shocks ρg 0.395 (0.132)

Persistence of θd shocks ρθd 0.255 (0.176)

Persistence of θg shocks ρθg 0.871 (0.096)

Variance of expected growth σ2
g 0.013 (0.006)

Variance of θd σ2
θd

0.008 (0.010)

Variance of θg σ2
θg 0.002 (0.005)

Variance of realized dividend growth σ2
d 0.002 (0.004)

Correlation of near-term dividend growth and θd ρdθ
d

-0.437 (0.229)

Correlation of near-term dividend growth and θg ρdθ
g

0.719 (0.204)

Correlation of expected growth and θd ρgθ
d

0.413 (0.320)

Correlation of expected growth and θg ρgθ
g

0.376 (0.175)

Correlation of θd and θg ρθ
dθg -0.680 (0.246)

Correlation of dividend growth and expected growth ρdg 0.374 (0.118)
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Abstract

In O’Neill (2022) Paper 1, I proposed a risk-based explanation of the value premium in

which there are two components of the equity risk premium; a large premium to compen-

sate for near-term systematic cashflow risk and a smaller one for distant cashflow risks.

I found evidence of this dual risk premium structure in historical aggregate stock prices,

and that value stocks are more highly sensitive to near-term cashflow risks than growth

stocks and are discounted accordingly. In this paper, I cultivate this risk-based explanation

by parsing the principal reasons that near-term cashflow shocks are especially threatening

to value stocks. In particular, I argue that value stocks cashflows (as well as prices) have

high shock sensitivity, which can be attributed to specific innate firm characteristics. First,

I relate the risk premium for near-term cashflow shocks to an original asset risk measure,

the Cashflow Shock Elasticity of Price, and I show that portfolios of value stocks have a

larger shock elasticity than growth stock portfolios (mainly due to the outsized response of

portfolio cashflows to aggregate shocks). Second, using a comparative static model of the

firm, I identify the firm-level fundamental determinants of outsized shock elasticity (i.e.,

revenue beta, operating & financial leverage, and low profit margins) and I show that these

attributes are more abundant in value firms than growth firms. Together with the findings in

O’Neill (2022), the results here show that value stocks possess inherent fundamental traits

that cause them to be highly sensitive to aggregate cashflow events, which renders them

poor economic hedges for investors at inopportune times and therefore riskier, and more

discounted.
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2.1 Introduction

The value premium (the propensity of high book-to-market stocks to earn higher average

returns than stocks with low ratios) has both enthralled and confounded investors for almost

a century. Advocated byBenjaminGraham as a cornerstone of serious, considered investing

(as opposed to speculation) as far back as 1934, the value effect has been observed over

multiple time periods, across many asset classes, in many studies and in practice.41 Over

the years, value strategies have become a bedrock of long-term investment policies for

many large and small investors, providing superior risk-adjusted investment performance

for some.42 However, many other investors have eschewed value investing because (a) the

securities that are assigned to value portfolios are often unglamorous and unpopular, with

poor growth prospects and negative news headlines, and (b) portfolios of value stocks have

frequently experienced long periods of subpar total returns, some longer than the typical

tenure of a professional investment manager.43

The evidence that value stocks have higher long-term average returns, but with an

undesirable inconsistency as well as an ’out of favor’ quality at their moment of maxi-

mum opportunity, has inspired two primary hypotheses for why the value premium exists.

The behavioral hypothesis theorizes that repeating patterns of irrational human behavior

(overexhuberance at some times or for some assets, excessive pessimism at other times

41Security Analysis, with David Dodd (1934) and The Intelligent Investor (1949). For Graham, “An invest-

ment operation is one which, upon thorough analysis, promises safety of principal and a satisfactory return.

Operations not meeting these requirements are speculative.”. Some notable examples of prior empirical stud-

ies Fama & French (1992, 1998, 2012), Lakonishok, Schleifer & Vishny (1994), Daniel & Titman (1997),

Lettau & Wachter (2007) and Asness, Moskowitz, & Pedersen (2013).

42From 1926 to 2018, the decile of US equities with the highest book-to-market ratio outperformed the

decile with the lowest ratio by a statistically significant 5% to 14% per year on average, depending on portfolio

weighting method (data from Ken French, univariate book-to-market sorts). See also The Superinvestors of

Graham-and-Doddsville, Buffett (1984) for a practitioner study of a collection of successful investors with

superior ”value investing” track records.

43There have been at least six occasions since 1926 when the value premium has been negative for a decade

or more (see Figure 2.1& Figure 2.2, and associated discussions in the Appendix). In the decade from 2009 to

2019 following the Great Recession, for example, large ”growth” stocks returned 308% including reinvested

dividends, while large ”value” stocks returned 202% (source FTSE Russell, indexcalculator.ftserussell.com,

total value-weighted returns, 12/31/2009 through 12/31/2019).
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or for other assets) cause temporary asset-pricing errors which, when eventually fixed, pro-

duce the value premium. The risk hypothesis argues that value stocks possess several innate

qualities that make them systematically riskier to investors, and these risks must be fairly

compensated with higher expected returns.44 As in O’Neill (2022), Value Stocks are Riskier

- Paper 1 (hereafter Paper 1), in this paper I favor a risk-based explanation of the value pre-

mium. Although I am confident that episodes of irrational behavior andmispricing do occur

(perhaps frequently), and are at least a part of the value story, the fact that the value pre-

mium has (a) been widely-known and exploitable for a long time and (b) persisted rather

than being competed away by greedy, excess-return-seeking investors with ample available

capital, strongly suggests that it has rational, risk-based underpinnings.

In Paper 1, I advanced a risk-based explanation of the value premium in which there

are two components of the equity risk premium; a larger premium to compensate for near-

term systematic cashflow risk and a smaller one for distant cashflow risks. I showed how

a representative agent with Epstein Zin preferences prices risky assets based on their expo-

sures to innovations in near-term consumption growth and also innovations in anticipated

future consumption growth (or wealth).45 Using an Unscented Kalman Filter, I estimated

my exactly-solved linear present value model of the price-dividend ratio (which disentan-

gles near-term cash flows from expected future cash flow growth with two time-varying

risk premia) on a long history of US stock prices and I found compelling evidence of the

existence of two different risk premia. I also found that the premium for near-term cashflow

risk is statistically and economically much larger than the premium for distant cash flow

risks, and that value stock returns are far more responsive to near-term cashflow shocks and

44See DeBondt & Thaler (1985, 1987), Lakonishok, Shleifer & Vishny (1994) and Daniel & Titman (1997,

1998) for some notable examples of behavioral hypothesis research. For examples of risk hypothesis research,

see Fama& French (1992, 1993, 1995, 1996, 1998, 2006, 2012, 2020), Carlson, Fisher &Giammarino (2004),

Zhang (2005), Lettau & Wachter (2007).

45In this economy, the SDF is high when near-term consumption is shocked negatively, and also when

wealth is negatively shocked even when near-term consumption is unchanged.
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changes in the premium for near-term risks than growth stock returns.46 These results are

consistent with a world in which value stocks earn excess returns because they are riskier.

Nevertheless, by themselves, these results do not decisively rule in favor of a risk expla-

nation of the value premium. They, and the framework from which they were estimated in

Paper 1, offer only a one-sided risk explanation (i.e., the investor preference side) because

they do not provide a firm-level rationale for why value stocks are especially threatened

by near-term aggregate cashflow shocks.47 Purely from a preference perspective, it is, of

course, reasonable for consumer-investors to be fearful of near-term negative aggregate

cashflow shocks (i.e., think recession, job losses, and drawdown of household savings), but

why should value stocks, in particular, be expected to perform poorly at those times? Why

not growth stocks? After all, it is also reasonable that long-term growth expectations, on

which the high valuations of growth stocks rely, would also decline in bad economic times.

In Paper 1, I hypothesized that the answer may be found in the responses of an asset’s

cashflows (as well as prices) to aggregate shocks and that these responses may be governed

by inherent firm attributes, such as operating leverage, financial leverage, industry maturity,

growth opportunities and equity duration. If, as I supposed, value stocks are usually found in

mature, slow-growing industries with pronounced macroeconomic cyclicality, and if they

have high fixed costs and large debt burdens, then a negative aggregate shock can have

an especially detrimental effect on firm cashflows, expected growth rates and perceived

riskiness (the three ingredients of discounted present value), causing poor returns at those

times. By corollary, if growth firms are found in newer industries with lowmacro sensitivity

(as seems likely), and if they have low capital intensity and debt, then their cashflows,

46Over the time period 1950 to 2019, the risk premium for near-term cashflow shocks was estimated at

5.8% while the premium for distant risks was estimated at 0.5%, Paper 1. Over the same time period, the

beta of value returns to the near-term cashflow premium was found to be 2 to 3 times that for growth returns.

I also found that unexpected returns for value stocks (i.e., realized portfolio returns minus expected returns)

were more sensitive to near-term cashflow shocks compared to growth stocks.

47Without this additional piece of the puzzle, for example, it may even be possible concoct a behavioral

framework that can produce results which are similar to those found in Paper 1.
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growth expectations, and discount rates can be more immune to shocks.48

But I did not explore these hypotheses in detail in Paper 1. This is the task I undertake

here. Specifically, the goals of this paper are (1) to understand why value firms are espe-

cially vulnerable to negative cashflow shocks (which we know investors do not like) and (2)

to relate the resulting discounting of value stock prices to inherent, measurable, fundamen-

tal firm attributes. If I succeed in these goals, then Paper 1 and Paper 2 (this paper) together

offer a more complete risk-based explanation of the value premium than either paper alone.

If Paper 1 shows that investors really do not like negative near-term cashflow shocks and

that value stock prices are especially discounted for this type of risk, and if Paper 2 shows

that the cashflows (as well as prices) of value firms have elevated sensitivity to shocks

deriving from their inherent operating attributes, then, combined, these papers show that

the value premium is the result of rational, considered investment decisions by risk-averse

agents rather than occasional irrational behavior of an emotional investor crowd.

Importantly, even without an explicit risk model (such as the one I proposed in Paper

1, and which is further developed in this paper), the empirical history of the value premium

provides some useful clues about the role of risk in explaining excess value-minus-growth

returns. These empirical facts (which are mentioned here, but discussed in greater detail

in the Appendix) lean more strongly in favor of a risk-based explanation than a behavioral

one.

• The value premium is large and has persisted for a long time. In Table 2.9 &

Table 2.10, discussed in the Appendix, I show the mean returns, standard deviations,

standard errors, and Sharpe ratios for univariate sorted-decile portfolios of US equi-

48I also noted in Paper 1 that the cashflows and multiples of growth stocks may have a hedging quality

related to the duration of their expected cashflows. Specifically, since the high valuations of growth stocks

reflect rosy expectations of (and discount rates applied to) distant, rather than near-term, cashflows, their high

equity duration can shield them from near-term shocks since current cashflows comprise only a small portion

of their market value. In fact, growth firms can even be beneficiaries of negative shocks to the extent that their

low macroeconomic sensitivity and unlevered balance sheets put them in a relatively strong financial posi-

tion during economic downturns to acquire distressed assets ”on the cheap” while their financially-burdened

competitors are retrenching.
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ties from 1952 to December 2019 (both capitalization-weighted and equal-weighted).

On average, capitalization-weighted excess returns for value stocks, exceeded the re-

turns for growth stocks by 4-5% per year, while equal-weighted value-minus-growth

returns averaged 7-10% per year (depending on the univariate sorting ratio). These

excess returns are economically and statistically large and are not explained by either

the volatility of returns or a small-cap effect. That these large excess returns have

persisted for many decades, rather than being competed away by greedy investors,

strongly hints at a risk-based underpinning.

• The premium is not explained by the Capital Asset Pricing Model (CAPM). In

Table 2.11, discussed in the Appendix, I show the results of regressions of sorted

portfolio excess returns against the value-weighted CRSP Index from 1952 to 2019.

In general, the alpha coefficients from these regressions are increasing in deciles

when moving from growth to value, and, at the extremes, are significantly negative

for the growth portfolios and significantly positive for the value portfolios. In every

case, the alpha on the portfolio that is long value and short growth is economically and

statistically large (i.e., the premium return earned by value stocks cannot be solely

attributed to higher CAPM betas). Even if some portion of the value premium can be

attributed to CAPM betas, some other risk factor(s) has stronger explanatory power.

• The value premium has been time varying and asymmetric. Figure 2.1, discussed

in the Appendix, plots the rolling 10-year mean capitalization-weighted value-minus-

growth return from June 1936 through December 2019. On average, the mean 10-

year value-minus-growth returns of 6.14% (per year) and the standard deviation is

5.50%. During this time period, there were at least 6 sub-periods when the 10-year

mean annual value-minus-growth return was in excess of 15% and at least 6 sub-

periods when the trailing 10-year mean was negative. This time variability of the

value premium is more easily explained by time varying risks than behavioral pricing
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errors; if the value premium derives from irrational investor behavior that is rooted in

enduring human flaws (e.g., short-sightedness, extrapolation, or excessive exhuber-

ance/pessimism), then one might expect more stability in value-minus-growth re-

turn year after year. The value premium has also been asymmetric, deriving largely

from the outperformance of value stocks rather than the underperformance of growth

stocks. (See Table 2.13 and associated discussion in the Appendix.) It is easier to

explain this asymmetry by an asymmetric risk exposure, than it is to explain why

investors are more irrational in the pricing of value stocks than they are in the pricing

of growth stocks.

• Excess returns for value portfolios endure for many years after formation. In

Table 2.14 & Table 2.15, I present the results of an analysis of buy-and-hold returns

for sorted portfolios of stocks over multiple holding periods (from 1 to 10 years af-

ter formation), using data from 1952 to 2019. Remarkably, as the portfolio holding

period is extended, the value premium remains strong in subsequent years. In the

second year after portfolio formation, for example, the value-minus-growth return is

even larger than in the first year. Ditto for the third year. In fact, this pattern of sus-

tained outperformance continues through the seventh year after portfolio formation,

meaning that, in this long sample, it was possible to exploit the value effect using

value portfolio sorts that were up to 72 months ”stale”. This result is consistent with

a world in which stocks are discounted based on their exposures to slow-moving fun-

damental risks. It is difficult to reconcile this result with the behavioral hypothesis

of the value premium.

Although none of these empirical facts are individually decisive in terms of explaining

the value effect, as a group they are more supportive of a risk-explanation than a behavioral

one. The particular risk explanation that I favor, as advanced in Paper 1, is rooted in the

representative investor’s fear of near-term cashflow shocks. In the next section, I tie these

fears to the cashflow shock elasticity of an asset. This elasticity, and its components, is a
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more practical measure of asset risk than the risk premium from the stochastic discount fac-

tor (sdf ) in Paper 1, and underpins my empirical results in subsequent sections of this paper.

This paper is organized as follows. In Section 2.2, I introduce the conditional Cash-

flow Shock Elasticity of Price (ηcpt ) in order to explicitly relate an asset’s discount rate to

its cashflow shock sensitivity. (I also show how the components of ηcpt relate to the time

variability of the value premium.) Section 2.3 then shows that value stocks have historically

had a larger cashflow shock elasticity than growth stocks, as evidenced by the behavior of

value-sorted portfolio prices, and especially cashflows, during past economic shocks. For

robustness, I present results based on two different definitions of cashflow shocks. In Sec-

tion 2.4, I show why and how value stocks have high cashflow sensitivity, first by using

a comparative-static model of the firm to identify the asset-specific fundamental attributes

that induce this sensitivity, and then by estimating those attributes for value-sorted portfo-

lios of stocks historically. Section 2.5 concludes.

2.2 The Cashflow Shock Elasticity of Price

I begin this section by introducing a quantity, the Cashflow Shock Elasticity of Price, or ηcp,

which is the percentage change in the price of an asset for a given percentage exogenous

shock to aggregate cashflows.49 This is a tangible measure of the economic sensitivity of

an asset’s price, and is derived without reference to investor risk preferences. That is, in

general,

ηcp,i =
%∆P i

%∆C
(60)

49For the purposes of this paper, shocks to aggregate cashflows are assumed to occur exogenously and the

response of assets to those shocks is determined endogenously.
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where P i is the price of asset i and C is aggregate cashflow. This elasticity can also be

represented as the slope of a linear regression of log prices (p) on log shocks (ĉ). That is, in

conditional form,

pit+1 = αi
t + βi

t ĉt+1 + εt+1 (61)

ηcp,it ≡ βi
t =

Covt(p
i
t+1, ĉt+1)

V art(ĉt+1)
(62)

where ĉt+1 = ct+1 − Et[ct+1] and εt+1 is zero mean noise.

Importantly, with a simple decomposition of pit+1, I can break down the covariance term

in (3) into two parts: the covariance of the asset’s cashflows with aggregate cashflows, and

the covariance of the asset’s price-to-cashflow ratio with aggregate cashflows.

pit+1 ≡ log(P i
t+1) = log(P i

t (D
i
t+1/D

i
t)(PDi

t+1/PDi
t))

= pit + dit+1 − dit + pdit+1 − pdit

(63)

where PDi is asset i’s price-to-cashflow ratio. Substituting pit+1 from (4) into (3),

ηcp,it =
Covt(d

i
t+1, ĉt+1) + Covt(pd

i
t+1, ĉt+1)

V art(ĉt+1)

=
Covt(d

i
t+1, ct+1) + Covt(pd

i
t+1, ct+1)

V art(ĉt+1)

(64)

Equation (5) shows that assets whose cashflows, di, correlate highly with aggregate cash-

flows (i.e., economically sensitive assets) and whose pd ratio covaries highly and positively

with shocks (i.e., asset discount rates and/or expected growth covary with shocks) will have

a larger cashflow shock elasticity. Conversely, assets whose cashflowsmove inversely with

aggregate cashflows and whose discount rates and/or expected growth rates are somehow
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hedged against shocks, will have a smaller ηcp,it .50

Although the quantity ηcp,it is, in some sense, a measure of the riskiness of an asset,

it is independent of investor risk preferences. This being the case, the role that cashflow

elasticity plays in asset price discounting, if any, will depend on investor attitudes towards

the risk characteristic it captures. This brings me to the main purpose of this section which

is to show that the factors that drive ηcp,it are precisely the same factors driving the premium

for near-term cashflow risk, as proposed in Paper 1, and that, all else equal, assets with a

large cashflow elasticity will be more discounted. Given that the premium for near-term

cashflow risks accounts for the lion’s share of the total risk premium (as shown in Paper

1), and that value stocks are especially sensitive to near-term cashflow shocks (also shown

in Paper 1), ηcp,it and its components are central to the value premium.

2.2.1 Relationship of Discount Rates to ηcp

To show this, recall that in Paper 1, the representative agent (who consumes the aggregate

dividend) fears and prices (a) near-term consumption/cashflow shocks which disrupt his

optimal current lifestyle, and (b) shocks to expected future consumption/cashflow growth

which disrupt the optimal lifestyle path in the future.51 That is, the general form of the sdf

in this economy, Mt+1, is a function of near-term aggregate cashflow, Ct+1, and expected

future aggregate cashflow growth, Gt+1.

Mt+1 = f(Ct+1, Gt+1) (65)

The specific sdf in Paper 1 (which assumes Epstein-Zin-Weil (EZW) recursive preferences

50I note that even if an asset’s pd ratio is hedged against shocks, Covt(d
i
t+1, ct+1) can still be sufficiently

pro-cyclical that ηcp,it remains positive.

51Note that since the representative agent consumes the aggregate dividend, I use the terms aggregate

consumption, aggregate dividend, and aggregate cashflow interchangeably in this paper.
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and lognormal cashflow growth and returns, and is expressed in log innovations) is given

by (7) .52

m̂t+1 = −γĉt+1 − (γ − 1

α
)ĝt+1 (66)

where γ and α are the representative agent’s risk aversion and elasticity of intertemporal

substitution respectively, and ĉ and ĝ are log innovations in aggregate cashflow and ex-

pected cashflow growth.

As usual, in this economy the risk premium on any asset will depend on the covariance

of its returns with the sdf. That is, for any asset i,

Et[R
i
t+1]−Rf

t+1 = −Rf
t+1Covt(Mt+1, R

i
t+1) (67)

where Ri is the gross return on the asset and Rf is the gross risk-free rate. In log form,

using the sdf in (7), the specific risk premium in this economy is given by (9).

Et[r
i
t+1]− rft+1 +

σ2
i

2
= −Covt(mt+1, r

i
t+1)

= γσi,c
t + (γ − 1

α
)σi,g

t

(68)

where σ2
i is the variance of asset i’s returns and σ

i,c
t and σi,g

t are the covariances of asset i’s

returns with near-term cashflow and expected cashflow growth, respectively.

Now, by decomposing next period’s gross return into a component from dividend,Di
t+1,

and a component from changes in pd ratios, PDi
t+1, I can expand the covariance terms in

(9) and compare them directly to this in ηcp in (5). That is,

52I also note that in the Appendix to Paper 1, I presented an alternative derivation of a similar dual-risk-

premium sdf but without assuming EZW preferences.
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Ri
t+1 =

Di
t+1

P i
t

(1 +
P i
t+1

Di
t+1

) (69)

which, in logs, writes as

rit+1 = dit+1 − pit + log(1 + PDi
t+1) (70)

Then substituting rit+1 from (11) into (9), the expanded covariance terms are

σi,c
t = Covt(d

i
t+1, ct+1) + Covt(pd

i
t+1, ct+1) (71)

σi,g
t = Covt(d

i
t+1, gt+1) + Covt(pd

i
t+1, gt+1) (72)

where p̄d
i
= log(1 + PDi

t+1).

Comparing (5) and (12), the close relationship between ηcp and risk premia is apparent;

for all intents and purposes, the cashflow shock elasticity of an asset and the portion of the

risk premium that compensates for near-term cashflow risk are driven by the same condi-

tional covariances.53 In other words, assets that have a large ηcp will be discounted more

than other assets because they are exposed to the risks that investors fear. Moreover, as I

found in Paper 1, the risk premium for near-term cashflow risk accounts for the lion’s share

of the overall equity risk premium.54 Accordingly, ηcp is not merely a measure of asset risk;

53The reader will note that the covariance terms inEquations (5) and (12) are not exactly the same: Equation

(12) uses p̄d
i
t+1 ≡ log(1 + PDi

t+1) whereas Equation (5) uses pd
i
t+1 ≡ log(PDi

t+1). While not identical,

these terms are perfectly correlated with each other and will have similar covariances with ct+1.

54Over the time period 1950 to 2019, in Paper 1, I estimated the risk premium for near-term cashflow

shocks at 5.8% while the premium for distant risks was estimated at 0.5%. The averages of the time series of

filtered estimates of these two risk premia, 4.7% and 1.7% respectively, offer a similar result.
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it captures the risk that investors fear most.55

With the connection between ηcp and risk premia established, it is straightforward then

to relate ηcp to the value premium. To see this, recall that in Paper 1, I showed that value

stock returns (both expected and unexpected) are significantly more sensitive to near-term

cashflow shocks than growth stock returns.56 This being the case, and given the relation-

ship between ηcpt and σi,c
t just described, value stocks prices will be more elastic to cashflow

shocks than growth stock prices because they are more exposed to the risk factor that in-

vestors care most about. I explore this supposition empirically in Section 2.3 and I find

strong supporting evidence.

2.2.2 ηcp and the Time Variability of the Value Premium

It is also possible to link ηcp to the time variability of the value premium. I will have more

to say on this subject in Section 2.4 (when I relate the conditional ηcp to inherent funda-

mental firm characteristics), but it is instructive to sketch out the link here, using a general

framework and some examples. We know from the foregoing that there are two principal

conditional covariances driving the equity risk premium.57

55This is not to suggest that the second component of the equity risk premium (i.e., that compensates for

shocks to future cashflow growth) is unimportant, but it appears to play a lesser role in explaining the value

premium. Equation (13) decomposes σi,g
t (as I did for σi,c

t ) and it is trivial to show that the pair of covariances

in (13) directly compare to those in the conditional Growth Shock Elasticity of Price, ηgpt . That is,

ηgpt =
Covt(p

i
t+1, ĝt+1)

V art(ĝt+1)

=
Covt(d

i
t+1, gt+1) + Covt(pd

i
t+1, gt+1)

V art(gt+1)

(73)

I hope to further investigate this quantity, and the role it plays in asset price discounting, in future research.

56For example, the beta of value returns to the near-term cashflow premium was found to be 2 to 3 times

that for growth returns

57For the purposes of this illustration, Covt(gt+1, d
i
t+1) ≡ σgdi

t and Covt(gt+1, pd
i
t+1) ≡ σgpdi

t are rele-

gated to secondary effects.
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Covt(ct+1, d
i
t+1) ≡ σcdi

t

Covt(ct+1, pd
i
t+1) ≡ σcpdi

t

(74)

We also know that the larger is σcdi

t + σcpdi

t , the riskier, and more discounted, the asset will

be. Now, arithmetically, σcdi

t +σcpdi

t is likely to be larger if sign(σcdi

t ) = sign(σcpdi

t ). This

will occur if an asset’s cashflow and price correlate with shocks in the same direction (i.e.,

when changes in asset cashflows are not offset by the changes those shocks induce in PD

ratios).

The key point, as it relates to time variability, is to show that an asset’s fundamental

characteristics (which, themselves, can be time varying) affect the relative sizes and signs

of σcdi

t and σcpdi

t . To illustrate, consider how a cashflow shock affects two fundamentally

different firms, (a) Firm V, which is highly economically cyclical and has high-debt, and

(b) Firm G, which is low-cyclicality with low-debt. For Firm V, which is economically sen-

sitive and financially distressed, positive shocks will lift firm cashflows, and also relieve

financial duress (i.e., lower its discount rate/raise its PD ratio) while negative aggregate

shocks have the opposite effect. Thus, Firm V ’s fundamental characteristics induce a pos-

itive conditional correlation between its cashflow and its PD ratio.58 This makes the asset

riskier by raising its sensitivity to near-term cashflow shocks. For FirmG, economic shocks

have a muted effect on firm cashflows (which are less cyclical by design), and also on firm

riskiness and PD ratios (given its low debt). All else equal then, Firm V price will be more

discounted than Firm G.

Although this example compares two firms at the same point in time, it can also rep-

resent the same firm at two different points in time, as long as firm fundamentals are time

varying. For example, at one time Firm V may be pro-cyclical and indebted, resulting in a

58This conditional correlation may also be asymmetric. After an initial negative economic shock, for ex-

ample, the consequences of a subsequent negative shock on an already strained and indebted firm would be

more severe than the initial shock.
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large risk discount in its price. At another time, perhaps because of strategic actions taken

by the firm to reduce cyclicality or pay down debt, or because economic conditions im-

proved, Firm V can evolve into Firm G and enjoy a smaller risk discount. The essential

point is this: if an asset’s conditional covariances explain its risk discount, and if its co-

variances are linked to fundamental asset characteristics that can vary over time (e.g., with

economic conditions, the aging of the firm, the firm’s strategic choices), then asset risk and

expected returns will be time varying too. In this sense, the factors that explain the condi-

tional value premium (i.e., the cashflow elasticity of price and its component covariances),

can also explain why the premium has varied over time.59

In this section, I showed that an asset’s cashflow elasticity of price is driven by the

same principal covariances that drive the risk premium for near-term cash flow shocks.

The empirical analysis in the next section investigates how the prices and cashflows of

book-to-market sorted portfolios have responded to economic shocks in the past. I find

strong evidence that value stock prices, and especially cashflows, have a more pronounced

response to economic shocks than growth stocks, consistent with a risk explanation of the

value premium which is based on cashflow shock elasticity.

59The stylized example using Firm V and Firm G can also illustrate how the value premium can expand

in recessionary times and contract in boom times. Starting from a steady-state equilibrium, if a recession

were to occur, Firm V ’s cashflows, being procyclical, would decline sharply which, in turn, would stress the

firm’s ability to finance its debt (and invest for future growth) causing the firm to become riskier (i.e., closer

to financial distress), and slower growing. Now, being a step closer to severe financial distress, Firm V is

even more susceptible to a subsequent recessionary shock than it was in the steady state. That is, σcdV

t+1 +

σcpdV

t+1 > σcdV

t +σcpdV

t , in tandem with a larger risk discount in its share price, and a lower PD ratio. Contrast

this with Firm G. Following a recessionary shock, which has a muted impact on Firm G’s cashflow, the

firm does not become riskier and, whether its absolute expected growth declines or not, its relative growth

opportunities (compared toFirm V ) improve. In this way, the expected return premium ofFirm V (value) over

Firm G (growth) can expand in recessionary economic times. (In boom times, Firm V, being less financially

distressed, would be less impacted by shocks; positive shocks would not improve its risk profile much because

the firm’s coffers would already be full, and negative shocks would hurt less because the firm would have a

larger buffer against financial distress at that time. Thus, the expected return premium of Firm V over Firm

G (the value premium) can be lower at those times.)
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2.3 Effect of Shocks on Portfolio Cashflows & Prices

In an ideal world, I would test the relationship between the conditional cashflow shock

elasticity of price and the value premium by using a long panel of historical data to estimate

ηcpt , and its component parts, cross-sectionally at each point in time for sorted portfolios,

and then comparing the mean estimates for value portfolios to those for growth portfolios.

In reality, of course, the ”true” conditional distribution of the response of asset cashflows

and prices to aggregate cashflow shocks is not observable. Instead, at each point in time,

we observe only a single outcome for aggregate cashflows and prices, and a single outcome

for portfolio cashflows and prices.

Given this data limitation, I employ unconditional historical analyses here to substitute,

albeit imperfectly, for conditional observations. Such analyses can be instructive, partic-

ularly if conducted over long periods of time covering a broad range of macroeconomic

events, as I do here. Two such analyses are presented in this section. The first usesNational

Bureau of Economic Research (NBER) official business cycle dating of economic expan-

sions and contractions since the Great Depression to define aggregate cashflow shocks. The

second defines shocks using the filtered estimates from Paper 1, for the period from 1950

to 2019. For each analysis, I measure the price and cashflow response of each book-to-

market sorted portfolio to each shock at the time it occurred. The results of these analyses

are consistent with each other and show that value stocks have a higher ηcp than growth

stocks.

2.3.1 U.S. Business Cycle as Cashflow Shocks

Table 2.1 presents the chronology of economic contractions and expansions in the United

States since the Great Depression, as assigned by the NBER Business Cycle Dating Com-

mittee.60 Since 1929, there have been fifteen recessions (with the most recent being the

60See https://www.nber.org/research/business-cycle-dating for additional details on NBER methodology.
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short, sharp COVID-induced contraction in early 2020) and fifteen expansions (including

the most recent expansion that began in April 2020 and is still underway at the time of writ-

ing). The average contraction has lasted 12.5 months (or 10.4 months excluding the Great

Depression) with average peak-to-trough decline in GDP of -6.8%. The average expansion

has lasted 61.4 months with average annual real GDP growth of 4.7%.

To measure the behavior of value and growth stock prices around the dates of these

events, I examine the price-only returns of book-to-market univariate sorted portfolios from

Prof. Ken French’s website.61 These portfolio returns are available monthly back to 1926

and are calculated by sorting all NYSE, Nasdaq and AMEX stocks into deciles of book-

to-market ratio in June of each year (using prior fiscal year book value and prior calendar

year-endmarket values) and then calculatingmonthly portfolio returns though to the follow-

ing June rebalance date, using CRSP pricing data. However, since the NBER’s choices of

economic turning points reflects the dates when economic activity actually inflects, rather

than the dates when stock prices begin to discount the ensuing economic inflection, those

dates, by themselves, will not coincide with ”shocks” in cashflow expectations. (For ex-

ample, the NBER dates the Great Recession from December 2007 through June 2009, but

the S&P500 index began declining six months before December 2007 and troughed four

months before June 2009.) Therefore, in order to better capture the shocks associated with

economic contractions and expansions, I measure price changes from the date of the peak of

the market in the six months prior to a recession until the date of the market trough during

the recession (and vice versa for expansions).62 These dates are shown in Table 2.2 and

Table 2.3, along with the measured price change for each decile sorted portfolio and each

economic event.

Table 2.2 shows the peak-to-trough mean monthly capitalization-weighted price-only

61See https : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

62To select these ”shock” dates, market prices are represented by month-end prices for the S&P 500 Index.

I also calculated sorted portfolio returns based on start dates within three months of the NBER expansions and

contractions, with similar results.

73



returns for all ten book-to-market sorted portfolios during fourteen NBER economic con-

tractions since the Great Depression.63 Over this time period, value stocks have usually

underperformed growth stocks during recessions. In ten of the fourteen contractions, av-

erage monthly returns were more negative for value portfolios than growth portfolios and,

when averaged across all contractions, value portfolio (Decile 10) prices declined by 4.4%

per month compared to a decline of 2.6% per month for growth portfolios (Decile 1).64 The

top 20% of growth stocks (i.e., Deciles 1 and 2 combined) outperform the cheapest 20%

(i.e., Deciles 9 and 10 combined) by 1.3% per month on average during recessions. These

are remarkable results, implying that in a typical recessionary year, value stocks underper-

form growth stocks by more than 20%, in stark contrast to their tendency to outperform

growth stocks by 4%, or more, per year on average across all economic cycles (see Table

2.9 & Table 2.10).

Table 2.3 shows the trough-to-peak mean monthly capitalization-weighted price-only

returns for book-to-market sorted portfolios during fifteen NBER economic expansions

since the Great Depression.65 Value stocks have tended to outperform growth stocks dur-

ing expansions over this time period. In eleven of the fifteen economic expansions, average

monthly price returns were larger for value portfolios than for growth portfolios, and on av-

erage across all expansions, value prices increased by 0.5% more per month (or more than

6% annualized) than growth stock prices. Taken together, Table 2.2 and Table 2.3 show

that value stocks have a larger cashflow shock elasticity of price than growth stocks; during

unexpected economic contractions, value stock prices decline by more than growth stock

prices and during booms, the reverse is true.

But within this overall price elasticity, what role is played by the near-term cashflow

63The February, 1945 to October, 1945 contraction is excluded from this analysis since there was no asso-

ciated peak to trough movement in market prices.

64When cumulative peak to trough monthly returns are used, rather than average monthly returns, value

stocks decline by more than growth stocks in eleven of the fourteen recessionary periods.

65The most recent expansion began in April 2020 and is ongoing. Data in Table 2.3 is shown through

December 2021.
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sensitivity of value and growth stocks, rather than the sensitivity of their PD ratios? The

answer to this question can provide insights into the precise mechanisms that make value

stocks riskier than growth stocks. I investigate this question by examining the behavior

of realized dividend growth rates for book-to-market sorted portfolios during the NBER

expansions and contractions listed in Table 2.1.

The results are shown in Table 2.4. Specifically, Table 2.4 shows the mean year over

year, capitalization-weighted percentage change in rolling three-month dividends paid by

the constituents of each of the ten book-to-market sorted decile portfolios during the periods

of expansions and contractions as identified by theNBER.66 For each portfolio constituent in

each month, the percentage growth in dividends is calculated as its rolling three-month total

paid-out dividend divided by the prior year’s comparable three-month dividend total. These

three-month, year-over-year growth rates are then market-value weighted to produce the

portfolio level dividend growth rate. Importantly, to conduct this analysis, I was required

to build a custom data set that replicates the book-to-market sorting methodology used by

Prof. Ken French (i.e., combining Compustat fundamental data and CRSP pricing data).

The reason for this is that it is not possible to extract constituent-level dividend information

from Prof. French’s data and the year-over-year changes in portfolio-level dividends (which

can be derived from Prof. French’s data) do not accurately reflect the effect of the economic

environment on the constituent cashflows.67 Also, because the quality and availability of

66For this analysis, the start and end date of each expansion and contraction corresponds exactly with the

NBER dates.

67This is a result of Prof. French’s annual portfolio rebalancing methodology. When stocks are sorted

by book-to-market ratio each June, they are also implicitly sorted by the dividend-to-market ratio because

dividends are positively correlated with book values. Thus, the newly-formed value portfolio each June will

usually have a higher dividend yield than the prior year’s portfolio had at that same June month end. This will

render any comparison of portfolio dividends in one year with dividends from the prior year meaningless as

a representation of the dividend growth of the underlying consitituents. The more the portfolio constituents

and their weights change each year as a result of the sorting methodology, the less the year-over-year compar-

isons of the portfolio-level fundamentals reflect the fundamentals of the constituent firms, which is the true

barometer of the economic environment. I avoid this problem here by doing all year-over-year calculations

at the constituent level and then grossing the constituent information back up to the portfolio level with the

appropriate portfolio weights.
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fundamental and pricing data prior to 1950 is markedly lower than the post 1950 data,

Table 2.4 only considers the eleven economic contractions and 10 economic expansions

since 1950.68

The lower panel of Table 2.4 (NBER Expansions) shows that on average during ex-

pansions, dividends for value portfolios (Decile 10) decline about 1.9% per year, while

dividends for growth portfolios (Decile 1) grow at 13% per year, and dividend growth for

all stocks (All Deciles) is 6.4%. (Based on this result alone, the cross-sectional book-to-

market ratio is evidently a good predictor of realized dividend growth, as expected. It is also

not surprising that in every economic expansion, all stocks, and growth stocks in particular,

grew dividends faster than value stocks.) A similar pattern of relative dividend growth for

value and growth portfolios occurs duringNBERContractions. As shown in the upper panel

of Table 2.4, all stocks and growth stocks outgrow value stocks during recessionary periods,

as expected. A more interesting and pertinent result, which can be seen by comparing the

upper and lower panels of Table 2.4, is that the cashflows of growth stocks are far more re-

silient during economic downturns than value stock cashflows. That is, during contractions,

growth stocks deliver positive dividend growth of 5.1% on average (compared to 13% in

expansions) while mean dividend growth for value stocks is -17.8% (compared to -1.9%

during expansions). In other words, when averaged across all contractions, growth stock

dividends outgrow value stock dividends by almost 23% per year, while in expansionary

periods their growth advantage is only 15% annually, approximately.

The conclusion from Table 2.4 is that value stock cashflows are significantly more sen-

sitive to the prevailing economic environment than growth stock cashflows. When read in

conjunction with the results in Table 2.2 and Table 2.3, the implication is that the excess

cashflow shock elasticity of value stocks over growth stocks is, in large part, attributable to

the excess sensitivity of their cashflows to aggregate shocks. In the next subsection, I ex-

68The most recent expansion that began in April 2020 and is still underway, is excluded here from this

cashflow analysis but will be included at a later date once the data is available.
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amine whether this finding, and the finding that value stocks have a larger shock elasticity

than growth stocks, holds true when using an alternative definition of aggregate cashflow

shocks. Specifically, I examine the price and cashflow responses of value and growth stocks

to the filtered cashflow shocks that were estimated in Paper 1.

2.3.2 Filtered Cashflow Shocks from Paper 1

In Paper 1, I used an Unscented Kalman Filter and Maximum Likelihood optimization

to estimate an exactly-solved linear present value model of the price-dividend ratio which

disentangles near-term cashflows from expected future cashflow growth with two time-

varying risk premia on aggregate US market data from 1950 to 2019. One of the outputs

of this model and estimation methodology is expected aggregate cashflows, which can be

compared to realized cashflows, by year, to generate filtered aggregate cashflow shocks.

This provides an alternative definition of shocks with which to examine the price and cash-

flow sensitivity of value and growth stocks.

This approach to approximating the cashflow shock elasticity suffers from a number

of limitations relative to the approach using NBER expansions and contractions. First, the

filtered cashflow shocks are ”estimates” derived from a data-fitting exercise and do not

necessarily correspond to actual observed aggregate cashflow events. In this sense, the

shocks are only as good as the model, and no model captures reality perfectly.69 Second,

the model is estimated using calendar annual data only.70 At this frequency, the model

69The model in Paper 1 has two primary observable time series; the price-to-dividend ratio and the realized

gross dividend growth rate. All other time series and parameter values are estimated from this data. The ob-

servable data are taken from Prof. Robert Shiller’s website (http://www.econ.yale.edu/ shiller/data.htm and,

in particular, U.S. Stock Markets 1871-Present and CAPE Ratio). This study uses actual paid-out cash divi-

dends for the S&P Composite to represent aggregate equity cashflows, although other definitions of cashflow

were also considered.

70The Unscented Kalman Filter in Paper 1 is estimated on annual data (year-end values) for the period from

1950 to 2019, largely mirroring the time period and data frequency for the value premium summary statistics

in Table 2.9. The choice of annual frequency reflects a balance of competing considerations; I wanted to

have a large enough sample of data points to estimate the model efficiently while also leaving sufficient time

between data points for aggregate fundamentals and expectations to evolve and for prices to react.
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is unable to identify important intra-year turning points in cashflow cycles, expectations

and asset prices. The choice of annual frequency also limits the sample size to the seventy

annual data points available since 1950. Despite these limitations, this approach offers a

useful alternative perspective to the NBER expansion/contraction methodology, in that the

shocks are measured not just by changes in observed cashflow growth, but also by changes

in market prices and expectations in response to observed cashflows.

Table 2.5 shows the mean annual capitalization-weighted price-only returns for each

book-to-market sorted portfolio, stratified by deciles of filtered cashflow shocks, for the

period from 1952 to 2019.71 (Thus, each of the cashflow shock deciles represented on the

left hand side of the table, corresponds to a different sample of annual dates.) Our interest

here is in how the price returns of value portfolios differ from growth portfolios for each

decile of cashflow shock, and how this differential changes in periods of positive shocks

versus negative shocks. This information is shown in the two columns on the right hand side

of Table 2.5. For small cashflow shocks (Deciles 4 through 7), which may not be shocks at

all, the pattern of value minus growth returns is ambiguous, but for extreme shocks (Decile

1 to 3, and 8 to 10) the pattern is clear; value stocks underperform growth stocks during

large negative shocks and outperform during large positive shocks. For example, when

cashflow shocks are extremely positive (Decile 10), mean returns for value-minus-growth

(Decile 10 - Decile 1) are 6.5%, compared to mean relative returns of -4.3% when cashflow

shocks are extremely negative (Decile 1). When cashflow shocks are in Decile 1, 2 or 3 (i.e.,

most extreme 30% positive shocks), mean value-minus-growth returns are 9.3%, compared

to -3.8% during the 30% of the time when shocks are at their most negative. (A similar

pattern of value-minus-growth returns is observed when value is defined as Deciles 9 & 10

(by book-to-market sorting) and growth as Deciles 1 & 2.). Importantly, these results echo

the those shown in Table 2.2 & Table 2.3: value stocks prices are more elastic to aggregate

cashflow shocks than growth stock prices.

71Sorted portfolio returns come from Prof. Ken French.
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In Table 2.6, I measure the responses of book-to-market sorted portfolio cashflows to the

filtered cashflow shocks (similar to the analysis in Table 2.4 forNBER shocks). Specifically,

Table 2.6 shows the mean year-over-year, capitalization-weighted percentage change in

rolling three-month dividends paid by the constituents of each of the ten book-to-market

sorted decile portfolios (as well as for all stocks as a group) stratified by deciles of filtered

aggregate cashflow shocks. The column labeled All Deciles reveals that the Unscented

Kalman Filter in Paper 1 does a good job of identifying positive and negative cashflow

shocks; there is a steady increase in the realized year-over-year dividend growth rate when

moving from the most extreme negative shocks (Decile 1) through to the most positive

(Decile 10), as one would hope and expect.72

Overall, the results in Table 2.6, which shows sorted portfolios stratified by filtered

cashflow shocks, lead to similar conclusions to those in Table 2.4. In particular, the two

columns on the right hand side show that portfolios of growth stocks outgrow portfolios of

value stocks in all time periods, as expected, and especially during periods of the extremely

negative cashflow shocks (when growth stock cashflows show resilience and value stock

cashflows show pronounced vulnerability). During the most negative 10% of cashflow

shocks, for example, growth stocks sustain positive dividend growth of 6.7%, while divi-

dend growth for value stocks is -24.7%, on average. Table 2.6 also shows that growth stocks

grow 9.9% faster during the most positive cashflow events (Decile 10 of shocks) than dur-

ing the most negative shocks (Decile 1), while value stocks experience 26.8% faster growth,

which demonstrates, again, the extreme economic sensitivity of value stocks. The results

in this table are not perfectly monotonic across cashflow shocks and book-to-market sorted

portfolios, reflecting the imprecision and limitations of this second approach to measuring

aggregate cashflow shocks. Nevertheless, Table 2.6 provides further evidence that value

stocks have excess cashflow sensitivity which can explain their discounted prices and their

72During the most positive estimated cashflow shocks, average year-over-year dividend growth for All

Stocks is 8.2% compared to 0.2% during the most negative shocks, for example.
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premium expected returns compared to growth stocks.

The evidence presented in this section asserts that (a) the prices of value stocks are

more elastic to aggregate cashflow shocks than the prices of growth stocks and (b) the

excess sensitivity of value stock cashflows to shocks, compared to growth stocks, is an

essential explanation of (a). This being the case, the remaining element of my proposed risk

explanation of the value premium is to identify the specific inherent fundamental qualities

of value stocks that cause them to have elevated cashflow elasticity/sensitivity. This is the

task I undertake in the next section.

2.4 Fundamental Determinants of Firm Cashflow Shock

Sensitivity

I begin this penultimate section by proposing a simple comparative static model of the firm

in order to identify the key fundamental determinants a firm’s cashflow shock sensitivity.

Specifically, this representative firm has both fixed and variable costs and its revenues de-

pend in part on aggregate revenues.

In this general model, firm revenue growth, Ri
t+1/Ri

t, is a function of (a) long-term,

firm-specific factors, αi
R, (b) aggregate revenue growth, R̄t+1/R̄t, and (c) zero-mean noise,

εit+1, as in (16).

Ri
t+1

Ri
t

= αi
R + βi

R
R̄t+1

R̄t

+ εit+1 (75)

Cashflows for this firm, Ci
t+1, are simply revenues minus expenses,X

i
t+1, and the latter are

comprised of variable costs (at a rate of li per unit of revenue) and conditionally fixed costs
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(at a rate of ki per unit of assets at time t, Ai
t).

73

Ci
t+1 = Ri

t+1 −X i
t+1 (76)

X i
t+1 = liRi

t+1 − kiAi
t (77)

In this framework, the cashflow growth of the firm at t+ 1 is given by (19)

Ci
t+1

Ci
t

= (
Ri

t+1

Ri
t

)(
M i

t+1

M i
t

) (78)

whereM(≡ 1−X/S) represents cashflow margins.

For our purposes here, the derivative of (19) with respect to aggregate revenue growth

reveals the fundamental drivers of the firm’s cashflow shock sensitivity. That is,

d
Ci

t+1

Ci
t

d R̄t+1

R̄t

= (
Ri

t+1

Ri
t

)(
d
M i

t+1

M i
t

d R̄t+1

R̄t

) + (
M i

t+1

M i
t

)βi
R

= βi
R
(1− li)

M i
t

= βi
R

(1− li)

(1− li − kiAi
t

Ri
t
)

(79)

Equation (20) says that that the sensitivity of the firm’s cashflow growth to aggregate shocks

depends on both the economic sensitivity of the firm’s revenues (βi
R), and the fixed costs

share (i.e., the magnitude of
kiAi

t

Ri
t
relative to the contribution margin, 1 − li). If there are

no fixed costs, then the beta of firm revenues to aggregate revenues (revenue beta) alone

controls the response of firm cashflows to shocks, but if the fixed cost share is large (i.e., if

the firm’s operating leverage is large) then the revenue beta effect will be magnified.

73The cost of capital for this firm, ki, is likely to be a function of its financial condition, including its degree
of financial leverage.
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While the revenue beta is generally determined by the features of the industry in which

the firm operates (e.g., cyclical vs. non-cyclical, discretionary vs. staple, nascent vs. ma-

ture), operating leverage is governed by several firm-specific factors. A principal factor is

the capital intensity of the firm’s operations (i.e., the amount of assets required to produce

a unit of revenue, Ai
t/Ri

t). Since capital costs are conditionally fixed in this model, the

greater is Ai
t/Ri

t, the greater will be the fixed cost share and operating leverage, and the

more magnified the revenue beta effect will be for any given aggregate shock. However,

the capital cost per unit of assets, ki, also play a role in that firms with higher financing

costs will be have a higher fixed cost share, all else equal. The level of ki will depend on

many factors but in the data analysis that follows, I make the simplifying assumption that

it is a function of the firm’s financial leverage (i.e., the asset-to-equity ratio, Ai
t/B

i
t , where

B is equity book value).74

Importantly, the level of the the firm’s cashflow margin, M i
t , also impacts operating

leverage. Although the revenue beta multiplier, (1 − li)/M i
t in (20), will tend to be large

for firms with high capital intensity, it will also be large for firms with low cashflowmargins

even if capital intensity is not high. To illustrate, I note that (1−li)/M i
t will equal 4 both for

a firm with a 20% cashflow margin, but whose capital costs are 60% of revenue, and for a

10% margin firm whose capital costs are only 30% of revenue. For this reason, low margin

firms will be more likely to have higher sensitivity to cashflow shocks, ceteris paribus.

2.4.1 Shock Sensitivity Attributes in Value-Sorted Portfolios

This simple model of the firm has identified four primary determinants of the firm’s sensi-

tivity to cashflow shocks: revenue beta, capital intensity, margins, and financial leverage.

The cashflows of firms with the highest revenue beta, lowest profit margins, highest capital

intensity and most financial leverage will be most vulnerable to negative aggregate shocks

74A more complete model of the cost of capital would account for rates of depreciation, the growth and

stability of cashflows, as well as other risk factors, and would be time varying as macroeconomic and firm-

specific conditions change.
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and will benefit the most from positive shocks. In the context of the risk explanation of

the value premium that I have advanced in this paper, and in Paper 1, such firms ought

to be more feared by investors causing their stocks to be discounted and assigned to value

portfolios. Accordingly, to investigate this hypothesis empirically, I compute revenue beta,

capital intensity, margins, and financial leverage for book-to-market sorted portfolios of

stocks from 1952 to 2019 and I compare the computations for value portfolios to those for

growth portfolios.

The methodology I use here is similar to that used in previous sections of this paper.

Combining data from CRSP and Compustat, I assign all stocks (drawn from NYSE, Nasdaq

and AMEX) into book-to-price sorted decile portfolios at the end of June each year from

from 1952 to 2019. For each year and each decile portfolio, I calculate the year-over-year

revenue growth, profit margins (gross, operating and net), asset-to-revenue ratio and asset-

to-equity ratio.75 To compute the typical value of a portfolio characteristic (e.g., asset-to-

revenue ratio) in any year, I sum the numerator across all portfolio constituents and divide

that total by the sum of the denominator across all constituents.76 Given that the book-to-

market sorted portfolios are formed each year using June-end market values and prior fiscal

year book values, and given that market prices reflect forward-looking risks, it is ambiguous

as to which ”year” should be used to compute the portfolio characteristics (i.e., should it

be the current fiscal year in which the portfolio sorting is done, or the fiscal year following

the portfolio sorts?). As a result of this ambiguity, I calculate, for every sorted portfolio,

each characteristic using both the current fiscal year and the next fiscal year and I show

both computations.77 The results are shown in Table 2.7 & Table 2.8. Table 2.7 shows the

75The relevant data fields in the Compustat Annual database are REVT (revenues), GP (gross profit),

OIADP (operating profit), NI (net profit), AT (assets), AT minus LT (equity)

76I refer to this weighting method as ”total weighting” or ”fundamental weighting”. This methodology

avoids the ’outlier’ problems that arise when applying equal weighting or capitalization weighting to indi-

vidual constituent ratios which can occasionally have unusually large or small values. For robustness, I also

conducted the analysis using median portfolio values, with ostensibly similar results.

77For the asset-to-revenue ratio, for example, I calculate Ai
t/Ri

t and A
i
t+1/Ri

t+1 separately for each sorted
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results for current fiscal year characteristics while Table 2.8 reflects the subsequent fiscal

year.

Focusing on revenue growth in Table 2.7, the book-to-market sorting methodology

clearly does a good job of predicting year-of-year growth rates, as one would expect; mov-

ing from Growth portfolios (Decile 1), with a mean growth rate of 13.85%, to Value port-

folios (Decile 10), with a mean growth rate of -0.24%, the growth rate increases almost

monotonically. The 14.1% revenue growth advantage for Decile 1 over Decile 10 portfo-

lios is also highly statistically significant (t-statistic = 8.9). Remarkably, the book-to-market

sorting also does a highly effective job of predicting profit margins (gross, operating and

net), asset-to-revenue ratios and asset-to-equity ratios across portfolios. Specifically, the

growth portfolios have economically (and statistically) larger margins, lower capital inten-

sity, and lower financial leverage than value portfolios. In each case (with the exception of

the asset-to-equity ratio), the portfolio characteristic increases or decreases monotonically

across sorted deciles and the difference in values between Decile 1 and Decile 10 are highly

statistically significant. The consistency and strength of these results across sorted portfo-

lios highlights the role that these fundamental asset characteristics play in in explaining

their riskiness.

The Revenue Sensitivity section in Table 2.7 presents the results of time-series OLS

regressions of the form shown in equation (16) for each book-to-market sorted portfolio.

The intercept in these regressions reflects the long-term average revenue growth premium

of each sorted portfolio (compared to theAll-Stock portfolio) and, unsurprisingly, the values

are large and significant for growth portfolios and small and significant for value portfolios.

The slope term in these regressions is the revenue beta (the estimates for which are highly

statistically significant for every decile portfolio). The revenue beta for growth stocks is

0.61, compared to 1.17 for the value stocks, which is a remarkable and convincing result.

It is also noteworthy that the R-squared from these regressions, while large and meaningful

decile portfolio.
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for every portfolio, are smallest for the growth portfolios; for example, R2 averages 0.25

for Decile 1 and 2 regressions compared to 0.59 for Decile 9 and 10 regressions). This says

that aggregate revenue growth, while an important driver of revenues for both growth and

value portfolios, is significantly more important for the latter. The unexplained variability

in revenue growth for Decile 1 and Decile 2 portfolios suggests that other (perhaps non-

systematic) factors are important for the revenues of growth stocks.

Comparing Table 2.7 to Table 2.8, it is evident that the results do not change meaning-

fully when the portfolio characteristics are computed asFYt+1/FYt rather thanFYt/FYt−1;

the same pattern of results is evident in both tables. This implies that the book-to-price port-

folio sorting procedure, which does a good job of predicting fundamental portfolio charac-

teristics in year t, remains a good predictor of those characteristics in year t+1. This result

echoes the analysis of the value-minus-growth returns by holding period in Table 2.14 &

Table 2.15 as part of the Appendix (which show that the book-to-market sorts remain a po-

tent predictor of the value premium for several years after an initial portfolio sort), and is

consistent with a world in which assets are discounted because they are riskier and where

those risks derive from their fundamental characteristics which evolve slowly from one year

to the next.

In this section, I have shown that value stocks have a higher revenue beta and a higher

revenue beta multiplier than growth stocks; the revenues of value stocks are significantly

more economically sensitive than growth stock revenues, and they have excess operating

and financial leverage, and lower margins. These are precisely the characteristics that were

revealed in Equation (20) to drive the sensitivity of a firm’s cashflow to cashflow shocks.

The results in this section are striking in several respects; they are highly consistent across

sorted portfolios, they are economically and statistically highly significant, and they explain

clearly the mechanisms underlying the excess cashflow sensitivity of value stocks.
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2.5 Conclusion

In this paper, I have sought to complete the risk explanation of the value premium that I

proposed in Paper 1. While that paper showed that, from an investor preference perspec-

tive, the value premium is explained by fears of near-term aggregate cashflow shocks, this

paper has sought to explain why value firms are especially vulnerable to cashflow shocks

and to relate the risk discounting of value stock prices to inherent, measurable, fundamental

firm attributes. I introduced the Cashflow Shock Elasticity of Price of an asset in order to

relate its discount rate to its cashflow shock sensitivity. Then I showed that value stocks

exhibited significantly larger cashflow shock elasticity than growth stocks during past eco-

nomic shocks (both observed and estimated). These results confirm that the investors’ fear

of cashflow shocks is central to the discounting of value stocks compared to growth stocks.

Finally I identified the firm-level fundamental attributes that induce cashflow shock elas-

ticity and I found convincing evidence that portfolios of value stocks have significantly

more of these attributes than growth portfolios. This result provides a microeconomic jus-

tification for the outsized impact of aggregate shocks on value firms. In conjunction with

Paper 1, the analysis and results in this paper show that investors fear and discount value

stocks because those firms are especially vulnerable to near-term cashflow shocks, owing

to their inherent fundamental characteristics, which renders them poor economic hedges at

inconvenient times, and therefore riskier.
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2.7 Appendix: Historical CluesAbout theRiskiness ofValue

Stocks

2.7.1 Magnitude and Persistence of the Value Premium

In Table 2.9, I show the long-term mean returns, standard deviations, standard errors, and

Sharpe ratios for market-capitalization-weighted univariate sorted-decile portfolios of US

equities for the period from January 1952 to December 2019.78 On average over this time

period, capitalization-weighted excess returns for US value stocks (Decile 10), have ex-

ceeded the returns for growth stocks (Decile 1) by approximately 4-5% per annum.79 (In

Table 2.10, I present similar summary statistics for equal-weighted portfolios. In general,

equal-weighted returns are larger than capitalization-weighted returns across all deciles and

for the value-minus-growth spread, which averages 7 to 10% per year depending on the uni-

variate sorting ratio used.)

These data lend strong support to the existence of a value premium in the pricing of US

equities. The excess return premium earned by value stocks is economically and statistically

large and is not explained by either the volatility of their returns or a small cap effect. The

persistence of these large excess returns over such a long period of time is difficult to explain

in a framework where the value premium is caused by the correction of temporary pricing

errors that derive from irrational investor behavior.

78This table is taken from O’Neill (2022) and is an updated and expanded version of Table 1 in Lettau &

Wachter (2007).

79All portfolio return data for univariate sorts on earnings-to-price (E/P), cashflow-to-price (C/P), dividend-

to-price (D/P) and book-to-market (B/M) in Table 2.9 are taken fromKen French’s website which in turn takes

its fundamental data fromCompustat and its pricing data fromCRSP, coveringmost NYSE, AMEX andNAS-

DAQ stocks. See https : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
Except book value data which is hand collected from Moody’s Manuals and is available back to 1926. Also,

although I include statistics for D/P for comparison to Table 1 in Lettau & Wachter (2007), this ratio is less

useful than the others as a measure of value since a high dividend yield can just reflect a firm’s dividend

payout policy, rather than indicating a discounted stock.
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2.7.2 The Value Premium & CAPM

The value premium is also not explained by CAPM betas, as shown in Table 2.11. To

generate this table, I ran Ordinary Least Squares (OLS) regressions of the excess portfolio

return (Ri − rf ) against the excess return of the value-weighted CRSP Index (Rm − rf ) for

each valuation ratio and each sorted decile, where rf is the one-month treasury bill.

Ri − rf = αi + βi(Rm − rf ) + εi (80)

Looking at the Table 2.11, the alpha coefficients from these regressions are, for the most

part, increasing in deciles when moving from growth to value. At the extremes, the alphas

for the growth portfolios are negative and significant, and the value portfolio alphas are

positive and significant. In every case, the alpha on the portfolio that is long value and

short growth is economically and statistically large, suggesting that the premium return

earned by value stocks cannot be solely attributed to higher CAPM betas. Even if some

portion of the value premium can be attributed to CAPM betas, some other risk factor(s)

has stronger explanatory power.

A similar result was observed in Lettau &Wachter (2007) for the 1952-2002 period but

it is notable here that the result holds even after incorporating the perverse value-minus-

growth returns which were experienced in the decade following the Great Recession (shown

in the far right column of Table 2.9).80 However, the alphas in my study are meaningfully

80In the decade following the Great Recession, average annual capitalization-weighted returns on value

stocks were more than 5% lower than growth stock returns (data from Ken French’s website for the period

12/31/2009-12/31/2019 using univariate sorts onmarket-book ratios and simple annualization, taking 12 times

the monthly average return of growth decile minus the value decile). This ”lost decade” in the profitability

of value strategies has caused some to question the persistence of the value premium and even whether it has

ever existed (see, for example, Lev & Svristava (2019) and Fama & French (2020)). I do not address this

issue directly in this paper. Given the long-term evidence in Table 2.9 & Table 2.10 (which includes return

from the 2009 to 2019 period, and other periods when value stocks underperformed growth stocks), I take it

as given that the value premium exists (and deserves an explanation), albeit with time-variability. I also point

out that the negative returns to value stocks after 2009 coincided with two extreme contractionary shocks to

the US economy (the Great Recession and the Coronavirus pandemic and related lockdowns). If these shocks

are the types of unanticipated negative risk events that value stocks are more exposed to and are discounted

for, then a decade or more of negative relative returns for value strategies can still be consistent with risk-

discounting of value stocks and their above-average expected returns. To use an insurance industry analogy,
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lower than those observed in Lettau & Wachter (2007). The fact that the long-term CAPM

alphas have declined following the inclusion of the post-2009 data is not solely attributable

to the perverse returns on value stocks which ensued. It is also because the ”CAPM riski-

ness” of value and growth portfolios underwent a marked structural shift during and after

the Great Recession. This can be gleaned from Table 2.12, where I show the results from

rolling 250-trading-dayOLS regressions of capitalization-weighted portfolio excess returns

on the excess returns to the capitalization-weighted CRSP Index over different time peri-

ods.81 These regressions identify a marked shift in the CAPM riskiness of growth and

value stocks in and after 2009, with value stocks becoming one standard deviation more

risky than usual and growth stocks one standard deviation less risky. In other words, in-

vestors in value stocks experienced perverse value-growth returns after 2009 despite taking

on additional CAPM beta risk, illustrating both the ineffectiveness of the CAPM to explain

the value premium (and the likelihood that some other risk factors are pertinent), and the

pronounced time variability of the premium itself.

2.7.3 Time Variability and Asymmetry of the Value Premium

Even though the poor returns from value stocks after 2009 have not caused the long-term

value premium to disappear, it is instructive to ask how unusual those returns have been

compared to prior history. Do they represent a break with the past (i.e., a new pricing

regime), or the typical time variability of the premium? In Figure 2.1, I plot the rolling

10-Year mean capitalization-weighted return of the value-minus-growth portfolio.82 The

data, which is monthly, is from Prof. Ken French’s website and I use only book-to-market

a similar phenomenon is frequently observed property & casualty insurance market when, after a large natural

catastrophe like a hurricane or an earthquake, prior written insurance policies turn out to be unprofitable for

the insurers resulting to a ”hard-pricing” cycle of higher insurance premiums.

81In this table, I only show data for Decile 1 (Growth) and Decile 10 (Value) portfolios formed by sorting

book-to-market ratios. Data from Prof. Ken French’s website

82Monthly data from July 1926 to June 2019. Decile 1 (Growth) and Decile 10 (Value) portfolios formed

using sorted book-to-market ratios.
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sorted portfolios because this data has the deepest history (i.e., back to 1926). As shown

in Figure 2.1, there have been at least six occasions since 1926 when the trailing ten-year

value premium has been negative (1958, 1961, 1973, 1999, 2012, 2015-2019). Thus, the

recent perverse value premium is not unique. But it is, nevertheless, remarkable for (a)

having the most perverse premium in history (-5.5% at year end 2019 compared to half of

that, or less, for each of the other lengthy drawdowns), and (b) having the longest sustained

period of negative ten-year value-minus-growth returns in history (67 months, compared to

a range of 4 months to 37 months for the other drawdowns).

However, as uncommon as the recent perverse value-minus-growth returns have been,

they may not be statistically aberrant in the context of the full history. In Figure 2.2, I plot a

frequency distribution of the rolling ten-year mean value premium. From 1926 to 2019, the

mean ten-year value premium is 6.14% and the standard deviation is 5.50%. For illustration

purposes, if I assume that ten-year mean returns are normally distributed (µ = 6.14%, σ =

5.50%), then an observed ten-year value premium of 0%would be a -1.12 standard deviation

event. That is, we should expect to observe negative ten-year value-minus-growth returns

approximately 13.13% of the time. The actual frequency of observed negative ten-year

value-minus-growth returns in Prof. Ken French’s data (as shown in Figure 2.1 & Figure

2.2) is 14.8%, which is statistically similar. Indeed, a ten-year mean value-minus-growth

return of -5.5% (as was observed in December 2019) would be a -2.12 standard deviation

event which, under normality, ought to be observed 1.7% of the time, or about 17 months

in this sample. The actual observed frequency is 7 months.83

These observations confirm (a) that the US value premium has been time-varying (a

feature that must be part of any comprehensive risk explanation of the premium), and (b)

that the perverse returns to value stocks after the Great Recession may not be the death knell

83For completeness, in this data ten-year value-growth returns at or above +2.12 standard deviations were

only observed in 1 month, compared to 17 expected.
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for the value premium.84 This time variability of the value premium ismore easily explained

by time varying risks than behavioral pricing errors; if the value premium derives from

irrational investor behavior that is rooted in enduring human flaws (e.g., short-sightedness,

extrapolation, or excessive exhuberance/pessimism), then one might expect more stability

in value-minus-growth return year after year.

The value premium has also been asymmetric, deriving largely from the outperformance

of value stocks rather than the underperformance of growth stocks. In Table 2.13, I show

the mean relative contributions to the value premium from growth and value portfolios

historically and in Figure 2.3 I plot how these relative contributions have varied over time.

Table 2.13 shows that the long-term mean capitalization-weighted value premium of

5.2% is comprised of 4.5% from ”outperforming value” (versus CRSP Index) and only

0.7% from ”underperforming growth”.85 The pattern is similar for the 1952-2019 period

and for equal-weighted returns.86 Figure 2.3 plots the rolling ten-year contributions to the

value premium from value and growth separately in a stacked bar graph. This chart con-

firms that the premium is driven primarily by outperforming value portfolios most of the

time (e.g., in 93% of the rolling 10-year periods in the full sample, the contribution from

”outperforming value” accounts for half or more of the total premium). It also shows that,

with few exceptions (i.e., early 1970s and late 1990s) the ten-year mean market-relative

return of value and growth portfolios have the opposite sign from each other. Indeed, the

correlation coefficient of the ten-year relative returns of value and growth portfolios is -0.42

in the full sample, which suggests that outperforming value and underperforming growth

share a common risk explanation, but without the effect being perfectly symmetric.

84If the extreme negative cashflow shock of the Financial Crisis/Great Recession is an example of the risk

that causes value stocks to be discounted in the first place, and if those risks remained elevated for years after

2009, then the ”lost decade” for value stocks from 2009-2019 can be entirely consistent with a risk explanation

of the value premium.

85Prof. Ken French data, 1926 to 2019, book-to-market sorted portfolios only.

86For equal-weighted returns, the value premium for the full period is 13.4% with 11.38% deriving from

”outperforming value”.
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Figure 2.4 and Figure 2.5 further reveal that the factors underlying the return dynamics

for value and growth portfolios are not exact mirror images of each other. Figure 2.4 charts

the rolling 250-trading-day CAPM beta of growth and value portfolios to the CRSP Index

(capitalization weighted) from 1926 to 2019. On average, the beta of the value portfolio is

larger than the growth beta (1.29 versus 1.07, although this result is skewed by unusually

large value betas in the 1930s and 1940s) and it also has more volatility (0.44 standard

deviation versus 0.14). Given that we know the CAPM does not explain the value premium

well, it must be true that value stocks sometimes outperform a rising stock market with

higher CAPM beta, and sometimes outperform a declining market with a lower beta. In

other words, some other risk factor(s), in addition to beta, is(are) involved.87

Figure 2.5 plots the rolling 250-trading-day correlation coefficient of value and growth

returns with CRSP Index returns (all returns capitalization weighted) from 1926 to 2019.

Over the full period, growth returns are meaningfully more correlated with the market,

on average, than value returns (0.95 correlation coefficient versus 0.86) and the growth

correlation exhibits less volatility over time (standard deviation of 0.02 versus 0.06). Only

rarely in this long sample does the value portfolio have as tight a correlation with the market

as the growth portfolio. Growth stocks, it seems, comove more sympathetically with the

whims of the market than value stocks, which is a further indication of an asymmetry in

underlying risk drivers.88

Overall, the asymmetrical importance of value-minus-market returns to the value pre-

87It is also noteworthy that the correlation coefficient between the CAPM beta of value and growth over

the full time period in Figure 2.4 is -0.72 which is large and highlights time variability in investor’s beliefs

about the relative riskiness of these assets.

88Table 2.17 offers additional insights. It shows the relative performance of the Russell 1000 & 2000

indices, by style, during the three sharpest market sell offs in the 20 years through December 2019. During

the 2000/2001 market decline that followed the bursting of the ”internet bubble”, large and small growth

stocks declined 50% while value stocks were close to unchanged. In contrast, value stocks fared worse than

growth stocks in the 2008/2009 Financial Crisis decline and during the Covid-19 decline in 2020. These latter

two selloffs corresponded with abrupt declines in aggregate economic activity whereas the former did not,

suggesting that value stock prices are particularly sensitive to negative economic shocks, while the growth

stock prices may be more sensitive to changes in risk premia.
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mium, compared tomarket-minus-growth returns, is easier to explain in a framework where

value stocks possess an asymmetric risk exposure, than it is to explain in a framework where

investors are more irrational in the pricing of value stocks than they are in the pricing of

growth stocks.

2.7.4 Value Premium by Holding Period

Whether value and growth stocks share common risk drivers or not, if the value premium

has a risk explanation, then the time horizon over which riskier stocks earn premium returns,

should mirror the horizon over which they are exposed to the underlying risk. If the risk is

short lived, then the horizon of the reward should be short, and if the risk is long lived (e.g.,

if it derives from slowly-evolving asset fundamentals), then the premium return should be

long lived too. In the analysis thus far, I have emphasized a one-year holding period for

sorted portfolios, but in this subsection I examine the efficacy of value-sorted portfolios

over longer horizons.

To facilitate this, I need a different source of portfolio data than Prof. Ken French’s

website. Prof. French’s high-quality dataset has been widely vetted and used in many

prior academic studies. And even though it has been widely used, this data can still be

employed in novel ways to generate insights into the dynamics of the value premium, as I

have shown above. However, this data is limited in the kinds of research questions it can

answer. For example, it can not be used to test alternative portfolio formation rules (e.g.,

forming portfolios more than once a year, or using other valuation ratio sorts, or combina-

tions of sorts). Neither can it be used to test alternative portfolio weighting schemes (i.e.,

other than monthly equal weighting or cap-weighting). It also cannot be used to evaluate

portfolio holding periods greater than one year.89 To overcome these limitations here, I

generate my own book-to-market portfolio sorts (and calculate my own portfolio returns)

89Recall that the univariate sorted data on Ken French’s website assumes that portfolios are reformed each

year at the end of June and rebalanced every month using either equal-weighting or market value weighting.
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in order to examine the potency of the value effect for portfolio holding periods which are

longer than one year.90

Specifically, I use the CRSP-Compustat merged database to consider the largest 99.5%

of actively traded companies with a CRSP share code of 10 or 11 at the end of June each

year from 1952 to 2019.91 Book values are taken from the Compustat Annual database and

market values are taken fromCRSP. To calculate the book-to-market ratio for a given stock,

I use the June-end market values and I use most recent then-known fiscal year book value,

as long as it was reported at least four months before the end of June. (This differs from

Prof. Ken French’s approach which takes market values from the end of the prior calendar

year and book values from the last fiscal year ending in the prior calendar year.)92 Stocks

are ranked by book-to-market at the end of June each year, as usual, and assigned to decile

portfolios.

Table 2.14 and Table 2.15 illustrate how the value premium evolves as the portfolio

holding period is lengthened. Following each June-end portfolio formation, I calculate sub-

sequent buy-and-hold portfolio returns over multi-horizon holding periods (ranging from 1

year to 10 years) using monthly return data. Stocks remain in their assigned portfolio for

the duration of the holding period and their weightings in the portfolio evolve naturally each

month based on their monthly total returns relative to the other stocks in the same portfo-

lio. If a stock is acquired or delisted during the holding period, its weight in the portfolio

at the date of the corporate action is reallocated to the remaining stocks in the portfolio

90In Table 2.18 in the Appendix, I also explore, with mixed results, the effect on the value premium of

conditioning the initial portfolio sorts on the length of time that the underlying stocks have been in the ”value”

and ”growth” deciles (i.e., the value & growth gestation period).

91For thoseCRSP permnos with multiple permcos, I consider only the permco with the largest market value

on a given date.

92Prof. Ken French’s methodology is conservative, but it also uses data which is stale. Each June, its

rankings are generated using market values which are six months old and book values which are at least six

months old. In fact, when following Prof. French’s approach, even for a company on a December fiscal year

end, there is never any portfolio formation month when the book-to-market ratio so calculated, reflects the

most recently known market value and book value; the fiscal year end book value is not known until it is

reported after December and by that time, the market value will have changed.

96



in proportion to the then-prevailing portfolio weights. This approach captures a buy-and-

hold-and-reinvest portfolio strategy with minimal trading. (Again, this methodology differs

from Prof. French’s approach of re-applying a portfolio-weighting scheme each month in

between annual portfolio sorts. I believe that my approach minimizes trading in the port-

folio after the initial formation date, and provides a purer measure of the holding period

return that is attributable to the initial value sort.)

Table 2.14 and Table 2.15 each contain two panels of data. The first shows the mean

Year N (N = 1, .., 10) returns of each decile portfolio and each holding period, and the

second shows the standard deviation. (For each sorted decile, the Year N mean return

is the weighted portfolio return in the Nth year after the portfolio was formed, averaged

across the total number of years that portfolios were formed.) At formation, all portfolio

constituents are equal-weighted but thereafter the constituent weights evolve based on the

buy-and-hold-and-reinvest just described. The results in Table 2.14 allow for overlapping

holding periods. That is, a stock initially assigned to a portfolio in, say, June 1970 will be

included in that 1970-base-year portfolio for up to 10 years. However, that same stock may

also be assigned to a decile portfolio in June 1971 and held in that 1971-base-year portfolio

for up to 10 years. Thus, new base-year portfolios are formed each year (1952-2019) and

there can be overlapping constituents and returns across base-year portfolios. The results in

Table 2.15 are for non-overlapping holding periods, i.e., the Year-N portfolio returns reflect

information only for base-year portfolios formed every N years.

Looking at the value-minus-growth mean returns (the ”V-G” column on the right-hand

side of Table 2.14), the Year 1 value premium averages 7.69%, which is similar to the

one-year estimates from Ken French’s data.93 Remarkably, as the portfolio holding period

is extended, the value premium remains strong in subsequent years. In Year 2 for exam-

ple, the V-G spread is even larger (10.8%) and in Year 3, value stocks continue to outper-

form growth stocks by more than 8%. This pattern of sustained outperformance continues

93See Table 2.9.
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through Year 7, meaning that, in this long sample, it was possible to exploit the value effect

using book-to-market portfolio sorts that were 72 months stale. It is difficult to reconcile

this result with the behavioral hypothesis of the value premium. The behavioral hypothe-

sis presumes that the premium derives from irrational pricing errors which are eventually

corrected, but this result suggests that these ”errors” are left uncorrected for many years,

which is unlikely in competitive financial markets. Instead, this result is more consistent

with a risk-based explanation of the value premium in which the fundamental characteris-

tics of the constituent stocks in the value portfolio define the risk and are slow to change,

meriting sustained high expected returns for long periods. (The numbers in Table 2.15,

representing non-overlapping holding periods, confirm the findings from Table 2.14, albeit

with more variability in mean returns across portfolios and holding periods, as is expected

since each number in Table 2.15 is calculated from a smaller sample of observations than

the corresponding number in Table 2.14.)

As an interesting aside, the calculations in Table 2.16 are performed similarly to those

in Table 2.14 (in that they are based on overlapping holding periods) but rather than adopt a

buy-and-hold-and-reinvest portfoliomethodology, returns are calculated by equal-weighting

the surviving constituents of the original base-year portfolio every month. I noted in Paper

1 that monthly equal-weighting (as is used in Prof. Ken French’s data library for example)

implies costless trading in the portfolio each month and can bias the measured value pre-

mium upwards if stock prices commonly exhibit short-term technical price reversals.94 By

comparing the ”V-G” column in Table 2.16 to Table 2.14, this effect is plainly evident; for

every year following portfolio formation, the value premium, V-G, in Table 2.16 is larger

than in Table 2.14, often by more than two percentage points per year. Because of this, I

believe the methodology used in Table 2.14 produces a purer measure of the value effect,

untainted by portfolio trading artifacts, especially as the holding period is lengthened.

94See, for example, Nagel (2011) and de Groot, Huij & Zhou (2012) for evidence on the existence of, and

potential trading profits from, short-term reversals.

98



2.7.5 Further Observations & Analysis

2.7.5.1 Value Premium by Gestation Period

Table 2.18 presents some initial results of an analysis which asks if the length of time that

a stock has been a ”growth” or ”value” asset before being assigned to a portfolio (i.e., the

value/growth gestation period), has any effect on the subsequent returns to that portfolio.

Stock are ranked by book-to-market at the end of June each year, as usual, but the con-

stituents of the growth and value deciles are each then assigned to subportfolios depending

on how many years, of the previous five (including the current year) that the stock had been

in that decile, or the next adjacent decile. For example, a value gestation period of 5 years

means a stock has been in Decile 10 or 9 in each of the last 5 years. This could be consid-

ered a ”mature value” subgroup while a 1-year gestation is ”immature value”. For growth

portfolios, the results of this conditioning are inconclusive; there is no obvious, meaningful

differences in returns between subportfolios. For the value portfolios, there is a tendency

for ”mature value” to have larger mean returns than ”immature value” in the early years af-

ter portfolio formation. While this may be related to a short-term negative price momentum

effect that is present for newly minted value stocks but absent for mature value stocks, the

result is also consistent with a risk explanation of the value premium in which the risks for

mature value stocks are well established and appropriately discounted in their prices. For

both growth and value portfolios, the longer the gestation period, the lower the standard

deviation of portfolio returns at every holding period which is an additional factor favoring

the mature value portfolio.
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2.8 Tables & Figures for Paper 2
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