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Abstract

Connectedness is a concept which is central to many areas of scientific interest.

For what regards Economics and Finance, a remarkable example of the importance

of the analysis of connectedness is the economic and financial crisis that begun

around 2007.

One of the issues debated about that phenomenon is, in fact, the exceptional

amount of connectedness characterizing a vast set of features of the financial sec-

tor: market risk, portfolio management, pricing and systematic risk are all exam-

ples of areas of study and practice that have been moved by some sort of connect-

edness among them and inside their categories.

One other way to state the problem is then to consider the mentioned crisis

a highly multidimensional phenomenon, as connectedness arise as a relationship

between a set of variables, and treat its complexity as a non linear process.

To proceed forward, the first question to answer would be how to model the

concept of connectedness. The Diebold and Yilmaz framework adopted in this

dissertation offers a methodology intended to identify connectedness and in a way

that accommodates both its multidimensional nature and the non linearity require-

ment.

The multidimensional issue is solved by the Diebold and Yilmaz framework by

identifying the connectedness measures through forecast error variance decompo-

sitions of vector autoregressions (VARs). Such a formulation is also key for fram-

ing connectedness as a feature influenced both by contemporaneous and lagged

relationships among variables.

More specifically, connectedness measurements are identified as “forecast er-

ror variation in various locations (firms, markets, countries, etc.) due to shocks

arising elsewhere”. In practice, forecast error variance decompositions return a

square matrix of forecast error variance shares of the order the number of system

variables. Each variance share is either directed from a system variable to another,

or from the system variable to itself. Variance shares are, moreover, the primitives
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of aggregates that describe more complex relationships, as, for instance, the total

connectedness in the system, the amount of connectedness directed from the whole

system to one of its variables and vice versa, or even connectedness directed from

one subset of the system variables to another subset of them.

The forecast error variance decomposition framework requires an identifica-

tion method. The classic way to do it is to declare a causal order among the sys-

tem variables and identify the forecast error variance decompositions through the

orthogonal decomposition of the variance covariance matrix of the errors. Another

way is the generalised (with respect to the order of the system variables) method,

which needs a tractable distributional assumption of the (conditional) error term,

typically normality. In multidimensional and non linear settings, the second choice

might be preferable, as the causal chain can be an ambiguous structure to deter-

mine.

What about the non linearity issue? One easy way to accommodate for non-

linearity that has been shown to be a very general approximation of nonlinear

models, which parameters change smoothly, or which parameters abrupt change

can be predicted by a “hidden” linear model, is to formulate the nonlinearity as a

linear model with time varying parameters. In practice, one estimates a linear VAR

using the rolling windows technique, allowing thus the connectedness measures to

vary over time, according to the characteristics of the sample in each window.

Another way to deal with nonlinearity is to explicitly model it, allowing thus

the analyst to make a priori decisions about the form of the system distribution.

This dissertation offers novel techniques that enable to explicitly model connect-

edness measures for both GARCH-DCC (first chapter) and Markov Switching

(second chapter) specifications of VARs and it does so by extending the variance

decomposition framework, both classic and generalized.
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Assessment of the Impact of Multivariate Heteroscedasticity

on the Dynamics of the Diebold and Yilmaz Measures of

Connectedness.

The Realized Volatility Case.

Abstract

This paper introduces multivariate heteroscedastic effects in the dynamics of

measures of connectedness proposed and developed by Diebold and Yilmaz (Diebold

and Yilmaz [8], Diebold and Yilmaz [9], Diebold and Yılmaz [10], Diebold and

Yilmaz [11]). The measures are based on forecast error variance decompositions.

We consider variability in the covariance matrix of the error vector by using the

Dynamic Conditional Correlation (DCC) model of Engle [12]. We develop this

framework both for the Orthogonal Variance Decomposition (OVD) and General-

ized Variance Decomposition (GVD) measures of connectedness. We apply this

new methodology to measure the variability in the links between a set of weekly

time series of realized variances for returns of equity indices. We confirm the

presence of heteroscedastic effects and compare our results to a rolling-window

methodology.
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1.1 Introduction

As developed in Diebold and Yilmaz [11], issues of connectedness arise in many ar-

eas of finance and economics. Financial crises and contagion have of course surfaced

as a fruitful area of application in the last ten years or so, but the concept of captur-

ing an aggregate effect from individual firm or consumer network links is pervasive

in economics. The main challenge when one wants to gauge systemic effects based

on individual actions is to have a reliable measure. Connectedness provides such a

methodology anchored in modern network theory.

Let us consider systemic risk. One way to think about systemic risk is in terms of con-

nectedness among financial variables. Large comovements in financial asset markets

or in the balance sheets of financial institutions depend on the strength of the connec-

tions between these asset markets, that is their connectedness. Diebold and Yilmaz [8]

introduced a framework to measure connectedness among a set of financial variables

based on a vector autoregression (VAR) forecast error variance decompositions. These

are measures of the shares of the forecast error variance attributable to the shocks in in-

dividual components, leading to a matrix of dimension the number of system variables.

The variance decompositions normally used in the literature, the Orthogonal Variance

Decompositions (OVD), are based on a specific a priori causal chain, or Wold Order

(WO) (Wold [24]), and obtained through a Cholesky factorization. The order of the

decomposition is often difficult to establish. Which variable comes first in the chain of

transmissions? For this reason, the framework was extended by Diebold and Yilmaz [9]

to allow researchers to be agnostic about the order of the decomposition. They propose

variance decompositions which are invariant to ordering called Generalized Variance

Decompositions (GVD). For this decomposition, shocks do not need to be orthogonal

but additional assumptions are needed, typically normality.

The framework has been extensively applied to networks of financial variables, being

them returns or volatilities, as, just for example, in Diebold and Yılmaz [10], Bostanci
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and Yilmaz [5], Demirer et al. [6] and Diebold et al. [7].

To put forward our contribution, let us write the simplest framework with orthogonal

shocks:

yt = ν +

p∑
l=1

Alyt−l + ut. (1.1)

Given a particular sorting of the system variables, the Cholesky lower triangular de-

composition of the conditional variance covariance matrix of the errors is:

Σ = PP ′. (1.2)

Based on this system, static measures of connectedness can be computed. However,

as stressed by Diebold and Yilmaz [11], connectedness may well be dynamic in many

applications. They suggest that the Al coefficients may be time-varying (following

random walks, for example) or that a rolling window is used for estimation. The latter

approach is simple but requires the length of the window to be chosen appropriately, at

the risk of producing a measure that is either too smooth or too choppy. By adopting

such a method, not only the parametersAl will vary with time, but the covariance matrix

of the errors Σ will also change with each window. In this paper, we propose to adopt a

specific data generating process for capturing the time variation of the covariance matrix

of the error terms. We adopt the Dynamic Conditional Correlation (DCC) of Engle [12]

with a diagonal scalar specification.

This property has relevance, as variances and correlations can vary between different

states of the world, in particular, during financial crises. Forbes and Rigobon [16] make

a distinction between interdependence and contagion based precisely on the fact that

the strong links (measured by correlations) between markets remain strong in all states

of the world. It is therefore important to allow for shocks of different amplitudes to

obtain an unbiased measure of contagion.
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To illustrate this modeling strategy, we measure the time-varying connectedness of a

panel of realized variances of returns for several international indices. Our results indi-

cate that the explicit modeling of heteroscedasticity matters indeed and can potentially

significantly impact the connectedness measures, especially during crises.

Other studies employed a GARCH-DCC framework in a Diebold and Yilmaz (DY) con-

nectedness analysis, but none, to our knowledge, has yet extended the variance decom-

position technique to explicitly and formally embed heteroscedasticity into the variance

decompositions. For example, Antonakakis [2] uses a GARCH-DCC model to estimate

conditional volatilities to be used as system variables in a standard VAR, as Anton-

akakis et al. [3] do. In both cases, the dynamics of the connectedness measures were

obtained through rolling windows estimations of linear VARs.

The remainder of the paper proceeds as follows. Section 2 introduces the two main

measures of connectedness introduced by Diebold and Yilmaz (OVD and GVD), while

Section 3 develops the diagonal scalar DCC model. In Section 4, we present the ex-

tension of the Diebold and Yilmaz framework to explicitly account for heteroscedastic

effects. Section 5 provides an empirical illustration of the concept with realized vari-

ances of returns for several international indices. We conclude in Section 6.

1.2 The Diebold and Yilmaz Framework

As mentioned in the introduction, there are basically two methodological approaches to

measuring connectedness. The first relies on a variance decomposition that is based on

orthogonalized residuals from a given ordering on the vector autoregressive (VAR) sys-

tem of variables under study. This is the OVD measure of connectedness that we present

first. The second decomposition is not dependent on a specific WO and is invariant to

ordering, hence its denomination Generalized Variance Decomposition (GVD), but it

requires a tractable distributional assumption about the residuals of the VAR system,

typically normality. Diebold and Yılmaz [10] report that total connectedness is robust
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to Cholesky ordering, but that directional connectedness, from one element to the oth-

ers or to one element from the others, is more sensitive to this ordering. Therefore the

GVD connectedness measures appear useful, especially for large systems or when it is

not possible or desirable to impose a specific WO.

1.2.1 OVD Based Measures of Connectedness

Consider a (K × 1) vector yt = [y1t, y2t, . . . , yKt] and the following V AR (p):

yt = ν +

p∑
l=1

Alyt−l + ut, (1.3)

whereAl are (K ×K) matrices of autoregressive parameters and ut is an i.i.d. normally

distributed error vector with mean zero and variance covariance matrix Σ = [σij].

The process can be rewritten as

A (L) yt = ν + ut, (1.4)

where A (L) = (IK − A1L− . . .− ApLp) and L is the lag operator.

Assuming stationarity, the system has the following infinite MA representation:

yt = µ+ Φ (L)ut, (1.5)

where Φ (L) = (IK + Φ1L+ Φ2L
2 + . . .) : Φ (L)A (L) = IK , µ = ν/A (L) and Φn

are (K ×K) matrices of moving average parameters such that Φ0 = IK and

(Φh|h > 0) =

min(h, p)∑
l=1

AlΦh−l . (1.6)

Following Lütkepohl [21], it is possible to define yt (H), the H-steps ahead forecast

conditional on the information present in t, as
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yt (H) = µ+
∞∑
h=H

Φhut+H−h. (1.7)

As 1.3 can be rewritten as

yt = µ+
∞∑
h=0

Φhut−h, (1.8)

the H-steps ahead forecast error conditional on the information in t is given by:

ξt (H) = yt+H − yt (H)

=
∞∑
h=0

Φhut+H−h −
∞∑
h=H

Φhut+H−h

=
H−1∑
h=0

Φhut+H−h. (1.9)

Finally, the MSE of the forecast can be computed in the following way:

MSE [yt (H)] = Et [ξt (H) ξ′t (H)]

= Et

[
H−1∑
h=0

Φhut+H−hu
′
t+H−hΦ ′h

]

=
H−1∑
h=0

Et
[
Φhut+H−hu

′
t+H−hΦ ′h

]
=

H−1∑
h=0

ΦhEt
[
ut+H−hu

′
t+H−h

]
Φ ′h. (1.10)

Assuming homoscedasticity, the MSE will be

MSE [yt (H)] =
H−1∑
h=0

ΦhΣΦ ′h. (1.11)
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If the analyst is able to produce an a priori WO for the variables of the system, the

Diebold and Yilmaz measures of connectedness could be computed by making the

residuals orthogonal via a Cholesky lower triangular decomposition of the variance

covariance matrix. Although the procedure is well-known, we recall the main steps of

the algorithm in Appendix 1.A.

For every sorting of the system variables, the Cholesky lower triangular decomposition

of the variance covariance matrix is:

Σ = PP ′. (1.12)

It follows that, if we define

wt = P−1ut, (1.13)

wt is an error term with mean zero and

E (wtw
′
t) = Σw = E

(
P−1utu

′
t

(
P−1

)′)
= P−1Σ

(
P−1

)′
= IK . (1.14)

As their variance covariance matrix is the identity matrix, the elements of wt are, of

course, orthogonal. The MA process can then be rewritten as

yt = µ+ Θ (L)wt, (1.15)

where Θ (L) = (Θ0 + Θ1L+ Θ2L
2 + . . .) = Φ (L)P .

The H-steps ahead forecast will be equal to:

yt (H) = µ+
∞∑
h=H

Φhut+H−h

9



= µ+
∞∑
h=H

ΦhPP
−1ut+H−h

= µ+
∞∑
h=H

Θhwt+H−h, (1.16)

with forecast error

ξt (H) = yt+h − yt (H)

=
∞∑
h=0

Θhwt+H−h −
∞∑
h=H

Θhwt+H−h

=
H−1∑
h=0

Θhwt+H−h. (1.17)

As the elements of w are not correlated, the mean squared error is

MSE [yt (H)] = Et [ξt (H) ξ′t (H)]

=
H−1∑
h=0

ΘhΘ ′h. (1.18)

The diagonal elements of the MSE are the mean squared errors of each system equation

and, for the i-th equation, can be expressed as:

e′iMSE [yt (H)] ei =
H−1∑
h=0

e′iΘhΘ ′hei

=
H−1∑
h=0

K∑
j=1

θ2h, ij. (1.19)

The contribution to the MSE of the i-th equation coming from the j-th variable are thus

10



H−1∑
h=0

θ2h, ij =
∑H−1

h=0 e
′
iΘheje

′
jΘ
′
hei

=
∑H−1

h=0 (e′iΘhej)
2 .

Then, the generic element of the (K ×K) upper left quadrant of the connectedness

table is a index based on the (scaled) orthogonal variance decomposition:

d
(OVD)
t, ij (H) =

∑H−1
h=0 (e′iΘhej)

2∑H−1
h=0 e

′
iΘhΘ′hei

=

∑H−1
h=0 θ

2
h, ij∑H−1

h=0

∑K
j=1 θ

2
h, ij

(1.20)

so that the Orthogonal Measure of Total Connectedness (OMTC) can be computed as

S
(OVD)
t (H) =

∑K
i,j=1, i 6=j d

(OVD)
t, ij (H)∑K

i,j=1 d
(OVD)
ij (H)

=
1

K

K∑
i,j=1, i 6=j

d
(OVD)
t, ij (H) . (1.21)

1.2.2 GVD Based Measures of Connectedness

In this section, we briefly report the structure of generalized variance decompositions

introduced Pesaran and Shin [23] and Koop et al. [20]. Consider again a (K × 1) vector

yt = [y1t, y2t, . . . , yNt] and the following V AR (p):

yt = ν +

p∑
l=1

Alyt−l + ut. (1.22)

Conditional on the information in t and on shocks to the i-th equation up to time t+H ,
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that is, uit, ui, t+1, . . . , ui, t+H , the H-steps ahead forecast are equal to:

y
(i)
t (H) = µ+

∞∑
h=H

Φhut+H−h +
H−1∑
h=0

Et (ut+H−h|ui, t+H−h) . (1.23)

The conditional expectation in 1.23 depends on distributional assumptions regarding ut.

Assuming that ut ∼ N (0, Σ),

Et (ut+H−h|ui, t+H−h) =
(
σ−1ii Σei

)
ui, t+H−1−h, (1.24)

where ei is the i-th column of the identity matrix of order K, Then, the H steps ahead

forecast of yt, conditional on given future shocks to the i-th equation, can be represented

as

y
(i)
t (H) = µ+

∞∑
h=H

Φhut+H−h +
H−1∑
h=0

ΦhEt (ut+H−h|ui, t+H−h)

= µ+
∞∑
h=H

Φhut+H−h +
H−1∑
h=0

Φh

(
σ−1ii Σei

)
ui, t+H−h, (1.25)

where the superscript (i) indicates it is conditional to shocks to the i-th equation. Then,

the conditional H-steps ahead forecast errors can be computed as

ξ
(i)
t (H) = yt+h − y(i)t (H)

=
H−1∑
h=0

Φhut+H−h −
H−1∑
h=0

Φh

(
σ−1ii Σei

)
ui, t+H−h

=
H−1∑
h=0

Φh

[
ut+H−h −

(
σ−1ii Σei

)
ui, t+H−h

]
. (1.26)

In Appendix 1.B it is showed that

12



MSE
[
y
(i)
t (H)

]
= Et

[
ξ
(i)
t (H) ξ

(i)′

t (H)
]

=
H−1∑
h=0

ΦhΣΦ ′n − σ−1ii
H−1∑
h=0

(ΦhΣeie
′
iΣΦ ′h)

=
H−1∑
h=0

ΦhΣΦ ′h − σ−1ii
H−1∑
h=0

(ΦhΣei)
2 , (1.27)

so that it is possible to define a quantity ∆t, i (H) such that

∆t, i (H) = MSE [ξt (H)]−MSE
[
ξ
(i)
t (H)

]
= σ−1ii

(
H−1∑
h=0

ΦhΣei

)2

. (1.28)

The second term appearing in 1.28 measures the information brought by conditioning

on the path of uit and the reduction in the total mean-squared error. Every (j, j) ele-

ment of ∆t, i (H) is a component of the the forecast error variance of the j-th equation

accounting for the ignorance about the i-th equation and is therefore the amount of

variance coming from variable i and directed to each of the j = 1, 2, . . . , K variables.

Writing this ∆ expression for each variable in the system constitutes a variance decom-

position. These quantities are called Generalized Variance Decompositions (GVDs),

because they do not assume a specific WO.

The original formulation of the GVD, included in Pesaran and Pesaran [22], scales the

(j, j) elements of ∆t, i (H) by the total MSE in the j-th equation:

d
(GVD)
t, ij (H) =

σ−1ii
∑H−1

h=0

(
e′jΦhΣei

)2∑H
h=0 e

′
jΦhΣΦ ′hej

. (1.29)

Since the GVD includes effects due to covariances (unless the variance covariance ma-

trix of u is diagonal), forecast error variance contributions do not sum to one, because
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such sum is not the MSE of the i-th variable. To standardize the measure, a normal-

ization can be adopted that depends on the focus of the analysis. For instance, if the

analyst wanted a index for the variance spread from each variable through the rest of

the system, she could use the following normalization:

d̃
(GVD)
t, ij (H) =

d
(GVD)
t, ij (H)∑K

i=1 d
(GVD)
t, ij (H)

. (1.30)

By construction then,
∑K

i=1 d̃
(GVD)
t, ij (H) = 1 and

∑K
i, j=1 d̃

(GVD)
t, ij (H) = N . Notice also

that, with such normalization,
∑K

j=1 d̃
(GVD)
t, ij (H) 6= 1.

To obtain a index of the variance received from other variables, then the normalizations

to use will be:

d̃
(g)
t, ij (H) =

d
(g)
t, ij (H)∑K

j=1 d
(g)
t, ij (H)

. (1.31)

The Generalized Measure of Total Connectedness (GMTC) can then be computed as

S
(GVD)
t (H) =

∑K
i, j=1, i 6=j d̃

(GVD)
t, ij (H)∑K

i, j=1 d̃
(GVD)
t, ij (H)

=
1

K

K∑
i, j=1, i 6=j

d̃
(GVD)
t, ij (H) , (1.32)

which returns the same number independently from the normalization scheme chosen.

1.2.3 The Connectedness Table

Diebold and Yilmaz [8] and Diebold and Yilmaz [9] introduced and extended the con-

nectedness table as a (K + 1) × (K + 1) matrix containing both variance decomposi-

tions and aggregate measures. The latter are distinguished in three main blocks. The

14



first two blocks of aggregate measures contain K total directional connectedness mea-

sures coming from other variables and K total directional connectedness measures go-

ing to other variables. The third main block is simply the total variance spilled across

the system.

Orthogonal

The orthogonal connectedness table contains in the upper left quadrant a (K ×K) or-

thogonal variance decompositions. The upper right block is made by a (K × 1) vec-

tor of total directional connectedness measures coming from other variables, while the

lower left block is made by a (1×K) vector of total directional connectedness going

to other variables. Finally, the bottom right block contains a scalar, which is the total

connectedness.

y1 y2 . . . yK FromOthers

y1 dH11 dH12 . . . dH1K
∑K

j=1 d
H
1j , j 6= 1

y2 dH21 dH22 . . . dH2K
∑K

j=1 d
H
2j , j 6= 2

...
...

...
. . .

...
...

yK dHK1 dHK2 . . . dHKK

∑K
j=1 d

H
Kj , j 6= K

Total∑K
i=1 d

H
i1,

∑K
i=1 d

H
i1, i 6= 1 . . .

∑K
i=1 d

H
i1, i 6= 1

∑K
i, j=1 d

H
ij

ToOthers i 6= 1 i 6= 2 i 6= K i 6= j
(1.33)

Generalized

The generalized connectedness table is similar to the orthogonal version, with a few ex-

ceptions. Firstly, the upper left quadrant contains generalized variance decompositions.

Secondly, this table has an “opposite” logic with respect to the orthogonal version, in

the sense that directional totals are transposed, with total to others in the upper right

block and total from others in the lower left block. Such a form is due to the different
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construction of the generalized variance decompositions.

y1 y2 . . . yK ToOthers

y1 dH11 dH12 . . . dH1K
∑K

j=1 d
H
1j , j 6= 1

y2 dH21 dH22 . . . dH2K
∑K

j=1 d
H
2j , j 6= 2

...
...

...
. . .

...
...

yK dHK1 dHK2 . . . dHKK

∑K
j=1 d

H
Kj , j 6= K

Total

FromOthers
∑K

i=1 d
H
i1,

∑K
i=1 d

H
i1, i 6= 1 . . .

∑K
i=1 d

H
i1, i 6= 1

∑K
i, j=1 d

H
ij

i 6= 1 i 6= 2 i 6= K i 6= j
(1.34)

Building Specialized Aggregate Measures of Connectedness

The mathematical structure of variance decompositions allows the analyst to customize

the way aggregate measures are computed. For example, one can select subsets of the

variance decompositions table or build net spillovers to identify major contributors to

the variance of the system. The interested reader may refer to Diebold and Yilmaz [9]

for a more detailed exposition of the possible combinations.

1.3 The Diagonal Scalar DCC Model

1.3.1 The GARCH(1, 1) Diagonal Scalar DCC Model

Following Engle [13], the DCC framework is specified as follows.

Consider a vector ut = [u1t, . . . , u2t]
′ of residuals such that:

ut|Ft−1 ∼ N (0, Σt) , (1.35)

with
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Σt = D
1
2
t RtD

1
2
t (1.36)

following a law such as

Σt = Vt−1 (ut) , (1.37)

so that

Dt = diag {Σt} , (1.38)

is a K ×K diagonal matrix of conditional variances.

In the DCC framework, the dynamics of variances and correlations are specified sep-

arately. A two-step procedure (three steps when covariance targeting is employed) is

then used in the estimation of the parameters. In Engle and Sheppard [15] and Engle

[12] it is in fact shown that the parameters for the dynamics of variances and those for

the dynamics of correlations can be consistently estimated via two distinct ML opti-

mizations.

The first optimization recovers the parameters for the variances process. Once these

parameters are obtained, a second ML optimization, conditional on the former, delivers

the parameters for the dynamics of the correlations.

Still following Engle [13], conditional variances are modeled in K GARCH(1,1) equa-

tions:

σii, t = ωi + αiy
2
i, t−1 + βiσii, t−1. (1.39)

Note that such a modeling strategy does not accommodate for the leverage effect.

Finally, correlations are modeled by first DE-GARCHING the raw residuals. This pro-

cedure is performed by simply dividing the raw residuals by the conditional variances:
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εt = D
− 1

2
t yt. (1.40)

Then, it is possible to define a process Qt, such that its dynamics follow, in terms of the

standardized residuals, a diagonal scalar GARCH(1,1):

Qt = Ω + αεt−1ε
′
t−1 + βQt−1. (1.41)

To ensure that correlations fall between the interval (−1, 1) the following normalization

is carried out:

Rt = diag {Qt}−
1
2 Qtdiag {Qt}−

1
2 . (1.42)

Estimation of the GARCH(1, 1) Scalar Diagonal DCC Model

Given a zero mean conditionally heteroscedastic multivariate normal process and a sam-

ple with width T , the log likelihood for the GARCH(1, 1) Scalar Diagonal DCC Model

can be written as:

L = −1

2

T∑
t=1

(
K log (2π) + log |Σt|+ u′tΣ

−1
t ut

)
= −1

2

T∑
t=1

(
K log (2π) + log

∣∣∣D 1
2
t RtD

1
2
t

∣∣∣+ u′tD
− 1

2
t R−1t D

− 1
2

t ut

)
= −1

2

T∑
t=1

(
K log (2π) + log |Dt|+ log |Rt|+ ε′tR

−1
t εt

)
= −1

2

T∑
t=1

(
K log (2π) + log |Dt|+ u′tD

−1
t ut + ε′tεt + log |Rt|+ ε′tR

−1
t εt

)
= L1 + L2 + ε′tεt, (1.43)

where
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L1 = −1

2

T∑
t=1

(
K log (2π) + log |Dt|+ u′tD

−1
t ut

)
= −1

2

T∑
t=1

(
K log (2π) +

K∑
i=1

(
log (σii, t) +

u2it
σii, t

))

= −1

2

K∑
i=1

(
K log (2π) +

T∑
t=1

(
log (σii, t) +

u2it
σii, t

))
, (1.44)

is the sum of the univariate GARCH likelihoods, which can be maximized individually

and

L2 = −1

2

T∑
t=1

(
log |Rt|+ ε′tR

−1
t εt

)
, (1.45)

maximized by imposing

Qt = Ω + αεt−1ε
′
t−1 + βQt−1 (1.46)

and

Rt = diag {Qt}−
1
2 Qtdiag {Qt}−

1
2 . (1.47)

As Engle [13] suggests, the term in the sum of squared epsilons can be ignored as it

does not depend on the parameters being optimised.

1.3.2 Forecasting Variance, Correlation and Variance Covariance

Matrices with a GARCH(1, 1) Scalar Diagonal DCC Model

As variances are GARCH(1, 1) the one step ahead forecast of variances, conditional to

information in t is
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σii, t (1) = (1− α− β)σii + αu2ii, t + βσii, t

= σii + α
(
u2ii, t − σii

)
+ β (σii, t − σii) , (1.48)

where σii is an unconditional variance and it can be checked that

σii, t (H − h) = σii + (α + β)H−1−h (σii, t (1)− σii) . (1.49)

1.48 can be vectorized, so that variance matrix process follows

Dt (1) = (1− α− β)D + αutu
′
t + βDt

= D + α
(
u2t −D

)
+ β (Dt −D) , (1.50)

with D being an unconditional variance matrix and

Dt (H − 1− h) = D + (α + β)H−1−h (Dt (1)−D) . (1.51)

Engle [13] shows that for h > 1 it is not possible to produce an exact analytical expres-

sion for the forecasts of the correlation matrix. In order to overcome this obstacle, it is

proposed an assumption suggested by Engle and Sheppard [15], that is

Rt (h) ≈ Qt (h) , (1.52)

the approximation being as precise as the diagonal elements of Q are all close to one.

Then,

Rt (h) = R̄ + (α + β)
(
Rt (h− 1)− R̄

)
. (1.53)
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Finally the forecast of the conditional variance covariance matrix can be estimated as:

Σt (h) ≈ Dt (h)
1
2 Rt (h)Dt (h)

1
2 . (1.54)

1.4 Assessment of Heteroscedastic Effects

1.4.1 OVD Based Measures of Connectedness

Consider again the system

yt = ν +

p∑
l=1

Alyt−l + ut. (1.55)

If ut is still serially uncorrelated, but displays conditional heteroscedasticity the OMCs

must be adapted in the following way. For every sorting of the system variables, at each

point in time, the Cholesky lower triangular decomposition of the conditional variance

covariance matrix is:

Σt = PtP
′
t . (1.56)

It follows that, if we define

wt = P−1t ut, (1.57)

wt is still an error term with mean zero and

E (wtw
′
t) = Σw = E

(
P−1t utu

′
t

(
P−1t

)′)
= P−1t Σt

(
P−1t

)′
= IK . (1.58)

The MA process must then be rewritten as
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yt = Θ̇ (L)wt, (1.59)

where

Θ̇ (L) =
(

Θ̇t (0) + Θ̇t (−1)L+ Θ̇t (−2)L2 + . . .
)

= (Pt + Φ1Pt−1 + Φ2Pt−2 + . . .)

(1.60)

and the dot notation means that it accounts for heteroscedasticity.

The H-steps ahead forecast will be equal to:

ẏt (H) = µ+
∞∑
h=H

Φhut+H−h

= µ+
∞∑
h=H

ΦhPt (H − h) (Pt (H − h))−1 ut+H−h

= µ+
∞∑
h=H

Θ̇t (h)wt+H−h, (1.61)

with forecast error

ξ̇t (H) = yt+h − yt (H)

=
∞∑
h=0

Θ̇t (h)wt+H−h −
∞∑
h=H

Θ̇t (h)wt+H−h

=
H−1∑
h=0

Θ̇t (h)wt+H−h. (1.62)

As the elements of w are still not correlated,

MSE [ẏt (H)] = Et

[
ξ̇t (H) ξ̇′t (H)

]

22



=
H−1∑
h=0

Θ̇t (h)
(

Θ̇t (h)
)′
. (1.63)

Then, explicitly accounting for heteroscedasticity, the original method of Diebold and

Yilmaz [8] can be adjusted as:

ḋ
(OVD)
t, ij (H) =

∑H−1
h=0

(
e′iΘ̇t (h) ej

)2
∑H−1

h=0 e
′
iΘ̇t (h)

(
Θ̇t (h)

)′
ei

=

∑H−1
h=0 θ̇

2
t, ij (h)∑H−1

h=0

∑K
j=1 θ̇

2
t, ij (h)

(1.64)

and the heteroscedasticity adjusted OMTC can be computed as

Ṡ
(OVD)
t (H) =

∑K
i,j=1, i 6=j ḋ

(OVD)
t, ij (H)∑K

i,j=1 ḋ
(OVD)
ij (H)

=
1

K

K∑
i,j=1, i 6=j

ḋ
(OVD)
t, ij (H) . (1.65)

1.4.2 GVD Based Measures of Connectedness

Given the usual system

yt = ν +

p∑
l=1

Alyt−l + ut, (1.66)

conditional on the information in t and the shocks to the i-th equation up to time t+H ,

that is, uit, ui, t+1, . . . , ui, t+H , the H-steps ahead forecast will be:

y
(i)
t (H) = µ+

∞∑
h=H

Φhut+H−h +
H−1∑
h=0

Et (ut+H−h|ui, t+H−h) . (1.67)

Assuming that ut ∼ N (0, Σt), if ut is conditionally heteroscedastic,

23



Et (ut+H−h|ui, t+H−h) =
(
(σii, t (H − h))−1 Σt (H − h) ei

)
ui, t+H−h, (1.68)

where σii, t (t+H − h) and Σt (t+H − h) are the (H − h)-steps ahead forecasts of

the standard deviation of ui, t and the variance covariance matrix of ut, both conditional,

for tractability, only on the information available at time t, making 1.68 an approximate

relationship.

Then, ei still being the i-th column of an identity matrix of order K,

ẏ
(i)
t (H) = µ+

∞∑
h=H

Φhut+H−h

+
H−1∑
h=0

Φh

(
(σii, t (H − h))−1 Σt (H − h) ei

)
ui, t+H−h, (1.69)

Along these lines, it follows that the H-steps ahead forecast errors will be

ξ̇
(i)
t (H) = yt+h − y(i)t (H)

=
H−1∑
h=0

Φhut+H−h

−
H−1∑
h=0

Φh

(
(σii, t (H − h))−1 Σt (H − h) ei

)
ui, t+H−h

=
H−1∑
h=0

Φh

[
ut+H−h −

(
(σii, t (H − h))−1 Σt (H − h) ei

)
ui, t+H−h

]
. (1.70)

In Appendix 1.C it is shown that

MSE
[
ẏ
(i)
t (H)

]
= Et

[
ξ̇
(i)
t (H) ξ̇

(i)′

t (H)
]
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=
H−1∑
h=0

ΦhΣt (t+H − h) Φ ′h

−

(
H−1∑
h=0

(σii, t (H − h))−1 ΦhΣt (H − h) eie
′
iΣt (H − h) Φ ′h

)

=
H−1∑
h=0

ΦhΣt (H − h) Φ ′h

−
H−1∑
h=0

(σii, t (H − h))−1 (ΦhΣt (H − h) ei)
2 . (1.71)

Finally, define

∆̇t, i (H) = MSE
[
ξ̇t (H)

]
−MSE

[
ξ̇
(i)
t (H)

]
= (σii, t (H − h))−1

(
H−1∑
h=0

ΦnΣt (H − h) ei

)2

, (1.72)

the extension of the GVD for heteroscedasticity returns

ḋ
(GVD)
t, ij (H) =

∑H−1
h=0 σ

−1
ii, t (H − h) (ΦhΣt (H − h) ei)

2∑H
h=0 e

′
jΦhΣt (H − h) Φ ′nej

, (1.73)

where the superscript signifies it is the generalized version of the measure, which is

conditional in t, from i to j, and with a forecast horizon equal to H periods ahead.

Since the GVD includes effects due to covariances (unless the variance covariance ma-

trix of u is diagonal), forecast error variance contributions do not sum to one, as the

sum is not the MSE of the i-th equation. To standardize the measure, one can adopt

a normalization that depends on the focus of the analysis. For instance, if one wants

wants to obtain a percentage of the variance spread from each variable through the rest

of the system, the following normalization can be used:

˜̇d
(GVD)
t, ij (H) =

ḋ
(GVD)
t, ij (H)∑K

i=1 ḋ
(GVD)
t, ij (H)

. (1.74)
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By construction then,
∑K

i=1
˜̇d
(GVD)
t, ij (H) = 1 and

∑K
i, j=1

˜̇d
(GVD)
t, ij (H) = N .

To obtain a percentage index of the variance received from other variables, the normal-

izations to use will be:

˜̇d
(GVD)
t, ij (H) =

ḋ
(GVD)
t, ij (H)∑K

j=1 ḋ
(GVD)
t, ij (H)

. (1.75)

The Generalized Measure of Total Connectedness (GMTC) can then be computed as

Ṡ
(GVD)
t (H) =

∑K
i, j=1, i 6=j

˜̇d
(GVD)
t, ij (H)∑K

i, j=1 d̃
(GVD)
t, ij (H)

=
1

K

K∑
i, j=1, i 6=j

˜̇d
(GVD)
t, ij (H) , (1.76)

which provides the same number independently from the normalization scheme chosen.

In the Appendix 1.D, the reader could find a formulation optimized for computer pro-

gramming.

1.5 Empirical Illustration

World markets are connected through a complex web of trade and financial relation-

ships. Understanding this connectedness would require an extensive use of macroeco-

nomic models and knowledge of a vast number of balance sheets. One way to simplify

the problem would be to exploit the information contained in a dataset of international

indices and apply the Diebold and Yilmaz Framework to analyze the connectedness

arising from it. An important feature of the following analysis is that it remains ag-

nostic about how the connectedness arises and the sole scope is to measure it and its

evolution.

As Diebold and Yilmaz [9] point out, the study of volatility connectedness is particu-
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larly useful, because it allows to assess the connectedness of uncertainty (“fear”) and

because volatility is particularly crises-sensitive. As the world is recovering from an

exceptionally severe economic and financial crisis, this seemed an interesting case to

be studied. Moreover, volatilities time series could be characterized by conditional

heteroscedasticity; to enable the assessment of when and how this is relevant in the

Diebold-Yilmaz framework, this paper extends it to explicitly allow for heteroscedas-

ticity and embeds this case both at a static and at a dynamic level.

Volatilities are latent and must be estimated. This paper will employ the Heber, Gerd,

Asger Lunde, Neil Shephard and Kevin Sheppard (2009) "Oxford-Man Institute’s Re-

alized Library", Oxford-Man Institute, University of Oxford in its 2.0 version. In sum-

mary, among other, the library contains time series of daily realized variances of a

number of international indices. Of the the entire dataset above specified, we will use

the series listed in Table 1.1.

[Table 1.1 about here.]

The dataset starts at 03:01:2000 and ends at 01:05:2013 (ISO 8601 Date Format). Table

1.1 also reports the list of the variables present in the original dataset.

The original dataset is expressed at a daily frequency. In order to get rid of some

microstructure effects, we aggregate the data at a weekly level, having the week starting

on Wednesday. As some data points will be missing, the resulting numbers will be

averages of a variable number of entries, which means substituting the missing value

with the week average.

The actual time series used in the analysis will be the series of log transformations

of volatilities, as shown by Andersen et al. [1] to be suitable to a normal approxima-

tion, which, in turn, is a condition required by the generalized variance decompositions

(Koop et al. [20], Pesaran and Shin [23], Pesaran and Pesaran [22]).

As volatilities tend to display strong serial correlation, the subset of the transformed

time series will be modeled as a VAR(p) and the measures of connectedness will be
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computed from both the forecast errors and the error terms expressed by the model. The

forecast horizon is set at an arbitrary five weeks. The order of the vector autoregression

is chosen by the HIC for the full sample, setting the maximum autoregressive order

required by the algorithm at five periods.

In order to capture the nonlinearity in the dataset, following the Diebold and Yilmaz

literature, a number of rolling windows estimations are performed, the window width

being somewhat arbitrarily set at one hundred observations, which will set the initial

rolling windows measurements in the window starting from week 2000:01 and ending

at 2001:47. Setting the window width entails a tradeoff between the probability of ob-

serving heteroscedastic effects (volatility tends to cluster) and the number of rolling

windows measurements. The decision taken in this paper is to set a window wide

enough to contain heteroscedastic episodes with acceptable probability. Finally, al-

though this could be a debatable choice, the order of the vector autoregression will be

maintained during rolling windows estimates, because it will lower computation time

by a substantial amount and would allow weaker signals of autoregressive effects to be

captured.

The result of the latter procedure will return a series of time varying measures of con-

nectedness. To assess the impact that heteroscedasticity has in this variation, for each

subsample, the specification is extended to explicitly model it via the Diagonal Scalar

DCC Model. To test for heteroscedasticity, the Engle [14] test has been used for each

time series. Such test fails to reject the hypothesis of heteroscedasticity for all series,

at least given the full sample. Every time the optimization fails for any subsample, we

consider the latter as displaying homoscedasticity.

Finally, a smoothed, full sample, version of heteroscedastic connectedness will be com-

puted, in which only the variance covariance matrix will be allowed to vary according

to a Diagonal Scalar DCC Model. The measure is then computed using the realized

values of the covariance matrices H periods ahead of each sample point.
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The following analysis loosely follows the analytic structure of Diebold and Yilmaz [9];

the main object will be to sketch whether, when and how the connectedness measures

will be affected by the explicit modeling of heteroscedasticity.

1.5.1 Static (Full-Sample, Unconditional) Analysis

Here, connectedness measures will be computed using the information included in the

whole sample. The data is modeled with a VAR(p) and both homoscedastic and het-

eroscedastic cases are studied, both in the orthogonal and in the generalized cases. In

this analysis, connectedness will be computed only at the end of the whole sample. The

heteroscedastic case differentiates from the homoscedastic one by allowing the covari-

ances inside the connectedness formulae to be variant and, specifically, be the forecasts

outlined in section 1.3.

Tables 1.2 and 1.3 report connectedness matrices for orthogonal homoscedastic con-

nectedness and orthogonal heteroscedastic connectedness.

[Table 1.2 about here.]

[Table 1.3 about here.]

Tables 1.4 and 1.5 report connectedness matrices for generalized homoscedastic con-

nectedness and generalized heteroscedastic connectedness.

[Table 1.4 about here.]

[Table 1.5 about here.]

Tables 1.6 and 1.7 summarize changes occurring from the homoscedastic to the het-

eroscedastic case for both the orthogonal and the generalized measures of connected-

ness, respectively.
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[Table 1.6 about here.]

[Table 1.7 about here.]

Considering the latter tables, it is immediately possible to observe that heteroscedas-

ticity could be indeed an important feature when analyzing connectedness measures.

Even though the change in total connectedness is not much higher (in absolute value)

than four percentage points, heteroscedasticity plays a bigger role, when considering

changes in “from“ and “to” measures. In fact, we can observe striking changes of more

than 40% (in absolute value), when considering the change in the orthogonal to mea-

sures and changes of up to 30% (in absolute value) in the generalized from measures.

From a robustness point of view, the heteroscedastic case maintains the feature by which

the generalized version of total connectedness acts as an upper bound for the orthogonal

case. This effect is due to the fact that the generalized case, by treating each variable

in the system as the first one in a WO (Kim [19]), includes, in the computation of the

measure, covariances that would be absent in the orthogonal case. Such robustness is

not preserved in disaggregate measures of connectedness both in the homoscedastic and

the heteroscedastic cases.

1.5.2 Dynamic Analysis

Diebold and Yilmaz [9] already pointed out that measuring and frequent monitoring

of connectedness measures can help understanding the evolution of financial facts, in

particular crises. In fact, total connectedness can be seen as a measure of systemic risk,

as it is a measure of variance spilled over from and to the system equations. This section

will describe how the explicit modeling of heteroscedastic effects could influence these

measures in a dynamic setting.

In this analysis of the dynamics originated by the nonlinearities in the data, we use

two routes. The first route, consistent with the previous body of work on connected-
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ness, consists in performing a batch of rolling windows estimations, in which both the

parameters of the VAR and the Diagonal Scalar DCC Model are allowed to vary and

are estimated with the sample included in each window. For every window of estima-

tion, a value for the connectedness matrix is estimated. Time varying variances and

correlations will affect the forecasts needed for the computation of the measures.

In the second route, the parameters of both the VAR and the Diagonal Scalar DCC

Model are forced to be constant and estimated using the whole sample. With the es-

timated model, connectedness measures are then computed using the in sample condi-

tional dynamic covariance matrices expressed by the Diagonal Scalar DCC Model in the

formulae for connectedness, outputting, thus, a smoothed version of the DY measures.

Rolling Windows Analysis

Figures 1.1 and 1.2 report plots of rolling windows total connectedness measures, both

homo- and heteroscedastic.

[Figure 1.1 about here.]

[Figure 1.2 about here.]

Figure 1.1 shows orthogonal measures, Figure 1.2 generalized measures of total con-

nectedness.

The first thing to note is that in both pictures homoscedastic and heteroscedastic mea-

sures of total connectedness tend to follow a very similar path. This could be due to

the fact that, in small samples, in sample heteroscedastic effects could assume a sec-

ond order impact in the manipulation of the information embedded in the data. This

notwithstanding, a discrepancy from the homoscedastic benchmark signifies episodes

of abnormal activity in the covariance domain.
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Figures 1.3 and 1.4 show time series of deviations from the homoscedastic measures

taken by the heteroscedastic version of the total connectedness measures, orthogonal

and generalized, respectively.

[Figure 1.3 about here.]

[Figure 1.4 about here.]

It is interesting to see that these deviations appear in the same periods for both the

orthogonal and the generalized version of the measures, magnified in the generalized

case, as it provides an upper bound to the orthogonal total connectedness.

These spikes seem to occur during episodes of particular crises in the financial markets,

possibly identifiable around the Worldcom scandal of 2002, the beginning of the credit

crisis in 2006, the outburst of the Greek crisis at the end of 2009 and a peak of the Euro

crisis at the end of 2010.

Heteroscedastic Full Sample Analysis

In this case, parameters for both the VAR and the Diagonal Scalar DCC Model are

kept constant and estimated with the full sample, while dynamics in connectedness

are generated solely by the smoothed conditional dynamic covariances. Figure 51.5

shows the plots for both the orthogonal and generalized total connectedness, the latter

maintaining the role of upper bound.

[Figure 1.5 about here.]

It is immediately evident the difference between this picture and those obtained in the

rolling windows case, as the only source of variability is the dynamic covariance matrix,

while the other parameters have been averaged out in the full sample.

32



The second interesting feature of these plots is that they appear to display a two regimes

pattern: a pre financial crisis regime characterised by low connectedness and crisis

regime characterised by high connectedness, with the structural break seamingly hap-

pening in the middle of 2006 and a possible, interesting and optimistic, second break

happening in the middle of 2013. A regime switching model could be applied to analyze

whether this is true.

A Comment on Rolling Windows and Heteroscedastic Full Sample Analyses

In this paper, both rolling windows and heteroscedastic full sample analyses have been

used to extract information on connectedness from the data. It is important to note that

each of them provides specific information not available to the other technique.

Rolling windows allow all the parameters of the model to vary, which in turn makes

the measure of total connectedness more erratic and allows certain patterns to emerge.

For instance, it is possible to see in Figures 1.1 and 1.2 two inverse parabola shapes

characterizing two cycles on top of the two regimes described by Figure 1.5. Het-

eroscedasticity introduced in the rolling windows analysis allows even finer turbulence

in the measure to be spotted.

On the other hand, the heteroscedastic full sample analysis, averaging the dynamics of

all the parameters, with the exception of the covariance matrix, allows the emergence

of macro patterns like the two regimes displayed by Figure 1.5.

The different time series generated by these two techniques could then be suited to

further treatment and be the basis of more econometric analysis. For instance, the time

series in Figure 1.5 could be used to estimate a two regimes switching model that can

be applied to infer structural breaks, while the more erratic time series of Figures 1.1

and 1.2 could be used to infer the existence of cyclicality in total connectedness.
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1.6 Conclusions

The recent financial crisis has underlined the importance of interdependence in the de-

velopment of financial turbulence. One way to characterize such interdependence is

the connectedness framework introduced by Diebold and Yilmaz [8] and extended by

Diebold and Yilmaz [9]. In this paper, we extended the connectedness framework ex-

plicitily allowing for conditional heteroscedasticity and we applied the model to analyze

connectedness in the volatility of international equity indexes.

Both static and dynamic analyses have been performed and in all cases has emerged a

positive value in extending the framework to explicitly allow for the modeling of het-

eroscedasticity. This value substantiates in a finer characterization of financial events

such as the Worldcom scandal, the beginning of the credit crisis and key episodes of

the crisis of the Eurozone. Moreover, moving outside of the rolling windows analysis

and applying a novel heteroscedastic full sample analysis, it was possible to allow for

the emergence of a two regimes patterns characterizing, consistently with recent eco-

nomic history, a regime with low connectedness and a regime with high connectedness,

possibly ending in 2013. At the time of writing (December 2013), the Fed recently

announced a plan to slow bond purchases.
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Appendix 1.A The Cholesky Algorithm

This appendix discusses the Cholesky decomposition. The exposition will be brief and

compressed; for further details refer to Hamilton [18].

The Cholesky decomposition is based on the triangular decomposition of a symmetric

positive definite square matrix. The variance covariance matrix is a K × K matrix

defined as such. A way to state the triangular decomposition is the following:

Σ = TΣ(K)T ′, (A.1)

where the term in the parenthesis of the suffix in Σ represents the iteration of the algo-

rithm and

T =



1 0 0 . . . 0

t21 1 0 . . . 0

t31 t32 1 . . . 0

...
...

... . . . ...

tK1 tK2 tK4 . . . 1


, (A.2)

Σ(K) =



σ
(K)
11 0 0 · · · 0

0 σ
(K)
22 0 . . . 0

0 0 σ
(K)
33 . . . 0

...
...

... . . . ...

0 0 0 · · · σ
(K)
KK


. (A.3)

The procedure is indeed iterative and can be summarized with the following recursion:

Σ(j) = T (j−1)Σ(j−1)T (j−1), ∀j = 1, 2, . . . , K, (A.4)
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T =
K−1∏
i=1

(
T (i)
)−1

=
[(
T (1)

)−1
•, 1

(
T (2)

)−1
•, 2 . . .

(
T (K−1))−1

•,K−1 eK

]
, (A.5)

where
(
T (i)
)−1
•, j is the j-th column of

(
T (i)
)−1 and

Σ(1) = Σ. (A.6)

The iteration starts at j = 2 and the transformation matrix T (j) is such that it has ones

on the diagonal and zeros in all the other positions, exept in the (j − 1) − th column

at positions (i, j − 1 | i > j − 1). The quantities different from zero or one can be

expressed as:

t
(j−1)
i, j−1 | i > j − 1 = −σ(j−1)

i, j−1

[
σ
(j−1)
j−1, j−1

]−1
. (A.7)

The conditioned matrix Σ(j), for j ≥ 2 is such that

σ
(j)
ik | (i ≤ j − 1 ∨ k ≤ j − 1) = 0, (A.8)

σ
(j)
ii | i ≤ j = σ

(i)
ii , (A.9)

σ
(j)
ik | (i ≥ j ∧ k ≥ j) = σ

(j−1)
ik − σ(j−1)

i, j−1

[
σ
(j−1)
j−1, j−1

]−1
σ
(j−1)
j−1, k. (A.10)

For example, if j = 2, such that Σ(2) = T (1)Σ(1)
[
T (1)

]′,
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T (1) =



1 0 0 . . . 0

−σ(1)
21

[
σ
(1)
11

]−1
1 0 . . . 0

−σ(1)
31

[
σ
(1)
11

]−1
0 1 . . . 0

...
...

... . . . ...

−σ(1)
K1

[
σ
(1)
11

]−1
0 0 . . . 1


(A.11)

and

Σ
(2)

=



σ
(1)
11 0 0 . . . 0

0 σ
(1)
22 − σ

(1)
21

[
σ
(1)
11

]−1
σ
(1)
12 σ

(1)
23 − σ

(1)
21

[
σ
(1)
11

]−1
σ
(1)
13 . . . σ

(1)
2K
− σ(1)

21

[
σ
(1)
11

]−1
σ
(1)
1K

0 σ
(1)
32 − σ

(1)
31

[
σ
(1)
11

]−1
σ
(1)
12 σ

(1)
33 − σ

(1)
31

[
σ
(1)
11

]−1
σ
(1)
13 . . . σ

(1)
2K
− σ(1)

31

[
σ
(1)
11

]−1
σ
(1)
1K

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 σ
(1)
K2
− σ(1)

K1

[
σ
(1)
11

]−1
σ
(1)
12 σ

(1)
K3
− σ(1)

K1

[
σ
(1)
11

]−1
σ
(1)
13 . . . σ

(1)
KK
− σ(1)

K1

[
σ
(1)
11

]−1
σ
(1)
1K


. (A.12)

As mentioned before, the Cholesky decomposition is based on the triangular factoriza-

tion of a symmetric positive definite square matrix. To obtain it, first define
[
Σ(K)

] 1
2

as the (K ×K) matrix whose diagonal entries are the square roots of the diagonal ele-

ments of Σ(K). Then,

Σ = TΣ(K)T ′

= T
[
Σ(K)

] 1
2
[
Σ(K)

] 1
2 T ′

=
{
T
[
Σ(K)

] 1
2

}{
T
[
Σ(K)

] 1
2

}′
= PP ′. (A.13)

and P is the lower Cholesky triangular decomposition having the following form:

P =



√
σ
(1)
11 0 . . . 0

σ
(1)
21

[
σ
(1)
11

]−1√
σ
(1)
11

√
σ
(2)
22 . . . 0

...
... . . . ...

σ
(1)
K1

[
σ
(1)
11

]−1√
σ
(1)
11 σ

(2)
K2

[
σ
(2)
22

]−1√
σ
(2)
22 . . .

√
σ
(K)
KK


, (A.14)

40



so that

pik | i < k = 0, (A.15)

pii =

√
σ
(i)
ii , (A.16)

pik | i > k = σ
(k)
ik

[
σ
(k)
kk

]−1√
σ
(k)
kk

=
σ
(k)
ik√
σ
(k)
kk

.

Finally, defining

ρ
(k)
ik =

σ
(k)
ik√

σ
(k)
ii σ

(k)
kk

, (A.17)

it is possible to compute

pik | i > k = ρ
(k)
ik

√
σ
(k)
ii . (A.18)
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Appendix 1.B Proposition 1

The demonstration that

MSE
[
ξ
(i)
t (H)

]
=

H−1∑
h=0

ΦhΣΦ ′h − σ−1ii

(
H−1∑
h=0

ΦhΣeie
′
iΣΦ ′h

)
. (B.1)

Starting from

ξ
(i)
t (H) =

H−1∑
h=0

Φh

(
ut+H−1−h − σ−1ii Σeiui, t+H−1−h

)
, (B.2)

It can be verified that

E
[
ξ
(i)
t (H)

]
= 0. (B.3)

Then,

MSE
[
ξ
(i)
t (H)

]
= var

[
H−1∑
h=0

Φh

(
ut+H−1−h − σ−1ii Σeiui, t+H−1−h

)]
. (B.4)

As ut is serially uncorrelated and for the properties of variance,

MSE
[
ξ
(i)
t (H)

]
=

H−1∑
h=0

Φh {ah + bh − 2ch}Φ ′h, (B.5)

where

ah = var [ut+H−1−h] = Σ, (B.6)

bh = var
[
σ−1ii Σeiui, t+H−1−h

]
= σ−1ii Σueiσiie

′
iΣσii

= σ−1ii Σueie
′
iΣ, (B.7)
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and

ch = cov
[
ut+H−1−h, σ

−1
ii Σeiui, t+H−1−h

]
= σ−1ii cov [ut+H−1−h, eiui, t+H−1−h] Σ

= σ−1ii Σeie
′
iΣ. (B.8)

Then,

MSE
[
ξ
(i)
t (H)

]
=

H−1∑
h=0

ΦhΣΦ ′h − σ−1ii

(
H−1∑
h=0

ΦhΣeie
′
iΣΦ ′h

)
, (B.9)

quod erat demonstrandum.
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Appendix 1.C Proposition 2

The demonstration that

MSE
[
ξ
(i)
t (H)

]
=

H−1∑
h=0

ΦhΣt (H − h) Φ ′h

− σ−1ii, t (H − h)

(
H−1∑
h=0

ΦhΣt (H − h) eie
′
iΣt (H − h) Φ ′h

)
. (C.1)

Starting from

ξ
(i)
t (H) =

H−1∑
h=0

Φh

(
ut+H−h − σ−1ii, t (H − h) Σt (H − h) eiui, t+H−h

)
, (C.2)

such an approximation leads to

E
[
ξ
(i)
t (H)

]
= 0. (C.3)

Then

MSE
[
ξ
(i)
t (H)

]
= var

[
H−1∑
h=0

Φh

(
ut+H−h − σ−1ii, t (H − h) Σt (H − h) eiui, t+H−h

)]
.

(C.4)

As the residuals are the only random quantities in the variance argument and remem-

bering that they are serially uncorrelated, it is possible to write:

MSE
[
ξ
(i)
t (H)

]
=

H−1∑
h=0

var [Φh (ut+H−h

−σ−1ii, t (H − h) Σt (H − h) eiui, t+H−h
)]
,
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(C.5)

C.5 can be written as

MSE
[
ξ
(i)
t (H)

]
=

H−1∑
h=0

Φh {ah + bh − 2ch}Φ ′h, (C.6)

where

ah = var [ut+H−h] = Σt (H − h) , (C.7)

bh = var
[
σ−1ii, t (H − h) Σt (H − h) eiui, t+H−h

]
= σ−1ii, t (H − h) Σt (H − h) eiσ

−1
ii, t (H − h) e′i

× Σt (H − h)σ−1ii, t (H − h)

= σ−1ii, t (H − h) Σt (H − h) eie
′
iΣt (H − h) , (C.8)

and

ch = cov
[
ut+H−h, σ

−1
ii, t (H − h) Σt (H − h) eiui, t+H−h

]
= σ−1ii, t (H − h) cov [ut+H−h, eiui, t+H−h] Σt (H − h)

= σ−1ii, t (H − h)

× Σt (H − h) eie
′
iΣt (H − h) . (C.9)

Then,
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MSE
[
ξ
(i)
t (H)

]
=

H−1∑
h=0

ΦhΣt (H − h) Φ ′h

− σ−1ii, t (H − h)

×

(
H−1∑
h=0

ΦhΣt (H − h) eie
′
iΣt (H − h) Φ ′h

)
, (C.10)

quod erat demonstrandum.
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Appendix 1.D A Calculator Efficient Algorithm

The following formulation could be useful to optimize computations on calculators; it

will be presented for the generalized heteroscedastic case as the homoscedastic and the

orthogonal cases are just specialisations of the following formulas:

ḊY
(GVD)

t (H) = Ṡ
(GVD)
1, t (H) ◦ Ṡ(inv,GV D)

2, t (H) , (D.1)

where ḊY
(GVD)

t (H) is the matrix containing the variance decompositions, the symbol

◦ identifies the Hadamard element by element product, and

˙
S
(GVD)
1, t (H) =

H−1∑
h=1

ΥhQ̇
(GVD)
t (H) Υ′h, (D.2)

where Υh is a (K ×KH) matrix such that Υh = [0 . . . IK . . . 0] and the element in the

first row and [(h− 1)K + 1]-th column is one, and

Ṡ
(inv,GV D)
2, t (H) = ιι′

[
Ṡ
(GVD)
2, t (H)

]−1
, (D.3)

with ι being a (K × 1) vector of ones and

Ṡ
(GVD)
2, t (H) =

H−1∑
h=1

Υhdiag
[
Ż

(GVD)
t (H)

]
Υ′h. (D.4)

Then,

Q̇
(GVD)
t (H) =

[
Ḋ

(GVD)
t (H)

]−1
Ṁ

(GVD)
t (H) , (D.5)

Ḋ
(GVD)
t (H) = ⊕H−1h=0 Ḋt (H − h) , (D.6)

where Ḋt (H − h) is the forecast of the conditional diagonal variance matrix, and the
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symbol ⊕ identifies the operation of direct matrix sum,

Ṁ
(GVD)
t (H) =

[
Φ

(GVD)
t (H) Σ

(GVD)
t (H)

]
◦
[
Φ

(GVD)
t (H) Σ

(GVD)
t (H)

]′
, (D.7)

Φ
(GVD)
t (H) = ⊕H−1h=0 Φh, (D.8)

Σ
(g)
t (H) = ⊕H−1h=0 Σt (H − h) (D.9)

and

Ż
(GVD)
t (H) = Φ

(GVD)
t (H) Σ

(GVD)
t (H)

[
Φ

(GVD)
t (H)

]′
. (D.10)

The advantage of such a formulation could be the fact that the matrices Q̇(GVD)
t (H)

and Ż
(GVD)
t (H) are computed only once, as well as Ṁ (GVD)

t (H), Φ
(GVD)
t (H) and

Σ
(GVD)
t (H). Then it is possible to store them and access them only when needed,

with a saving in memory usage. Note also that the matrices Ṁ (GVD)
t (H), Φ

(GVD)
t (H)

and Σ
(GVD)
t (H) can be erased from memory, as only Q̇(GVD)

t (H) and Ż(GVD)
t (H) are

needed for the final calculations. These features, as well as the generalized form of the

Diebold Yilmaz Framework, could be particularly useful in high dimensional contexts.

The normalizations can then be performed respectively by

˜̇DY
(To,GV D)

t (H) = ḊY
(GVD)

t (H) ◦ Ṡ(To, inv,GV D)
t (H) (D.11)

and

˜̇DY
(From,GV D)

t (H) = ḊY
(GVD)

t (H) ◦ Ṡ(From, inv,GV D)
t (H) , (D.12)

48



with

Ṡ
(To, inv,GV D)
t (H) : Ṡ

(To, inv,GV D)
t (H) =

[
ḊY

(GVD)

t ιKι
′
K

]−1
(D.13)

and

Ṡ
(From, inv,GV D)
t (H) : Ṡ

(From, inv,GV D)
t (H) =

[
ιKι
′
KḊY

(GVD)

t

]−1
. (D.14)
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Appendix 1.E A Method to Determine the Wold Order

A method to determine the Wold Order of a system based solely on the data could be

the following.

Consider again the system

yt = ν +

p∑
l=1

Alyt−l + ut, (E.1)

where yt = [y1t, y2t, . . . , yKt] and having variance covariance matrix Σ.

In order to compute orthogonal variance decompositions, one can apply the Upper Tri-

angular Cholesky Decoposition and find a matrix P such that P ∗ P ′ = Σ, so that

(P )−1 Σ (P ′)−1 = IK . The matrix P will then have the following form:

P =



√
σ
(1)
11 0 . . . 0

σ
(1)
21

[
σ
(1)
11

]−1√
σ
(1)
11

√
σ
(2)
22 . . . 0

...
... . . . ...

σ
(1)
K1

[
σ
(1)
11

]−1√
σ
(1)
11 σ

(2)
K2

[
σ
(2)
22

]−1√
σ
(2)
22 . . .

√
σ
(K)
KK


, (E.2)

where

σ
(j)
ik | (i < j ∨ k < j) = 0, (E.3)

σ
(j)
ii | i ≤ j = σ

(i)
ii , (E.4)

σ
(j)
ik | (i ≥ j ∧ k ≥ j) = σ

(j−1)
ik − σ(j−1)

i, j−1

[
σ
(j−1)
j−1, j−1

]−1
σ
(j−1)
j−1, k. (E.5)

and can be used to transform the vectors of errors ut into orthogonal vectors wt in the

following way:
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wt = P−1ut. (E.6)

It turns out that (Hamilton [18], p.320) wit
√
σ
(i)
ii has the interpretation as the residual

from a projection of uit on w1t

√
σ
(1)
11 , . . ., wi−1, t

√
σ
(i−1)
i−1, i−1.

The goal is to find a method that maximises the explicative power of these K regres-

sions. In this paper the following iterative algorithm is proposed:

1st Iteration: find the variable that has the most explicative power for the remaining

K − 1 variable by performing K (K − 1) univariate linear projections of every system

variable on each one of the other variables and select the one that maximizes a criterion

such as:

γ = t ∗R2, (E.7)

where t is the t-stat of the univariate parameter and R2 is the centered coefficient of

determination of each univariate regression.

Subsequent Iterations: at each iteration i, consider a new system that excludes the vari-

able selected at the (i− 1)− th iteration and includes the residuals of the linear projec-

tions of all the other variables in the (i− 1) − th iteration on the selected variable of

the (i− 1)− th iteration. Find, among the latter system, the variable that has the most

explicative power for the remaining K − i variable by performing (K − i) (K − i− 1)

univariate linear projections of every system variable on each one of the other variables

and select the one that maximizes the usual criterion:

γ = t ∗R2. (E.8)

If at a certain point in the iteration it is not possible to find any residual such that the

inverse of its matrix product is not singular, the arlgorithm stops and the WO from that

point on is arbitrary.
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Table 1.1: List of Variables Included in "Oxford-Man Institute’s Realized Library"
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Table 1.2: Full Sample Homoscedastic Orthogonal Connectedness Matrix

The table shows OVDs obtained from a linear VAR estimated with full sample, along
with some simple aggregations. The “TOTAL FROM” column reports the total variance
received by each system equation from other variables, while the “TOTAL TO” row
shows the total variance sent to other equations by the variable indexed by the column
header. Finally, “TOTAL” indicates the total variance that is spilled across the system,
which is equal to the sum of any one “TOTAL FROM”, or “TOTAL TO” measures.

Series Number 1 2 3 4 5 6 TOTAL FROM
1 0.957 0.032 0.004 0.001 0.003 0.003 0.043
2 0.597 0.390 0.001 0.000 0.004 0.008 0.610
3 0.341 0.055 0.593 0.005 0.004 0.002 0.407
4 0.584 0.210 0.004 0.196 0.001 0.004 0.804
5 0.610 0.230 0.004 0.050 0.102 0.005 0.898
6 0.514 0.221 0.004 0.040 0.014 0.207 0.793

TOTAL TO 2.647 0.747 0.016 0.098 0.025 0.022
TOTAL 59.254
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Table 1.3: Full Sample Heteroscedastic Orthogonal Connectedness Matrix

The table shows OVDs constructed from a VAR with diagonal GARCH-DCC con-
ditional heteroscedasticity. The “TOTAL FROM” column reports the total variance
received by each system equation from other variables, while the “TOTAL TO” row
shows the total variance sent to other equations by the variable indexed by the column
header. Finally, “TOTAL” indicates the total variance that is spilled across the system,
which is equal to the sum of any one of “TOTAL FROM”, or “TOTAL TO” measures.

Series Number 1 2 3 4 5 6 TOTAL FROM
1 0.967 0.024 0.003 0.001 0.002 0.003 0.033
2 0.597 0.390 0.001 0.001 0.002 0.009 0.610
3 0.289 0.062 0.635 0.007 0.004 0.003 0.365
4 0.517 0.231 0.003 0.244 0.001 0.005 0.756
5 0.580 0.246 0.005 0.061 0.103 0.005 0.897
6 0.456 0.251 0.002 0.058 0.005 0.228 0.772

TOTAL TO 2.439 0.815 0.014 0.127 0.015 0.024
TOTAL 57.224
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Table 1.4: Full Sample Homoscedastic Generalized Variance Decompositions Ma-
trix

The table shows GVDs constructed from a VAR with diagonal GARCH-DCC con-
ditional heteroscedasticity. The “TOTAL FROM” column reports the total variance
received by each system equation from other variables, while the “TOTAL TO” row
shows the total variance sent to other equations by the variable indexed by the col-
umn header. Finally, “TOTAL” indicates the total variance that is spilled across the
system; depending on which normalization scheme the analyst chooses, the total vari-
ance spilled is equal to the sum of either “TOTAL FROM”, or “TOTAL TO” measures.
In this case, since the measures were normalized by total variance spilled from each
variable, the total is equal to the sum of the elements in the “TOTAL FROM” row.

Series Number 1 2 3 4 5 6 TOTAL TO
1 0.280 0.200 0.050 0.146 0.169 0.156 0.720
2 0.173 0.245 0.049 0.167 0.187 0.179 0.755
3 0.154 0.135 0.379 0.121 0.100 0.112 0.621
4 0.165 0.192 0.049 0.223 0.192 0.179 0.777
5 0.172 0.210 0.036 0.180 0.220 0.181 0.780
6 0.157 0.200 0.051 0.168 0.175 0.249 0.751

TOTAL FROM 0.821 0.938 0.235 0.782 0.823 0.807
TOTAL 73.416
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Table 1.5: Full Sample Heteroscedastic Generalized Variance Decompositions Ma-
trix

The table shows GVDs constructed from a VAR with diagonal GARCH-DCC con-
ditional heteroscedasticity. The “TOTAL FROM” column reports the total variance
received by each system equation from other variables, while the “TOTAL TO” row
shows the total variance sent to other equations by the variable indexed by the col-
umn header. Finally, “TOTAL” indicates the total variance that is spilled across the
system; depending on which normalization scheme the analyst chooses, the total vari-
ance spilled is equal to the sum of either “TOTAL FROM”, or “TOTAL TO” measures.
In this case, since the measures were normalized by total variance spilled from each
variable, the total is equal to the sum of the elements in the “TOTAL FROM” row.

Series Number 1 2 3 4 5 6 TOTAL TO
1 0.359 0.187 0.035 0.130 0.158 0.131 0.641
2 0.189 0.251 0.037 0.166 0.186 0.172 0.749
3 0.143 0.124 0.432 0.112 0.090 0.100 0.568
4 0.161 0.182 0.032 0.245 0.198 0.182 0.755
5 0.179 0.199 0.026 0.188 0.233 0.175 0.767
6 0.155 0.191 0.033 0.183 0.177 0.260 0.740

TOTAL FROM 0.827 0.883 0.164 0.778 0.809 0.759
TOTAL 70.330
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Table 1.6: Percent Change from Homoscedastic to Heteroscedastic of Orthogonal
Total From, Total To, and Grand Total Variance Decompositions

The table reports the percent change in aggregate OVD based connectedness measures
produced by the introduction of diagonal GARCH-DCC conditional heteroscedasticity
in the VAR framework.

Series Number ∆FROM ∆TO ∆TOTAL
1 -22.792% -7.844%
2 -0.007% 9.040%
3 -10.216% -14.670%
4 -5.923% 30.316%
5 -0.155% -41.751%
6 -2.685% 7.526%

-3.425%
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Table 1.7: Percentage Change from Homoscedastic to Heteroscedastic of General-
ized Total From, Total To, and Grand Total Variance Decompositions

The table reports the percent change in aggregate GVD based connectedness measures
produced by the introduction of diagonal GARCH-DCC conditional heteroscedasticity
in the VAR framework.

Series Number ∆FROM ∆TO ∆TOTAL
1 0.744% -10.976%
2 -5.878% -0.867%
3 -30.304% -8.568%
4 -0.397% -2.799%
5 -1.723% -1.644%
6 -5.921% -1.568%

-4.204%
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Figure 1.1: Homoscedastic and Heteroscedastic Orthogonal DY Measures
The figure shows evolution of OVD based total connectedness obtained from rolling
windows estimations of a linear VAR (in pink) and of a diagonal GARCH-DCC VAR
(in black).
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Figure 1.2: Difference between Homoscedastic and Heteroscedastic Orthogonal DY
Measures
In this figure, the graph represents the percentage change in the rolling windows OVD
based total connectedness, when a linear VAR is extended with a diagonal GARCH-
DCC conditional heteroscedasticity.
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Figure 1.3: Homoscedastic and Heteroscedastic Generalized DY Measures
The figure shows evolution of GVD based total connectedness obtained from rolling
windows estimations of a linear VAR (in pink) and of a diagonal GARCH-DCC VAR
(in black).
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Figure 1.4: Difference between Homoscedastic and Heteroscedastic Generalized
DY Measures
The figure shows the dynamic percent change in rolling windows GVD based total con-
nectedness, when a linear VAR is extended with a diagonal GARCH-DCC conditional
heteroscedasticity.
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Figure 1.5: Orthogonal and Generalized Smoothed Heteroscedastic DY Measures
This figure shows the evolution of total connectedness when the dynamics are being
characterised only by conditional heteroscedasticity. The GVD based total connected-
ness is reported with bold black, while the OVD is reported as a dashed line.
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Generalized Diebold-Yilmaz Connectedness Measures for

MS-VARs

Abstract

The recent financial crisis has shown the world how important is to consider

the dynamic nature of the strength of the relationships between financial vari-

ables. One way to assess both the magnitude and time variation of such strength

is through the Diebold and Yilmaz connectedness framework, which is based on

forecast error variance decompositions of VAR systems. Forecast error variance

decompositions can be identified either through Cholesky decomposition, by as-

suming a prior Wold (or causal) Order, or via generalized variance decompositions,

under some restrictions about the distribution of the system errors. The aim of this

paper is to extend the Diebold and Yilmaz framework by relaxing such restric-

tions and proposing new formulae for the generalized variance decomposition of

Markov switching vector autoregressions.
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2.1 Introduction

One could argue that the economic crisis that begun around 2007 has been a highly

multidimensional and nonlinear phenomenon. It would be hard to mention a subset of

human interactions not touched by it, let alone the financial system. One of the issues

raised in the discussions about the phenomena surrounding such a famous financial cri-

sis was the striking amount of connectedness happening among an impressive amount

of features of the financial sector (market risk, credit risk, portfolio management, pric-

ing, systemic risk, etc.).

The Diebold and Yilmaz (DY) framework is one way to identify and analyze connected-

ness in a way that allows for some of both the high dimensionality and the nonlinearity.

The DY framework was first proposed in Diebold and Yilmaz [9], further expanded in

Diebold and Yilmaz [10], Diebold and Yılmaz [11] and consolidated in Diebold and

Yilmaz [12]. The DY framework has been extensively applied to the study of network

connectedness in economics and finance. Some recent applications are Diebold and

Yilmaz [13], Bostanci and Yilmaz [5], Demirer et al. [7] and Diebold et al. [8].

The most simple specification of the DY framework has been outlined in Diebold and

Yilmaz [9], which produces connectedness measures based on the variance decompo-

sition of linear vector autoregressions (VAR). Each element of the variance decompo-

sition forms a measure of variance (spillover) either directed from an element of the

system to one of the others or from an element of the system to itself.

All these measures can be collected in a square matrix and form the primitives for the

production of other measures of connectedness, such as, for example, the amount of

variance directed from a subset of the system to another one, or the total connectedness

of the system, identified as the amount of variance directed from (to) each element of

the system to (from) the others. The most basic collection of connectedness measures

is the connectedness table described forward in this paper, which also contains some of

the measures mentioned above.
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The variance decomposition is typically approximated by forecast variance decomposi-

tion (see, for example, Hamilton [20]). If the analyst has a prior about the Wold Order

(WO, Wold [37]) of the VAR, the decomposition can be identified by Cholesky factor-

ization as in Sims [35]. Typically, the analyst might not want to use a prior on the Wold

order whenever she deals with highly chaotic relationships or with high dimensional

systems. In such circumstances one could use generalized variance decompositions

(GVDs) as in Pesaran and Shin [34], which do not require the specification of a WO,

but “only” a tractable distributional assumption, typically normality.

The presence of many circumstances of second order with respect to the analyst focus,

such as, for instance, non linearities or exogenous effects which are not modeled, might

bring her to decide to allow the parameters of the relationship to vary. The DY frame-

work accommodates for such a decision, being a dynamic analytical platform. One of

the most direct way to induce parameter variation is to estimate the VAR through rolling

windows. Such a method is a very general approximation of arbitrary nonlinear mod-

els, as Granger [17] pointed out, but the analyst might have reasons to make the time

variation of the parameters more explicit, by specifying a different nonlinear model, for

example for the motivations expressed in Ferrara et al. [14].

The focus of this paper is to extend the DY framework in order to explicitly accommo-

date for Markov switching vector autoregressions (MS- VAR) by proposing new for-

mulae for the computation of generalized variance decompositions under the MS-VAR

assumption.

The recent abundance of both data and computational power has made Markov Switch-

ing (MS) models an increasingly viable methodology for the study of a broad range of

issues. Krolzig [27] collects the fundamental tools for the analysis of MS models, in

particular in the context of Markov switching vector autoregressions. Originally, MS

models were popularized in the econometric literature by Hamilton [19] as tools to as-

sess abrupt variations in the parameter space of univariate autoregressions. The changes
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in the parameters can detect in fact a change in regime, such as a bear or bull market

or a low versus high volatility regime. More formally, the parameter space varies con-

ditional to a state variable following a Markov chain. According to Krolzig [27], the

basic filtering and smoothing recursions to reconstruct the hidden Markov chain were

introduced in Baum et al. [3] and applied by Lindgren [29] to regression models with

Markovian regime switching. Kim [24] improved the smoother by backward recursion

and Hansen [22] and Garcia [15] provided procedures for the estimation of the asymp-

totic null distribution useful for the determination of the number of regimes.

MS models are problems endowed with a high dimensional parameter space, especially

when formulated as multivariate. A major contribution for the tractability of such mod-

els has come from handling them in a Bayesian framework. Albert and Chib [1] and

McCulloch and Tsay [32] introduced the Gibbs sampling approach to the inference of

MS models, while Carter and Kohn [6] formulated the problem in terms of multimove

Gibbs sampling. The latter technique is particularly useful in the context of multivari-

ate MSM, as Krolzig [27] points out, as it accelerates the convergence of the sampling

algorithm. Finally, Sims et al. [36] provided methods for the inference of MSMs in the

context of large multiple equation systems in the form of parameter restrictions.

The literature on MSMs is indeed vast and the small review above could only aim

at roughly sketch it. More useful surveys can be found in Hamilton [21], Ang and

Timmermann [2] and Guidolin et al. [18]. Recent examples of applications of MS-

VARs can be found in Billio et al. [4] and Guidolin et al. [18], among others.

The structure of the paper is the following: section 2 provides the basics of a MS-VAR

framework, section 3 develops explicit formulae for connectedness arising from a time

variant autoregressive parameters (MSA) specification, section 4 generalizes to other

specifications and section 5 will offer two experiments based on Montecarlo simulation.

Finally, section 6 concludes the paper.
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2.2 The MS-VAR framework

Markov switching models were introduced in the econometric literature to specify dy-

namics subject to sudden changes in parameters. Such models have been used to de-

scribe the behavior of both economic and financial time series, for example during

financial panics, wars, or change in policies. A simple classification of such mod-

els distinguishes them according to which parameters vary: MSI referes to switching

intercepts, while MSM points to switching means, MSA to switching autoregressive

parameters and MSH to switching variance covariance matrices. Finally, we can model

mixtures of those specifications up to the unrestricted MSIAH or MSMAH.

In the MS framework, VAR parameters are conditional to a state variable st, the dy-

namics of which are modeled as an M-states Markov chain of order one, that is:

P {st = j| st−1 = i, st−2 = k, . . .} = P {st = j| st−1 = i} = pij, (2.1)

where pij is called transition probability and i, j = 1, 2, . . . , M , with M being the

number of states.

As a consequence, it is possible to write a general MS-VAR(p) model as

E [yt|Yt, st] = ν (st) +

p∑
l=1

Al (st) yt−1, (2.2)

ut ≡ yt − E [yt|Yt, st] ∼ NID (0, Σ (st)) , (2.3)

where yt ∈M (K × 1) and ν (st),Al (st) and Σ (st) are matrices of conditional param-

eters, Yt represtents the sample available up to time t and ut is a normally indipendently

distributed error term.

Transition probabilities are collected in a (M ×M) transition matrix such as
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P =



p11 p12 . . . p1M

p21 p22 . . . p2M
...

... . . . ...

pM1 pM2 . . . pMM


, (2.4)

so that
∑M

m=1 pim = 1, as in Krolzig [27].

It is convenient to characterize the Markov chain by defining a state vector as

ξt =



δ (st = 1)

δ (st = 2)

...

δ (st = M)


, (2.5)

where δ (·) is the indicator function. Naturally,
∑M

m ξmt = 1. Moreover,

E [ξt| st = i] = P ′ei, (2.6)

where ei is the i-th column of the identity matrix of order M , and

E [ξt] =



Pr (ξt = e1)

Pr (ξt = e2)

...

Pr (ξt = eM)


. (2.7)

Then, the dynamics of ξt can be described as a V AR (1) such as in

ξt+1 = P ′ξt + vt, (2.8)

where
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vt ≡ ξt+1 − E [ξt+1| ξt, ξt−1, . . .] (2.9)

is a martingale difference sequence (MDS), which can display only a finite set of values,

but is zero on average and cannot be forecasted on the basis of previous states of the

process.

The state vector itself can be forecasted as

E [ξt+T | ξt, ξt−1, . . .] = (P ′)
H
ξt, (2.10)

so that



Pr (st+H = 1|st = i)

Pr (st+H = 2|st = i)

...

Pr (st+H = M |st = i)


= (P ′)

H
ei. (2.11)

Finally, if one eigenvalue of P is one and all the others are inside the unit circle, the

Markov chain is ergodic and it is possible to define a vector of ergodic probabilities π

such that

P ′π = π (2.12)

and

lim
T→∞

(P ′)
T

= π1′M , (2.13)

where 1M is a (M × 1) vector, which elements are all equal to one.

It can be shown that an ergodic Markov chain is covariance stationary. Ergodic proba-

bilities can be obtained as
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π = (W ′W )
−1
W ′eM+1, (2.14)

where

W =

 IM − P ′

1′K

 , (2.15)

eM+1 is the M + 1-th column of the identity matrix IM+1.

The formulation of a MS-VAR state space critically depends on whether its mean is

state dependent. If the model can be expressed as having a state dependent intercept

(MSI-VAR), the formulation can be a declination of formulae 2.2 and 2.3. On the other

hand, when the MS-VAR is expressed as departures from the state dependent means

(MSM-VAR), then the conditional density of yt depends on the last p + 1 regimes and

the Markov chain must be adjusted as follows.

First of all, the state vector is extended in order to take into account the dependency on

the last regimes as

ξt = ξ
(p+1)
t = ⊗pl=0ξ

(1)
t−l = ξ

(1)
t ⊗ ξ

(1)
t−2 ⊗ . . .⊗ ξ

(1)
t−p, (2.16)

so that the number of states, called derived states, is now N = M (p+1) and where ξ(1)t

is the primitive state vector. As a consequence, ξt is defined, for MSM processes, as

ξt = ξ
(p+1)
t =



δ (st−1 = 1, st−2 = 1, . . . , st−p = 1)

δ (st−1 = 1, st−2 = 1, . . . , st−p = 2)

...

δ (st−1 = M, st−2 = M, . . . , st−p = M)


, (2.17)

while it can be shown that
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ξ
(r)
t = (IMr ⊗ 1′Mp+1−r) ξ

p+1
t , r ≤ p+ 1, (2.18)

and

ξ
(1)
t−l = (1′M l ⊗ IM ⊗ 1′Mp−l) ξ

(p+1)
t . (2.19)

In order to express the derived state vector as a vector autoregression, a derived transi-

tion matrix F must be created. Appendix 2.A shows that F should satisfy

Pr
(
ξt+1 = ξ∗t+1| ξt

)
= Pr

(
ξ
(1)
t+1 = ξ

(1)∗
t+1 | ξ

(1)
t

)
× Pr

(
ξ
(1)
t = ξ

(1)∗
t , ξ

(1)
t−1 = ξ

(1)∗
t−1 , . . . , ξ

(1)
t−p+1 = ξ

(1)∗
t−p+1

| ξ(1)t , ξ
(1)
t−1, . . . , ξ

(1)
t−p+1

)
, (2.20)

where the star superscript indicates a realization of the variable. In matrix form,

E [ξt+1| ξt] = {diag [vec (P )⊗ 1Mp−1 ]}
(

1M ⊗ ξ(p)t

)
= {diag [vec (P )⊗ 1Mp−1 ]} (1M ⊗ IMp ⊗ 1′M) ξt, (2.21)

so that

F = {diag [vec (P ) 1Mp−1 ]} (1M ⊗ IMp ⊗ 1′M) . (2.22)

Finally, the Markov chain can be now written as

ξt+1 = Fξt−1 + vt+1. (2.23)
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Although a full review of the estimation of MS-VARs is clearly outside the scope of

this paper, we report in the Appendix 2.B a method for the estimation of MSM-VARs

that uses the EM algorithm. First, the estimation technique is introduced for a MSM

formulation, then it will be expanded to cover the most general MSMAH, which is a

fully unrestricted model. A simplified version of such methods is used for the estimation

of MSI-VARs, so it will be omitted. Readers can always refer to Krolzig [27] for a

comprehensive coverage on the matter.

2.3 The connectedness framework

Diebold and Yilmaz [9] and Diebold and Yilmaz [10] introduced and extended the con-

nectedness table as a (K + 1)× (K + 1) matrix, which elements are (K ×K) variance

decompositions, and 2K+ 1 aggregate measures: K variance spilled to other variables,

K variances spilled from other variables and a total variance spilled across the system.

Depending on the method of variance decomposition, one can have an orthogonal or a

generalized table.

Orthogonal Connectedness Table The orthogonal connectedness table (OCT) was

introduced in Diebold and Yilmaz [9] as a way to collect the most basic connectedness

measures. It is based on forecast errors orthogonal variance decompositions (OVDs)

obtained through a Cholesky decomposition of the variance covariance matrix of the

VAR error term. As such, the OCT is dependent on a specific WO defined a priori

by the analyst. The table is structured as follows, with the total directional connect-

edness measures from other variables in the K + 1-th column and the total directional

connectedness measures to other variables in the K + 1-th row:
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y1 y2 . . . yK FromOthers

y1 dH11 dH12 . . . dH1K
∑K

j=1 d
H
1j , j 6= 1

y2 dH21 dH22 . . . dH2K
∑K

j=1 d
H
2j , j 6= 2

...
...

...
. . .

...
...

yK dHK1 dHK2 . . . dHKK

∑K
j=1 d

H
Kj , j 6= K

Total∑K
i=1 d

H
i1,

∑K
i=1 d

H
i1, i 6= 1 . . .

∑K
i=1 d

H
i1, i 6= 1

∑K
i, j=1 d

H
ij

ToOthers i 6= 1 i 6= 2 i 6= K i 6= j
(2.24)

Generalized Connectedness Table The generalized connectedness table is based on

forecast errors generalized variance decompositions (GVDs), as described in the semi-

nal contribution by Pesaran and Shin [34] and applied to the connectedness framework

first in Diebold and Yilmaz [10]. Because of the way the matrix is computed, the total

directional connectedness measures to other variables are contained in the K + 1-th

column, while the total directional connectedness measures from others are reported in

the K + 1-th row. This paper focuses on the development of closed form formulae for

the computation of the building blocks of generalized connectedness tables, an instance

of which is displayed below:

y1 y2 . . . yK ToOthers

y1 dH11 dH12 . . . dH1K
∑K

j=1 d
H
1j , j 6= 1

y2 dH21 dH22 . . . dH2K
∑K

j=1 d
H
2j , j 6= 2

...
...

...
. . .

...
...

yK dHK1 dHK2 . . . dHKK

∑K
j=1 d

H
Kj , j 6= K

Total

FromOthers
∑K

i=1 d
H
i1,

∑K
i=1 d

H
i1, i 6= 1 . . .

∑K
i=1 d

H
i1, i 6= 1

∑K
i, j=1 d

H
ij

i 6= 1 i 6= 2 i 6= K i 6= j

(2.25)
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2.3.1 The Generalized Diebold Yilmaz measure of connectedness

for the MSA(K)-VAR(1)

In a VAR setting, DY measures of connectedness are functions of only autoregressive

parameters and the variance covariance matrix; that is, the DYMs do not depend on the

intercept nor on the mean. For this reason, the paper will begin the analysis with the

MSA case and will show that the property will be maintained in other Markov switching

settings, such as MSIA and MSMA.

Consider the MSA (K) -VAR (1) written in its state-space form

yt = A (st) yt−1 + εt

ξt = Fξt−1 + vt,

F = P ′. (2.26)

In models with regime dependent autoregressive dynamics, the lagged endogenous vari-

ables yt−1 are likely correlated with the regime vector ξt, thus a difficulty arises in

forecasting such MSMs. To mitigate this issue, following Krolzig et al. [28], the sys-

tem is represented through the Karlsen linear state space representation (Karlsen [23])

ψt = ξt ⊗ yt; for p = 1, this can be written as

ψt = ξt ⊗ yt

= [Fξt−1 + vt]⊗ [A (st) yt−1 + εt]

= (Fξt−1)⊗ (A (st) yt−1) + vt ⊗ (A (st) yt−1) + (Fξt−1)⊗ εt + vt ⊗ εt

= (F ⊗ A (st)) (ξt−1 ⊗ yt−1) + vt ⊗ (A (st) yt−1) + (Fξt−1 + vt)⊗ εt

= Πψt−1 + εt, st (2.27)
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where

εt, st = vt ⊗ (A (st) yt−1) + (Fξt−1 + vt)⊗ εt (2.28)

is a martingale difference sequence (will be simply referenced as εt to ease the nota-

tional burden). Moreover, we show in Appendix 2.C that

Π = F ⊗ A (st) =



p11A1 p21A1 . . . pM1A1

p12A2 p22A2 . . . pM2A2

...
... . . . ...

p1MAM p2MAM . . . pMMAM


, (2.29)

so that a moving average representation of ψ can be written in the following form:

ψt+H = ΠHψt +
H−1∑
h=0

Πhεt+H−h. (2.30)

The forecast and the forecast error of the linear state space representation can be thus

expressed as

Et [ψt+H ] = ΠHψt (2.31)

and

ω(ψ) (H) = ψt+H − Et [ψt+H ]

=
H−1∑
h=0

Πhεt+H−h

=
H−1∑
h=0

Πh [vt+H−h ⊗ (A (st) yt+H−h−1)

+ (Fξt+H−h−1 + vt+H−h)⊗ εt+H−h] , (2.32)

78



so that the moving average representation, the forecast and the forecast error of y can

be written as

yt+H =
K∑
k=1

ξk, t+Hyt+H

= [1′M ⊗ IK ]ψt+H

= [1′M ⊗ IK ]

[
ΠHψt +

H−1∑
h=0

Πhεt+H−h

]
, (2.33)

Et [yt+H ] =
K∑
k=1

Et [ξk, t+Hyt+H ]

= [1′M ⊗ IK ]Et [ψt+H ]

= [1′M ⊗ IK ] ΠHψt (2.34)

and

ω
(y)
t (H) = yt+H − Et [yt+H ]

= [1′M ⊗ IK ]ω
(ψ)
t (H)

= [1′M ⊗ IK ]

{
H−1∑
h=0

Πh [vt+H−h ⊗ (A (st+H−h) yt+H−h−1)

+ (Fξt+H−h−1 + vt+h)⊗ εt+H−h]}

= [1′M ⊗ IK ]

{{
H−1∑
h=0

Πh [vt+h ⊗ (A (st+H−h) yt+H−h−1)]

+
H−1∑
h=0

Πh [vt+H−h ⊗ εt+H−h]

}

+
H∑
h=1

Πh [(Fξt+H−h−1)⊗ εt+H−h]

}
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= ω
(y, ε, v)
t (H) + ω

(y, ε)
t (H) , (2.35)

where

ω
(y, ε, v)
t (H) = [1′M ⊗ IK ]

{
H−1∑
h=0

Πh [vt+h ⊗ (A (st+H−h) yt+H−h−1)]

+
H−1∑
h=0

Πh [vt+H−h ⊗ εt+H−h]

}
, (2.36)

and

ω
(y, ε)
t (H) = [1′M ⊗ IK ]

{
H∑
h=1

Πh [(Fξt+H−h−1)⊗ εt+H−h]

}
. (2.37)

Since it is not yet possible to implement GVDs without assuming normality in the error

process, this study will focus on the component of the total forecasting error for which

the Gaussian innovation is the sole responsible, i.e. ω(y, ε)
t (H).

Since the error term of the Markov chain has already been ruled out, the prediction of

the state probabilities vector can be approximated with

ξt+h ≈ ξ̂t+h| t = F hξ̂t| t, (2.38)

so that the covariance of the normal component of the forecast error can be expressed

as

cov
(
ω
(y, ε)
t (H)

)
= Et

[
ω
(y, ε)
t (H)

(
ω
(y, ε)
t (H)

)′]
= Et

{
[1′M ⊗ IK ]

{
H−1∑
h=0

Πh
[(
F ξ̂t+H−h−1

)
⊗ εt+H−h

]
×
[(
F ξ̂t+H−h−1

)
⊗ εt+H−h

]′ (
Πh
)′}

[1′M ⊗ IK ]
′
}
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= [1′M ⊗ IK ]Et

{
H−1∑
h=0

Πh
[(
FH−hξ̂t| t

)
⊗ εt+H−h

]
×
[(
FH−hξ̂t| t

)
⊗ εt+H−h

]′ (
Πh
)′}

[1′M ⊗ IK ]
′

= [1′M ⊗ IK ]

{
H∑
h=1

ΠhEt

{[(
FH−hξ̂t| t

)
⊗ εt+H−h

]
×
[(
FH−hξ̂t| t

)
⊗ εt+H−h

]′}(
Πh
)′}

[1′M ⊗ IK ]
′

= [1′M ⊗ IK ]

{
H−1∑
h=0

ΠhEt

[[(
FH−hξ̂t| t

)(
FH−hξ̂t| t

)′]
⊗
(
εt+H−hε

′
t+H−h

)] (
Πh
)′}

[1′M ⊗ IK ]
′

= [1′M ⊗ IK ]

{
H−1∑
h=0

Πh

{(
FH−hξ̂t| t

)2
⊗Et

[(
εt+H−hε

′
t+H−h

)]} (
Πh
)′}

[1′M ⊗ IK ]
′

= [1′M ⊗ IK ]

{
H−1∑
h=0

Πh

{(
FH−hξ̂t| t

)2
⊗ Σ

}(
Πh
)′}

[1′M ⊗ IK ]
′
.

(2.39)

An application of Pesaran and Shin [34] leads to computing the forecast error condi-

tional on information on the variable i as

ω
(y, ε, i)
t (H) = [1′M ⊗ IK ]

{
H−1∑
h=0

Πh
{(
FH−hξ̂t| t

)
⊗ [εt+H−h − E (εt+H−h| εi, t+H−h)]}} . (2.40)

Assuming εt+H−h ∼ N (0, Σ), the expectation in the equation above can be computed

as

E (εt+H−h| εi, t+H−h) =
(
σ−1ii Σei

)
εi, t+H−h, (2.41)
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leading to

ω
(y, ε, i)
t (H) = [1′M ⊗ IK ]

×

{
H−1∑
h=0

Πh
{(
FH−hξ̂t| t

)
⊗
[
εt+H−h −

(
σ−1ii Σei

)
εi, t+H−h

]}}
. (2.42)

so that the covariance matrix of the normal component of the forecast error conditional

to the information on the i-th variable can be computed as

cov
(
ω
(y, ε, i)
t (H)

)
= Et

[
ω
(y, ε, i)
t (H)

(
ω
(y, ε, i)
t (H)

)′]
= [1′M ⊗ IK ]Et

{
H−1∑
h=0

Πh
{(
FH−hξ̂t| t

)
⊗
[
εt+H−h −

(
σ−1ii Σei

)
εi, t+H−h

]}
×
{(
FH−hξ̂t| t

)
⊗
[
εt+H−h −

(
σ−1ii Σei

)
εi, t+H−h

]}′ (
Πh
)′}

× [1′M ⊗ IK ]
′

= [1′M ⊗ IK ]Et

{
H−1∑
h=0

Πh
{(
FH−hξ̂t| t

)
⊗ εt+H−h

−
(
FH−hξ̂t| t

)
⊗
[(
σ−1ii Σei

)
εi, t+H−h

]}
×
{(
FH−hξ̂t| t

)
⊗ εt+H−h

−
(
FH−hξ̂t| t

)
⊗
[(
σ−1ii Σei

)
εi, t+H−h

]}′ (
Πh
)′}

[1′M ⊗ IK ]
′

= [1′M ⊗ IK ]

{
H−1∑
h=0

Πh [ah + bh − 2ch]
(
Πh
)′}

[1′M ⊗ IK ]
′
,

(2.43)

where
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ah = Et

{[(
F hξ̂t| t

)
⊗ εt+H−h

] [(
FH−hξ̂t| t

)
⊗ εt+H−h

]′}
=

[(
FH−hξ̂t| t

)(
FH−hξ̂t| t

)′]
⊗ Et

[
εt+H−hε

′
t+H−h

]
=
(
FH−hξ̂t| t

)2
⊗ Σ, (2.44)

bh = Et

{[(
FH−hξ̂t| t

)
⊗
(
σ−1ii Σei

)
εi, t+H−h

] [(
FH−hξ̂t| t

)
⊗
(
σ−1ii Σei

)
εi, t+H−h

]′}
=

[(
FH−hξ̂t| t

)(
FH−hξ̂t| t

)′]
⊗
{(
σ−1ii Σei

)
Et
[
εi, t+H−hε

′
i, t+H−h

] (
σ−1ii Σei

)′}
=
(
FH−hξ̂t| t

)2
⊗
(
σ−1ii Σeiσiie

′
iΣ
′σ−1ii

)
= σ−1ii

(
FH−hξ̂t| t

)2
⊗ (Σeie

′
iΣ
′)

= σ−1ii

(
FH−hξ̂t| t

)2
⊗ (Σei)

2 (2.45)

and

ch = Et

{[(
FH−hξ̂t| t

)
⊗ εt+H−h

] [(
FH−hξ̂t| t

)
⊗
(
σ−1ii Σei

)
εi, t+H−h

]′}
=

[(
FH−hξ̂t| t

)(
FH−hξ̂t| t

)′]
⊗ Et

{
εt+H−h

[(
σ−1ii Σei

)
εi, t+H−h

]′}
=
(
FH−hξ̂t| t

)2
⊗ Et

{
εt+H−hε

′
i, t+H−hσ

−1
ii e

′
iΣ
′}

=
(
FH−hξ̂t| t

)2
⊗ Et

{
εt+H−hε

′
t+H−heiσ

−1
ii e

′
iΣ
′}

=
(
FH−hξ̂t| t

)2
⊗
(
σ−1ii Σeie

′
iΣ
′)

= σ−1ii

(
FH−hξ̂t| t

)2
⊗ (Σei)

2 . (2.46)

Then, the conditional covariance matrix can be expressed as
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cov
(
ω
(y,ε, i)
t (H)

)
= [1′M ⊗ IK ]

{
H−1∑
h=0

Πh [ah + bh − 2ch]
(
Πh
)′}

[1′M ⊗ IK ]
′

= [1′M ⊗ IK ]

{
H−1∑
h=0

Πh

[(
FH−hξ̂t| t

)2
⊗ Σ

] (
Πh
)′

− σ−1ii

{
H−1∑
h=0

Πh

[(
FH−hξ̂t| t

)2
⊗ (Σei)

2

] (
Πh
)′}}

[1′M ⊗ IK ]
′
.

(2.47)

Notice now, that the normality assumption allows for the computation of the conditional

covariance matrix without any other knowledge about the conditioning variable than

its distribution, thus enabling a univocal determination of the variance decomposition.

Finally, define

∆t, i (H) = cov
(
ω
(y,ε)
t (H)

)
− cov

(
ω
(y,ε, i)
t (H)

)
= [1′M ⊗ IK ]

×

{
σ−1ii

{
H−1∑
h=0

Πh

[(
FH−hξ̂t| t

)2
⊗ (Σei)

2

] (
Πh
)′}}

× [1′M ⊗ IK ]
′
. (2.48)

The quantity above is always positive and shows that conditioning on the i − th vari-

able reduces the forecast error variance; thus, every (j, j) element of ∆t, i (H) is the

share of variance in the j − th equation for which the i − th variable is responsible.

Scaling this quantity with the total variance of the forecast error of the j − th equation

returns the GVD that constitutes the building block of the Diebold Yilmaz measures of

connectedness, that is, the share of variance from variable i to variable j:
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dij, t (H) =

e′j [1′M ⊗ IK ]

{∑H−1
h=0 Πh

[(
FH−hξ̂t| t

)2
⊗ (Σei)

2

] (
Πh
)′}

[1′M ⊗ IK ]′ ej

σiie′j [1′M ⊗ IK ]

{∑H−1
h=0 Πh

[(
FH−hξ̂t| t

)2
⊗ Σ

]
(Πh)′

}
[1′M ⊗ IK ]′ ej

.

(2.49)

Since the generalized variance decompositions do not sum to one, one of the following

normalizations is usually employed to transform connected measures into indexes:

d̃ij, t (H) =
dij, t (H)∑K
i=1 dij, t (H)

, (2.50)

2.4 Generalizations

In this section, the results obtained for the MSA(M)-VAR(1) are extended in order to

accommodate for a wide range of MS-VAR specifications. It will also be shown that

the measure will remain invariant to the removal of restrictions on both the mean and

the intercept.

2.4.1 Switching Intercept: MSIA(M)-VAR(1)

Consider the model examined in the previous section, but this time allow for an intercept

term that is conditional on the state variable:

yt = ν (st) + A (st) yt−1 + εt

ξt = Fξt−1 + vt, (2.51)

Employing the Karlsen state space representation leads to:
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ψt = ξt ⊗ yt

= [Fξt−1 + vt]⊗ [ν (st) + A (st) yt−1 + εt]

= (Fξt−1)⊗ ν (st) + vt ⊗ ν (st) + (Fξt−1)⊗ (A (st) yt−1)

+ vt ⊗ (A (st) yt−1) + (Fξt−1)⊗ εt + vt ⊗ εt

= (Fξt−1)⊗ ν (st) + (F ⊗ A (st)) (ξt−1 ⊗ yt−1)

+ vt ⊗ ν (st) + vt ⊗ (A (st) yt−1) + (Fξt−1 + vt)⊗ εt

= (F ⊗ ν (st)) ξt−1 + (F ⊗ A (st)) (ξt−1 ⊗ yt−1)

+ vt ⊗ ν (st) + vt ⊗ (A (st) yt−1) + (Fξt−1 + vt)⊗ εt

= Gξt−1 + Πψt−1 + εt, (2.52)

where an application of the results in the Appendix 2.C lets G to be expressed as

G = F ⊗ ν (st) =



p11ν1 p21ν1 . . . pM1ν1

p12ν2 p22ν2 . . . pM2ν2
...

... . . . ...

p1MνM p2MνM . . . pMMνM


, (2.53)

Π can be still written as

Π = F ⊗ A (st) =



p11A1 p21A1 . . . pM1A1

p12A2 p22A2 . . . pM2A2

...
... . . . ...

p1MAM p2MAM . . . pMMAM


(2.54)

and

εt = vt ⊗ ν (st) + vt ⊗ (A (st) yt−1) + (Fξt−1 + vt)⊗ εt (2.55)
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is a martingale difference sequence.

To make the specification tractable and get rid of the intercept term, a new state space

representation will be employed as in

ψ∗t =

 ψt

ξt

 =

 Π G

0 F


 ψt−1

ξt−1

+

 εt

vt


= Π∗ψ∗t−1 + ε∗t , (2.56)

so that the moving average representation of ψ can be written in the following form:

ψ∗t+H = Π∗Hψ∗t +
H−1∑
h=0

Π∗hε∗t+H−h. (2.57)

The forecast of ψ∗ and the forecast error of the linear state space representation can thus

be expressed as

Et
[
ψ∗t+H

]
= Π∗Hψ∗t (2.58)

and

ω∗(ψ) (H) = ψ∗t+H − Et
[
ψ∗t+H

]
=

H−1∑
h=0

Π∗hε∗t+H−h

=
H−1∑
h=0

Π∗h

 vt ⊗ ν (st) + vt ⊗ (A (st) yt−1) + (Fξt−1 + vt)⊗ εt

vt

 ,
(2.59)

so that the moving average representation, the forecast and the forecast error of y can
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be written as

yt+H =
M∑
m=1

ξm, t+Hyt+H

= [1′M ⊗ IK : 0K,M ]ψ∗t+H

= [1′M ⊗ IK : 0K,M ]

[
Π∗Hψ∗t +

H−1∑
h=0

Π∗hε∗t+H−h

]
, (2.60)

Et [yt+H ] =
M∑
m=1

Et [ξm, t+Hyt+H ]

= [1′M ⊗ IK : 0K,M ]Et
[
ψ∗t+H

]
= [1′M ⊗ IK : 0K,M ] Π∗Hψ∗t , (2.61)

and

ω
∗(y)
t (H) = yt+H − Et [yt+H ]

= [1′M ⊗ IK : 0K,M ]ω
∗(ψ)
t (H)

= [1′M ⊗ IK : 0K,M ]

{
H−1∑
h=0

Π∗h

×


vt+H−h ⊗ ν (st+H−h) + vt ⊗ (A (st+H−h) yt−H−h)

+ (Fξt+H−h−1 + vt+H−h)⊗ εt+H−h

vt





= [1′M ⊗ IK : 0K,M ]




H−1∑
h=0

Π∗h


vt+H−h ⊗ ν (st+H−h)

+vt+H−h ⊗ (A (st) yt+H−h−1)

vt


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+
H−1∑
h=0

Π∗h

 vt+H−h ⊗ εt+H−h

0




+
H∑
h=1

Π∗h

 (Fξt+H−h−1)⊗ εt+H−h

0




= ω
(y, ε, v)
t (H) + ω

(y, ε)
t (H) . (2.62)

As before, the quantity of interest is ω∗(y, ε)t (H), that is, the normal component of the

forecast error, although this time

ω
∗(y, ε)
t (H) = [1′M ⊗ IK : 0K,M ]

H∑
h=1

Π∗h

 (Fξt+H−h−1)⊗ εt+H−h

0


= [1′M ⊗ IK : 0K,M ]

H∑
h=1

 Π G

0 F


h  (Fξt+H−h−1)⊗ εt+H−h

0

 .
(2.63)

Then, since the lower left quadrant of Π∗h is a matrix of zeros and the vector post

multiplying it has the last Q terms equal to zero,

ω
∗(y, ε)
t (H) = [1′M ⊗ IK : 0K,M ]

H∑
h=1

Π∗h

 (Fξt+H−h−1)⊗ εt+H−h

0


= [1′M ⊗ IK ]

H∑
h=1

Πh [(Fξt+H−h−1)⊗ εt+H−h]

= ω
(y, ε)
t (H) , (2.64)

which is equal to the forecast error of the MSA specification and, as such, an application

of the theory explained for the MSA case would lead to
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dij, t (H) =

e′j [1′M ⊗ IK ]

{∑H−1
h=0 Πh

[(
FH−hξ̂t| t

)2
⊗ (Σei)

2

] (
Πh
)′}

[1′M ⊗ IK ]′ ej

σiie′j [1′M ⊗ IK ]

{∑H−1
h=0 Πh

[(
FH−hξ̂t| t

)2
⊗ Σ

]
(Πh)′

}
[1′M ⊗ IK ]′ ej

.

(2.65)

2.4.2 MSMA(K)-VAR(1) Models

For MSMA(K)-VAR(1) models, the procedures are quite similar to the MSA case, but

before employing them, the state space needs to be extended to take into account the

p+1 periods on which the Markov chain is conditioned. For p = 1, the original Markov

chain is of order 2 and the state space can be extended with the formulae of section 2,

that is:

ξt = ξ
(1)
t ⊗ ξ

(1)
t−1, (2.66)

where ξ(1)t ∈M (M, 1), ξt ∈M (N, 1) and N = Mp+1. Then

F = [diag (vecP ⊗ 1Mp−1)] (1M ⊗ IMp ⊗ 1′M) . (2.67)

Following this adaptation, the state space can now be represented as

yt − µ0 (st) = A (st) (yt−1 − µ1 (st)) + εt

ξt = Fξt−1 + vt, (2.68)

and can be rewritten into
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yt = µ0 (st) + zt

zt = A (st) zt−1 + εt

ξt = Fξt−1 + vt. (2.69)

In this way, the state space representation becomes

ψt = ξt ⊗ yt

= ξt ⊗ µ0 (st) + ξt ⊗ zt

= [Fξt−1 + vt]⊗ [µ0 (st) + A (st) zt−1 + εt]

= (Fξt−1)⊗ µ0 (st) + vt ⊗ µ0 (st) + (Fξt−1)⊗ (A (st) zt−1)

+ vt ⊗ (A (st) zt−1) + (Fξt−1)⊗ εt + vt ⊗ εt

= (Fξt−1)⊗ µ0 (st) + (F ⊗ A (st)) (ξt−1 ⊗ zt−1)

+ vt ⊗ µ0 (st) + vt ⊗ (A (st) zt−1) + (Fξt−1 + vt)⊗ εt

= (F ⊗ µ0 (st)) ξt−1 + (F ⊗ A (st)) (ξt−1 ⊗ zt−1)

+ vt ⊗ µ0 (st) + vt ⊗ (A (st) zt−1) + (Fξt−1 + vt)⊗ εt

= Qξt−1 + Πψ∗t−1 + γt + εt, (2.70)

where an application of the results in the Appendix 2.C lets Q to be expressed as

Q = F ⊗ µ0 (st) =



p11µ0, 1 p21µ0, 1 . . . pM1µ0, 1

p12µ0, 2 p22µ0, 2 . . . pM2µ0, 2

...
... . . . ...

p1Mµ0,M p2Mµ0,M . . . pMMµ0,M


, (2.71)

Π can be still written as
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Π = F ⊗ A (st) =



p11A1 p21A1 . . . pM1A1

p12A2 p22A2 . . . pM2A2

...
... . . . ...

p1MAM p2MAM . . . pMMAM


, (2.72)

εt = vt ⊗ µ0 (st) + vt ⊗ (A (st) zt−1) + (Fξt−1 + vt)⊗ εt (2.73)

is a martingale difference sequence, ψ∗t = ξt ⊗ zt and γt = vt ⊗ µ0 (st).

Considering now the last equality in the previous equation, we further develop the two

terms as

ξt+H ⊗ µ0 (st+H) =

(
FHξt +

H−1∑
h=0

F hvt+H−h

)
⊗ µ0 (st+H)

=
(
FHξt

)
⊗ µ0 (st+H) +

(
H−1∑
h=0

F hvt+H−h

)
⊗ µ0 (st+H)

=
(
FFH−1ξt

)
⊗ µ0 (st+H) +

(
H−1∑
h=0

FF h−1vt+H−h

)
⊗ µ0 (st+H)

= QFH−1ξt +
H−1∑
h=0

QF h−1vt+H−h, (2.74)

and

ψ∗t = ξt ⊗ zt

= [Fξt−1 + vt]⊗ [A (st) zt−1 + εt]

= (Fξt−1)⊗ (A (st) zt−1) + vt ⊗ (A (st) zt−1) + (Fξt−1)⊗ εt + vt ⊗ εt

= Πψ∗t−1 + εt, (2.75)
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would allow for

ψ∗t+H = ΠHψ∗t +
H−1∑
h=0

Πhεt+H−h, (2.76)

so that the moving average, the forecast and the forecast error of the state space repre-

sentation could be written as

ψt+H = QFH−1ξt +
H−1∑
h=0

QF h−1vt+H−h + ΠHψ∗t +
H−1∑
h=0

Πhεt+H−h, (2.77)

Et [ψt+H ] = QFH−1ξt + ΠHψ∗t , (2.78)

ω(ψ) (H) = ψt+H − Et [ψt+H ]

=
H−1∑
h=0

QF h−1vt+H−h +
H−1∑
h=0

Πhεt+H−h

=
H−1∑
h=0

QF h−1vt+H−h

+
H−1∑
h=0

Πh [vt+H−h ⊗ (A (st) yt+H−h−1)

+ (Fξt+H−h−1 + vt+H−h)⊗ εt+H−h] . (2.79)

These considerations allow to write the moving average representation, the forecast and

the forecast error of the original process as

yt+H =
K∑
k=1

ξk, t+Hyt+H

= [1′N ⊗ IK ]ψt+H
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= [1′N ⊗ IK ]

[
QFH−1ξt +

H−1∑
h=0

QF h−1vt+H−h + ΠHψt +
H−1∑
h=0

Πhεt+H−h

]
,

(2.80)

Et [yt+H ] =
K∑
k=1

Et [ξk, t+Hyt+H ]

= [1′N ⊗ IK ]Et [ψt+H ]

= [1′N ⊗ IK ]
(
QFH−1ξt + ΠHψt

)
, (2.81)

while

ω
(y)
t (H) = yt+H − Et [yt+H ]

= [1′N ⊗ IK ]ω
(ψ)
t (H)

= [1′N ⊗ IK ]

{
H−1∑
h=0

QF h−1vt+H−h

+
H−1∑
h=0

Πh [vt+H−h ⊗ (A (st+H−h) yt+H−h−1)

+ (Fξt+H−h−1 + vt+h)⊗ εt+H−h]}

= [1′N ⊗ IK ]

{{
H−1∑
h=0

QF h−1vt+H−h

+
H−1∑
h=0

Πh [vt+h ⊗ (A (st+H−h) yt+H−h−1)] +
H−1∑
h=0

Πh [vt+H−h ⊗ εt+H−h]

}

+
H∑
h=1

Πh [(Fξt+H−h−1)⊗ εt+H−h]

}

= ω
(y, ε, v)
t (H) + ω

(y, ε)
t (H) . (2.82)

Applying the methods developed for the MSA case on the normal component of the
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forecast error, the scaled variance decompositions can be computed as

dij, t (H) =

e′j [1′N ⊗ IK ]

{∑H−1
h=0 Πh

[(
FH−hξ̂t| t

)2
⊗ (Σei)

2

] (
Πh
)′}

[1′N ⊗ IK ]′ ej

σiie′j [1′N ⊗ IK ]

{∑H−1
h=0 Πh

[(
FH−hξ̂t| t

)2
⊗ Σ

]
(Πh)′

}
[1′N ⊗ IK ]′ ej

.

(2.83)

One should notice now that, although functionally similar, the formula for the variance

decompositions of MSMA models differs from the formula for the MSA models in the

number of states, because MSMA models require the extension of the state space.

2.4.3 MSAH

To extend the basic MSA(M)-VAR(1) framework in order to allow for Markov switch-

ing heteroscedasticity, consider the following specification:

yt = A (st) yt−1 + Σ
1
2 (st)ut

ξt = Fξt−1 + vt, (2.84)

where F = P ′, ut is a standard normal error term and vt is a martingale difference

sequence. Then the Karlsen linear state space representation can be written as

ψt = ξt ⊗ yt

= [Fξt−1 + vt]⊗
[
A (st) yt−1 + Σ

1
2 (st)ut

]
= (Fξt−1)⊗ (A (st) yt−1) + vt ⊗ (A (st) yt−1)

+ (Fξt−1)⊗
(

Σ
1
2 (st)ut

)
+ vt ⊗

(
Σ

1
2 (st)ut

)
= (F ⊗ A (st)) (ξt−1 ⊗ yt−1) + vt ⊗ (A (st) yt−1)
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+
(
F ⊗ Σ

1
2 (st)

)
(ξt−1 ⊗ ut) + vt ⊗

(
Σ

1
2 (st)ut

)
= Πψt−1 + εt, (2.85)

where

εt, st = vt ⊗ (A (st) yt−1) +
(
F ⊗ Σ

1
2 (st)

)
(ξt−1 ⊗ ut) + vt ⊗

(
Σ

1
2 (st)ut

)
(2.86)

and, as usual,

Π = F ⊗ A (st) =


p11A1 . . . pM1A1

... . . . ...

p1MAM . . . pMMAM

 . (2.87)

The forecast of the state space can then be written as

ψt+H = ΠHψt +
H−1∑
h=0

Πhεt+H−h, st+H−h , (2.88)

with a forecast error

ω(ψ) (H) = ψt+H − Et [ψt+H ]

=
H−1∑
h=0

Πhεt+H−h, st+H−h

=
H−1∑
h=0

Πh [vt+H−h ⊗ (A (st+H−h) yt+H−h−1)

+ (Fξt+H−h−1 + vt+H−h)⊗
(

Σ
1
2 (st+H−h)ut+H−h

)]
. (2.89)

The moving average and the forecast of y can be expressed as
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yt+H =
K∑
k=1

ξk, t+Hyt+H

= [1′K ⊗ IM ]ψt+H

= [1′K ⊗ IM ]

[
ΠHψt +

H−1∑
h=0

Πhεt+H−h, st+H−h

]
, (2.90)

Et [yt+H ] =
K∑
k=1

Et [ξk, t+Hyt+H ]

= [1′K ⊗ IM ]Et [ψt+H ]

= [1′K ⊗ IM ] ΠHψt, (2.91)

so that the total forecast error is

ω
(y)
t (H) = yt+H − Et [yt+H ]

= [1′M ⊗ IK ]ω
(ψ)
t (H)

= [1′M ⊗ IK ]

{
H−1∑
h=0

Πh [vt+H−h ⊗ (A (st+H−h) yt+H−h−1)

+ (Fξt+H−h−1 + vt+H−h)⊗
(

Σ
1
2 (st)ut+H−h

)]}
= [1′M ⊗ IK ]

{{
H−1∑
h=0

Πh [vt+H−h ⊗ (A (st+H−h) yt+H−h−1)]

+
H−1∑
h=0

Πh
[
vt+H−h ⊗

(
Σ

1
2 (st+H−h)ut+H−h

)]}

+
H∑
h=1

Πh
[
(Fξt+H−h−1)⊗

(
Σ

1
2 (st+H−h)ut+H−h

)]}

= ω
(y, ε, v)
t (H) + ω

(y, u)
t (H) . (2.92)
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It is now possible to compute the covariance of the Gaussian component of the forecast

error as

cov
(
ω
(y, u)
t (H)

)
= Et

[
ω
(y, u)
t (H)

(
ω
(y, u)
t (H)

)′]
= Et {[1′M ⊗ IK ]

×

{
H−1∑
h=0

Πh
[(
F ξ̂t+H−h−1

)
⊗
(

Σ
1
2 (st+H−h)ut+H−h

)]
×
[(
F ξ̂t+H−h−1

)
⊗
(

Σ
1
2 (st+H−h)ut+H−h

)]′ (
Πh
)′}

× [1′M ⊗ IK ]
′}

= [1′M ⊗ IK ]

× Et

{
H−1∑
h=0

Πh
[(
FH−hξ̂t| t

)
⊗
(

Σ
1
2 (st+H−h)ut+H−h

)]
×
[(
FH−hξ̂t| t

)
⊗
(

Σ
1
2 (st+H−h)ut+H−h

)]′ (
Πh
)′}

× [1′M ⊗ IK ]
′

= [1′M ⊗ IK ]

×

{
H∑
h=1

ΠhEt

{[(
FH−hξ̂t| t

)
⊗
(

Σ
1
2 (st+H−h)ut+H−h

)]
×
[(
FH−hξ̂t| t

)
⊗
(

Σ
1
2 (st+H−h)ut+H−h

)]′}(
Πh
)′}

× [1′M ⊗ IK ]
′

= [1′M ⊗ IK ]

×

{
H−1∑
h=0

ΠhEt

{[(
FH−hξ̂t| t

)(
FH−hξ̂t| t

)′]
⊗
[(

Σ
1
2 (st+H−h)ut

)(
Σ

1
2 (st+H−h)ut+H−h

)′]} (
Πh
)′}

× [1′M ⊗ IK ]
′
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= [1′M ⊗ IK ]

×

{
H−1∑
h=0

Πh

{(
FH−hξ̂t| t

)2
⊗ Et

[(
Σ

1
2 (st+H−h)ut+H−hu

′
t+H−hΣ

1
2 (st+H−h)

′
)]} (

Πh
)′}

× [1′M ⊗ IK ]
′

= [1′M ⊗ IK ]

×

{
H−1∑
h=0

Πh

{(
FH−hξ̂t| t

)2
⊗ Σ (st+H−h)

}(
Πh
)′}

× [1′M ⊗ IK ]
′ (2.93)

Applying Pesaran and Shin [34] leads to

ω
(y, u, i)
t (H) = [1′M ⊗ IK ]

×

{
H−1∑
h=0

Πh
{(
FH−hξ̂t| t

)
⊗ [εt+H−h − E (εt+H−h| εi, t+H−h)]

}}
,

(2.94)

which, assuming

εt+H−h ∼ N (0, Σ (st+H−h)) , (2.95)

so that

E (εt+H−h| εi, t+H−h) =
[
σ−1ii (st+H−h) Σ (st+H−h) ei

]
εi, t+H−h

=
[
σ−1ii (st+H−h) Σ (st+H−h) ei

]
σ

1
2
ii (st+H−h)ui, t+H−h, (2.96)

can be rewritten as
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ω
(y, u, i)
t (H) = [1′M ⊗ IK ]

{
H−1∑
h=0

Πh
{(
FH−hξ̂t| t

)
⊗
[
εt+H−h −

(
σ−1ii (st+H−h) Σ (st+H−h) ei

)
εi, t+H−h

]}}
= [1′M ⊗ IK ]

{
H−1∑
h=0

Πh
{(
FH−hξ̂t| t

)
⊗
[
Σ

1
2 (st+H−h)ut+H−h

−
(
σ−1ii (st+H−h) Σ (st+H−h) ei

)
σ

1
2
ii (st+H−h)ui, t+H−h

]}}
. (2.97)

This, along with the fact that ut is serially uncorrelated, allows to write the covariance

of the Gaussian component of the forecast error conditional on variable i as

cov
(
ω
(y, ε, i)
t (H)

)
= Et

[
ω
(y, ε, i)
t (H)

(
ω
(y, ε, i)
t (H)

)′]
= [1′M ⊗ IK ]Et

{
H−1∑
h=0

Πh
{(
FH−hξ̂t| t

)
⊗
[
Σ

1
2 (st+H−h)ut+H−h

−
(
σ−1ii (st+H−h) Σ (st+H−h) ei

)
σ

1
2
ii (st+H−h)ui, t+H−h

]}
×
{(
FH−hξ̂t| t

)
⊗
[
Σ

1
2 (st+H−h)ut+H−h

−
(
σ−1ii (st+H−h) Σ (st+H−h) ei

)
σ

1
2
ii (st+H−h)ui, t+H−h

]}′
×
(
Πh
)′}

[1′M ⊗ IK ]
′

= [1′M ⊗ IK ]Et

{
H−1∑
h=0

Πh
{(
FH−hξ̂t| t

)
⊗ Σ

1
2 (st+H−h)ut+H−h

−
(
FH−hξ̂t| t

)
⊗
[(
σ−1ii (st+H−h) Σ (st+H−h) ei

)
σ

1
2
ii (st+H−h)ui, t+H−h

]}
×
{(
FH−hξ̂t| t

)
⊗ Σ

1
2 (st+H−h)ut+H−h

−
(
FH−hξ̂t| t

)
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⊗
[(
σ−1ii (st+H−h) Σ (st+H−h) ei

)
σ

1
2
ii (st+H−h)ui, t+H−h

]}′
×
(
Πh
)′}

[1′M ⊗ IK ]
′

= [1′M ⊗ IK ]

{
H−1∑
h=0

Πh [ah + bh − 2ch]
(
Πh
)′}

[1′M ⊗ IK ]
′
,

(2.98)

where

ah = Et

{[(
FH−hξ̂t| t

)
⊗ Σ

1
2 (st+H−h)ut+H−h

]
×
[(
FH−hξ̂t| t

)
⊗ Σ

1
2 (st+H−h)ut+H−h

]′}
=

[(
FH−hξ̂t| t

)(
FH−hξ̂t| t

)′]
⊗ Et

[
Σ

1
2 (st+H−h)ut+H−hu

′
t+H−h

(
Σ

1
2 (st+H−h)

)′]
=
(
FH−hξ̂t| t

)2
⊗ Σ (st+H−h) , (2.99)

bh = Et

{[(
FH−hξ̂t| t

)
⊗
(
σ−1ii (st+H−h) Σ (st+H−h) ei

)
σ

1
2
ii (st+H−h)ui, t+H−h

]
×
[(
FH−hξ̂t| t

)
⊗
(
σ−1ii (st+H−h) Σ (st+H−h) ei

)
σ

1
2
ii (st+H−h)ui, t+H−h

]′}
=

[(
FH−hξ̂t| t

)(
FH−hξ̂t| t

)′]
⊗
{(
σ−1ii (st+H−h) Σ (st+H−h) ei

)
σii (st+H−h)

× Et
[
ui, t+H−hu

′
i, t+H−h

] (
σ−1ii (st+H−h) Σ (st+H−h) ei

)′}
=
(
FH−hξ̂t| t

)2
⊗
(
σ−1ii (st+H−h) Σ (st+H−h) eiσii (st+H−h) e

′
i (Σ (st+H−h))

′ σ−1ii (st+H−h)
)

=
(
FH−hξ̂t| t

)2
⊗
(
σ−1ii (st+H−h) Σ (st+H−h) eie

′
i (Σ (st+H−h))

′)
=
(
FH−hξ̂t| t

)2
⊗
(
σ
− 1

2
ii (st+H−h) Σ (st+H−h) ei

)2
, (2.100)
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and

ch = Et

{[(
FH−hξ̂t| t

)
⊗ Σ

1
2 (st+H−h)ut+H−h

]
×
[(
FH−hξ̂t| t

)
⊗
(
σ−1ii (st+H−h) Σ (st+H−h) ei

)
σ

1
2
ii (st+H−h)ui, t+H−h

]′}
=

[(
FH−hξ̂t| t

)(
FH−hξ̂t| t

)′]
⊗ Et

{
Σ

1
2 (st+H−h)ut+H−h

×
[(
σ−1ii (st+H−h) Σ (st+H−h) ei

)
σ

1
2
ii (st+H−h)ui, t+H−h

]′}
=
(
FH−hξ̂t| t

)2
⊗ Et

{
Σ

1
2 (st+H−h)ut+H−hu

′
i, t+H−hσ

1
2
ii (st+H−h)σ

−1
ii (st+H−h) e

′
i (Σ (st+H−h))

′
}

=
(
FH−hξ̂t| t

)2
⊗ Et

{
Σ

1
2 (st+H−h)ut+H−hu

′
t+H−h

×
(

Σ
1
2 (st+H−h)

)′
eiσ
−1
ii (st+H−h) e

′
i (Σ (st+H−h))

′
}

=
(
FH−hξ̂t| t

)2
⊗
(
σ−1ii (st+H−h) Σ (st+H−h) eie

′
i

(
Σ (st+H−h)

′))
=
(
FH−hξ̂t| t

)2
⊗
(
σ
− 1

2
ii (st+H−h) Σ (st+H−h) ei

)2
, (2.101)

so that

cov
(
ω
(ε, i)
t (H)

)
= [1′M ⊗ IK ]

{
H−1∑
h=0

Πh [ah + bh − 2ch]
(
Πh
)′}

[1′M ⊗ IK ]
′

= [1′M ⊗ IK ]

{
H−1∑
h=0

Πh

[(
FH−hξ̂t| t

)2
⊗ Σ (st+H−h)

] (
Πh
)′

−

{
H−1∑
h=0

Πh

[(
FH−hξ̂t| t

)2
⊗
(
σ
− 1

2
ii (st+H−h) Σ (st+H−h) ei

)2] (
Πh
)′}}

[1′M ⊗ IK ]
′
. (2.102)
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Then, the notions described in the previous sections allow to write

dij, t (H) =
e′j [1′M ⊗ IK ]

[∑H−1
h=0 ΠhΘ1, h

(
Πh
)′]

[1′M ⊗ IK ]′ ej

e′j [1′M ⊗ IK ]
[∑H−1

h=0 ΠhΘ2, h (Πh)′
]

[1′M ⊗ IK ]′ ej
, (2.103)

where

Θ1, h =
(
FH−hξ̂t| t

)2
⊗
(
σ
− 1

2
ii (st+H−h) Σ (st+H−h) ei

)2
(2.104)

and

Θ2, h =
(
FH−hξ̂t| t

)2
⊗ Σ (st+H−h) . (2.105)

Consider now the following application of the distributive property of the transposition

and the mixed product property under the Kronecker product:

Θ1, h =
(
FH−hξ̂t| t

)2
⊗
(
σ
− 1

2
ii (st+H−h) Σ (st+H−h) ei

)2
=
[(
FH−hξ̂t| t

)
⊗
(
σ
− 1

2
ii (st+H−h) Σ (st+H−h) ei

)]
×
[(
FH−hξ̂t| t

)
⊗
(
σ
− 1

2
ii (st+H−h) Σ (st+H−h) ei

)]′
.

(2.106)

The mixed product property also allows to write

(
FH−hξ̂t| t

)
⊗
(
σ
− 1

2
ii (st+H−h) Σ (st+H−h) ei

)
=
{
FH−h

⊗
[
σ
− 1

2
ii (st+H−h) Σ (st+H−h)

]}
×
(
ξ̂t| t ⊗ ei

)
(2.107)
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and an application of Appendix 2.C allows for

Λ
(H−h)
i = FH−h ⊗

[
σ
− 1

2
ii (st+H−h) Σ (st+H−h)

]

=


FH−h
(1, 1) σ

− 1
2

ii, 1Σ1 . . . FH−h
(M, 1)σ

− 1
2

ii, 1Σ1

... . . . ...

F h
(1,M)σ

− 1
2

ii,MΣM . . . F h
(M,M)σ

− 1
2

ii,MΣM

 , (2.108)

so that

Θ1, h = Λ(H−h)
(
ξ̂t| t ⊗ ei

) [
Λ(H−h)

(
ξ̂t| t ⊗ ei

)]′
=
[
Λ(H−h)

(
ξ̂t| t ⊗ ei

)]2
. (2.109)

Similar considerations apply for

Θ2, h =
(
FH−hξ̂t| t

)2
⊗ Σ (st+H−h)

=

[(
FH−hξ̂t| t

)(
FH−hξ̂t| t

)′]
⊗ [Σ (st+H−h) IK ]

=
[(
FH−hξ̂t| t

)
⊗ Σ (st+H−h)

] [(
FH−hξ̂t| t

)′
⊗ IK

]
=
[
Γ(H−h)

(
ξ̂t| t ⊗ IK

)] [(
FH−hξ̂t| t

)′
⊗ IK

]
, (2.110)

where

Γ(H−h) = FH−h ⊗ Σ (st+H−h) =


FH−h
(1, 1) Σ1 . . . FH−h

(M, 1)Σ1

... . . . ...

FH−h
(1,M)ΣM . . . FH−h

(M,M)ΣM

 . (2.111)
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2.4.4 MSA(K)-VAR(P)

Estimating MS-VAR models can be quite a demanding exercise, as the parameter space

grows very fast when relaxing restrictions, especially in high dimensional systems.

For this reason, in particular when using MSA-VAR specifications, a parsimonious ap-

proach should usually guide the practitioner in choosing vector autoregressions of order

one. This notwithstanding, if the analyst decides to use higher autoregressive orders,

she can simply adapt the results in the previous sections to the stacked VAR(1) model:

ȳt =



yt

yt−1
...

yt−P+1


= ν̄ (st) + Ā (st) ȳt−1 + ε̄t, (2.112)

ν̄ (st) =



ν (st)

0

...

0


, (2.113)

Ā (st) =



A1 (st) AP (st) . . . AP (st)

IM 0 0

. . . ...

0 IM 0


, (2.114)
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ε̄t =



εt

0

...

0


. (2.115)

2.5 A simulation-based practical application

To illustrate how the DY connectedness measures can behave under the MS-VAR as-

sumption, we propose two simulation-based experiments.

The first example is based on Krolzig [27] estimation of a MSMH(3)-DVAR(1) model

on international business cycle data. The second experiment is based on the more re-

cent Guidolin et al. [18] (GOP) estimation of a MSIH(3)-VAR(1) model on a panel of

corporate bond yields and Treasury yields. In both the experiments, the total connect-

edness measure will be computed assuming a forecast horizon (H) of ten periods and

will employ smoothed states probabilities.

Simulating the Markov chain The first step to both Monte Carlo experiments is

to use the transition matrix in each parametrization (see the parameters reported in

the Appendices 2.D and 2.E) to simulate a path for the Markov chain. To do so, the

following algorithm has been used:

1. select a starting point for the Markov chain ξ0 (it makes sense to start with the

most probable state);

2. detect the index in−1 of the element equal to one of the previously extracted point

of the Markov chain ξn−1;

3. randomly extract r from the uniform distribution;
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4. using the in−1−th row of the transition matrix, compute a cumulative distribution;

5. choose, as in, the index for which the cumulative distribution is greater than r;

6. repeat from step 2 until reaching a desirable number of simulated points of the

Markov chain.

Experiment with Krolzig parametrization In this experiment, the parameters ob-

tained by Krolzig [27] in his MSMH(3)-DVAR(1) estimation of a multi-country growth

model with Markov switching regimes will be used. In this study, Krolzig uses the data

from OECD on real GNP of USA, Japan and West Germany and real GDP of the UK,

Canada and Australia. These time series are then transformed in growth rates, before

being employed in the analysis. The sample used by Krolzig spans from 1962:1 to

1991:4 and covers 120 quarters (excluding presample values).

The specification assumes three states of the world: state one, characterized by higher

than average growth means, state two, characterized by average growth means, and

state three, characterized by negative or lower than average means. DY connectedness is

invariant with respect to the mean, thus, since the autoregressive parameters are constant

in this specification, total connectedness reflects the dynamics of the state dependent

variance covariance matrix.

Starting from Krolzig’s parameters, reported in the Appendix 2.D, we will simulate

the time series, from which inferred, predicted and smoothed state probabilities will be

recovered. With these ingredients, a dynamic measure of total connectedness will be

computed.

Using the simulated Markov chain is then possible to use the parameters in Krolzig [27]

to simulate the time series using the formulae for each point of the MSMH(3)-VAR(1),

so that, for each t:
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yt =

 M∑
m=1

∑
n(m)

ξtnX
µ
n

µ+
(
y′t−1 ⊗ IK

)
α + ut, (2.116)

where

n (m) = (m− 1)
N

M
+ 1, . . . , m

N

M
, (2.117)

ξt = ξ
(p+1)
t = ⊗pj=0ξ

(1)
t−j, (2.118)

ξ
(1)
t =


I (st = 1)

...

I (st = M)

 , (2.119)

Xµ
n = (e′n ⊗ IK)Xµ, (2.120)

Xµ = −
p∑
l=0

L′l ⊗ Al, A0 = −Ik, (2.121)

Ll = 1′M l ⊗ IM ⊗ 1Mp−l , l = 0, . . . , p, (2.122)

µ = (µ′1, . . . , µ
′
M)
′
, (2.123)

α = vec (A) , (2.124)

and ut is randomly extracted from N (0, Ωt), where
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Ωt =
M∑
m=1

∑
n(m)

ξtnΣn. (2.125)

The simulated time series can then be used to compute infered, predicted and smoothed

state probabilities.

Total connectedness is then computed summing the non diagonal elements of the con-

nectedness table computed using 2.126

dij, t (H) =
e′j [1′M ⊗ IK ]

[∑H−1
h=0 Πhθ21h,Krolzig

(
Πh
)′]

[1′M ⊗ IK ]′ ej

e′j [1′M ⊗ IK ]
{∑H−1

h=0 Πhθ2h,Krolzig (Πh)′
}

[1′M ⊗ IK ]′ ej
, (2.126)

where

Π = F ⊗ A, (2.127)

θ1h,Krolzig = Λ
(H−h)
i

(
ξ̂t| t ⊗ ei

)
(2.128)

and

θ2h,Krolzig =
[
Γ(H−h)

(
ξ̂t| t ⊗ IK

)] [(
FH−hξ̂t| t

)′
⊗ IK

]
. (2.129)

Figure 2.1 shows the plots of the elements of the Markov chain extracted from a 500

iterations simulation.

[Figure 2.1 about here.]

As expected, the most occurring state of the world is state two (normal growth), fol-

lowed by respectively state one (higher than normal growth) and state three (negative

or below average growth). As expected from the inspection of the transition matrix,

the number of switches from another state (most likely from state two) to state three is
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higher than the switch from another state to state one, while, at the same time, the time

spent in state one, once switched, is considerably longer than the time spent in state

three. In fact, the simulated system visited state one 150 times, state two 275 times

and state three 75 times, very much consistently both with the transition matrix and the

ergodic state probabilities provided in Krolzig [27].

The plots for the simulated time series are shown in Figure 2.2, where it is possible to

roughly observe the autoregressive pattern, along with small clusters of outlying points

extracted from states one and three.

[Figure 2.2 about here.]

Figure 2.3 shows the plot of the total connectedness measure implied by the simulated

series.

[Figure 2.3 about here.]

Figure 2.4 compares total connectedness with each item of the inferred state probabili-

ties extracted from the simulated time series.

[Figure 2.4 about here.]

Interestingly, the lowest values for total connectedness happen during periods of higher

than normal growth, while the highest values happen during recessions.

Experiment with Guidolin, Orlov and Pedio (GOP) parametrization The follow-

ing experiment will use the parametrization obtained in Guidolin et al. [18]. They use

data on corporate bonds yields and the Treasury yields curve from October, 8 2004 to

December 28, 2012. With corporate bond yields observations, they build four portfolios

with different ratings and maturities: (i) investment-grade short-term bonds (IGST), (ii)

investment-grade long-term bonds (IGLT), (iii) non- investment-grade short-term bonds
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(NIGST), and (iv) non-investment-grade long-term bonds (NIGLT). The treasury yields

curve is then represented by 1-month, 1-year, 5- year, and 10-year weekly (Friday-to-

Friday) constant maturity Treasury yields. GOP parameters for a MSIH(3)-VAR(1) are

reported in the Appendix 2.E.

The specification assumes three states of the world: state one representing pre-crisis

periods, state two representing crisis and state three representing post-crisis behaviour.

States one and three are persistent states, with regime three being characterized by

slightly lower yields, especially for the least risky bonds. State two is instead char-

acterized by greater volatility and the phenomenon of flight to quality.

Using such parametrization the time series of the variables can be simulated using

Krolzig [27]:

yt =
M∑
m=1

ξtmνm +
(
y′t−1 ⊗ IK

)
α + ut, (2.130)

ut being randomly extracted from N (0, Ωt), where

Ωt =
M∑
m=1

ξtmΣm. (2.131)

Using the simulated time series, smoothed states probabilities are retrieved and total

connectedness is computed as usual, that is, summing the non diagonal elements of the

connectedness table computed using 2.132

dij, t (H) =
e′j [1′M ⊗ IK ]

[∑H−1
h=0 Πhθ21h,GOP

(
Πh
)′]

[1′M ⊗ IK ]′ ej

e′j [1′M ⊗ IK ]
[∑H−1

h=0 Πhθ2h,GOP (Πh)′
]

[1′M ⊗ IK ]′ ej
, (2.132)

where

Π = F ⊗ A, (2.133)
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θ1h,GOP = Λ
(H−h)
i

(
ξ̂t| t ⊗ ei

)
(2.134)

and

θ2h,GOP =
[
Γ(H−h)

(
ξ̂t| t ⊗ IK

)] [(
FH−hξ̂t| t

)′
⊗ IK

]
. (2.135)

Notice that, since connectedness is not affected either by means or intercepts, the for-

mulae for computing the connectedness building blocks are the same for both the ex-

periments.

Figure 2.5 shows the simulated path of the Markov chain for this experiment.

[Figure 2.5 about here.]

It is possible to observe that regimes one and three are indeed much more persistent

than regime two. Moreover, regime two is most often (but not always) preceded by

regime one and followed by regime three. The simulation visited regime one 252 times,

regime two 49 times and regime three 199 times.

Figure 2.6 contains the plots of the simulated time series and Figure 2.7 shows the plot

of the implied total connectedness.

[Figure 2.6 about here.]

[Figure 2.7 about here.]

Finally, Figure 2.8 compares total connectedness with smoothed probabilities filtered

from the simulated series.

[Figure 2.8 about here.]
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Again, total connectedness is much higher during the crisis regime, showing how this

measure can capture in a single number useful features of the analyzed system. Inter-

estingly enough, connectedness during pre-crisis is higher than connectedness in the

post-crisis state, possibly indicating the success of the economic policies employed for

crisis resolution.

2.6 Conclusions

Connectedness is a central topic in scientific inquiry, especially when large complex

systems are involved, even though the formalization of such a concept can vary. The

Diebold and Yilmaz measures try to capture connectedness using variance spillovers

in a multivariate autoregressive setting. As the measures are functions of the system

parameters, when the latter are made to vary, the measures mechanically display dy-

namics.

This paper addressed the problem of explicitly compute DY connectedness measures,

when the source of parameter dynamics is a Markovian change of regimes, by deriving

approximated closed formulae for the computation of generalized variance decompo-

sitions on which the connectedness measures are based. Such formulae are shown to

be an aggregator of information about the distribution of a class of multivariate markov

switching models.

As the framework depicted in Diebold and Yilmaz [12] suggests, further research can be

certainly conducted, including, to cite a category, studies to come up with generalized

variance decompositions for either different parameters dynamics and distributions of

the error term.

Naturally, the methods described in this paper can be adapted to any form of empirical

analysis that employs Markov switching vector autoregressions and can be useful, for

example, to assess both systemic risk in portfolios of assets or spillovers occurring
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between assets and portfolios or any other system of variables.

As the scale of estimation increases, complexities arise, because the current tractable

number of variables in the system and the number of restrictions on parameters funda-

mentally depend on, for example, things like sample size and computation power. As

the scale of the model increases, more and more a priori choices (as divide and conquer

decisions) have to be made, in order to perform parameter estimations.

As the simulation-based approach used in this paper attempted to show, connectedness

measures can deliver meaningful and intuitive information about the observed system,

which can be used by policymakers to assess and monitor the performance of their

policies.

114



Bibliography

[1] Albert, J. H. and Chib, S. (1993). Bayes inference via gibbs sampling of autore-

gressive time series subject to markov mean and variance shifts. Journal of Business

& Economic Statistics, 11(1):1–15.

[2] Ang, A. and Timmermann, A. (2012). Regime changes and financial markets.

Annu. Rev. Financ. Econ., 4(1):313–337.

[3] Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique

occurring in the statistical analysis of probabilistic functions of markov chains. The

annals of mathematical statistics, 41(1):164–171.

[4] Billio, M., Casarin, R., Ravazzolo, F., and Van Dijk, H. K. (2016). Interconnections

between eurozone and us booms and busts using a bayesian panel markov-switching

var model. Journal of Applied Econometrics, 31(7):1352–1370.

[5] Bostanci, G. and Yilmaz, K. (2015). How connected is the global sovereign credit

risk network?

[6] Carter, C. K. and Kohn, R. (1994). On gibbs sampling for state space models.

Biometrika, 81(3):541–553.

[7] Demirer, M., Diebold, F. X., Liu, L., and Yılmaz, K. (2017). Estimating global bank

network connectedness. Technical report, National Bureau of Economic Research.

[8] Diebold, F. X., Liu, L., and Yilmaz, K. (2017). Commodity connectedness.

[9] Diebold, F. X. and Yilmaz, K. (2009). Measuring financial asset return and volatil-

ity spillovers, with application to global equity markets. The Economic Journal,

119(534):158–171.

115



[10] Diebold, F. X. and Yilmaz, K. (2012). Better to give than to receive: Predictive di-

rectional measurement of volatility spillovers. International Journal of Forecasting,

28(1):57–66.

[11] Diebold, F. X. and Yılmaz, K. (2014). On the network topology of variance de-

compositions: Measuring the connectedness of financial firms. Journal of Econo-

metrics, 182(1):119–134.

[12] Diebold, F. X. and Yilmaz, K. (2015a). Financial and Macroeconomic Connect-

edness: A Network Approach to Measurement and Monitoring. Oxford University

Press, USA.

[13] Diebold, F. X. and Yilmaz, K. (2015b). Trans-atlantic equity volatility connect-

edness: Us and european financial institutions, 2004–2014. Journal of Financial

Econometrics, 14(1):81–127.

[14] Ferrara, L., Marcellino, M., and Mogliani, M. (2015). Macroeconomic forecasting

during the great recession: The return of non-linearity? International Journal of

Forecasting, 31(3):664–679.

[15] Garcia, R. (1998). Asymptotic null distribution of the likelihood ratio test in

markov switching models. International Economic Review, pages 763–788.

[16] Gaspar, R. M. (2012). Comment on better to give than to receive by francis x.

diebold and kamil yilmaz. International Journal of Forecasting, 28(1):67–69.

[17] Granger, C. W. (2008). Non-linear models: Where do we go next-time varying

parameter models? Studies in Nonlinear Dynamics & Econometrics, 12(3).

[18] Guidolin, M., Orlov, A. G., and Pedio, M. (2017). The impact of monetary policy

on corporate bonds under regime shifts. Journal of Banking & Finance, 80:176–202.

116



[19] Hamilton, J. D. (1989). A new approach to the economic analysis of nonstation-

ary time series and the business cycle. Econometrica: Journal of the Econometric

Society, pages 357–384.

[20] Hamilton, J. D. (1994). Time series analysis. Princeton university press Princeton.

[21] Hamilton, J. D. (2010). Regime switching models. In Macroeconometrics and

time series analysis, pages 202–209. Springer.

[22] Hansen, B. E. (1996). Inference when a nuisance parameter is not identified under

the null hypothesis. Econometrica: Journal of the econometric society, pages 413–

430.

[23] Karlsen, H. (1990). A class of non-linear time series models. PhD diss., University

of Bergen, Department of Mathematics.

[24] Kim, C.-J. (1994). Dynamic linear models with markov-switching. Journal of

Econometrics, 60(1-2):1–22.

[25] Kim, C.-J., Nelson, C. R., et al. (1999). State-space models with regime switching:

classical and gibbs-sampling approaches with applications. MIT Press Books, 1.

[26] Koop, G., Pesaran, M. H., and Potter, S. M. (1996). Impulse response analysis in

nonlinear multivariate models. Journal of econometrics, 74(1):119–147.

[27] Krolzig, H.-M. (2013). Markov-switching vector autoregressions: Modelling, sta-

tistical inference, and application to business cycle analysis, volume 454. Springer

Science & Business Media.

[28] Krolzig, H.-M. et al. (2000). Predicting Markov-switching vector autoregressive

processes. Nuffield College.

[29] Lindgren, G. (1978). Markov regime models for mixed distributions and switching

regressions. Scandinavian Journal of Statistics, pages 81–91.

117



[30] Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer

Science & Business Media.

[31] Magnus, J. R. (1988). Linear Structures (Charles Griffin Series-Griffin’s Statisti-

cal Monographs, No 42). Oxford University Press.

[32] McCulloch, R. E. and Tsay, R. S. (1994). Bayesian analysis of autoregressive time

series via the gibbs sampler. Journal of Time Series Analysis, 15(2):235–250.

[33] Pesaran, B. and Pesaran, M. H. (2010). Time series econometrics using Microfit

5.0: A user’s manual. Oxford University Press, Inc.

[34] Pesaran, H. H. and Shin, Y. (1998). Generalized impulse response analysis in

linear multivariate models. Economics letters, 58(1):17–29.

[35] Sims, C. A. (1980). Macroeconomics and reality. Econometrica: Journal of the

Econometric Society, pages 1–48.

[36] Sims, C. A., Waggoner, D. F., and Zha, T. (2008). Methods for inference in large

multiple-equation markov-switching models. Journal of Econometrics, 146(2):255–

274.

[37] Wold, H. O. (1960). A generalization of causal chain models (part iii of a triptych

on causal chain systems). Econometrica: Journal of the Econometric Society, pages

443–463.

118



Appendix 2.A Proposition 1

Consider a primitive transition matrix P as defined in Krolzig, such as

P =



p11 p12 . . . p1M

p21 p22 . . . p2M
...

... . . . ...

pM1 pM2 . . . pMM


:

M∑
j=1

pij = 1. (A.1)

The Derivative Ttransition Matrix F should satisfy

Pr
(
ξt+1 = ξ∗t+1| ξt

)
= Pr

(
ξ
(1)
t+1 = ξ

(1)∗

t+1 | ξ
(1)
t

)
× Pr

(
ξ
(1)
t = ξ

(1)∗

t , ξ
(1)
t−1 = ξ

(1)∗

t−1 , . . . , ξ
(1)
t−p+1 = ξ

(1)∗

t−p+1

| ξ(1)t , ξ
(1)
t−1, . . . , ξ

(1)
t−p

)
. (A.2)

To show it is true, consider each factor separately.

If ξ(1)
∗

t+1 = ej , given ξ(1)t = ei, Pr
(
ξ
(1)
t+1 = ej| ξ(1)t = ei

)
= pij . If ξ(1)t is not specified as

a ξ(1)
∗

t , then Pr
(
ξ
(1)
t+1 = ej| ξ(1)t

)
= Pej .

The second factor is a number that can be either 0 or 1 and is an element of ξ(p)t deter-

mined by ξ(1)
∗

t , ξ
(1)∗

t−1 , . . . , ξ
(1)∗

t−p+1.

For example, for M = 2 and p = 2:
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st+1 st st−1 First Factor Second Factor Pr
(
ξt+1 = ξ∗t+1| ξt

)
1 1 1 p11 ξ

(2)∗
1t = ξ

(1)
1t ξ

(1)
1t−1 p11ξ

(1)
1t ξ

(1)
1t−1

1 1 2 p11 ξ
(2)∗
2t = ξ

(1)
1t ξ

(1)
2t−1 p11ξ

(1)
1t ξ

(1)
2t−1

1 2 1 p21 ξ
(2)∗
3t = ξ

(1)
2t ξ

(1)
1t−1 p21ξ

(1)
2t ξ

(1)
1t−1

1 2 2 p21 ξ
(2)∗
4t = ξ

(1)
1t ξ

(1)
2t−1 p21ξ

(1)
2t ξ

(1)
2t−1

2 1 1 p12 ξ
(2)∗
1t = ξ

(1)
1t ξ

(1)
1t−1 p12ξ

(1)
1t ξ

(1)
1t−1

2 1 2 p12 ξ
(2)∗
2t = ξ

(1)
1t ξ

(1)
2t−1 p12ξ

(1)
1t ξ

(1)
2t−1

2 2 1 p22 ξ
(2)∗
3t = ξ

(1)
2t ξ

(1)
1t−1 p22ξ

(1)
2t ξ

(1)
1t−1

2 2 2 p22 ξ
(2)∗
4t = ξ

(1)
2t ξ

(1)
2t−1 p22ξ

(1)
2t ξ

(1)
2t−1

(A.3)

In this case,

diag (vecP ⊗ IMp−1) = diag





p11

p21

p12

p22


⊗

 1

1




= diag





p11

p11

p21

p21

p12

p12

p22

p22




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=



p11 0 0 0 0 0 0 0

0 p11 0 0 0 0 0 0

0 0 p21 0 0 0 0 0

0 0 0 p21 0 0 0 0

0 0 0 0 p12 0 0 0

0 0 0 0 0 p12 0 0

0 0 0 0 0 0 p22 0

0 0 0 0 0 0 0 p22



(A.4)

while



ξ
(1)
1t ξ

(1)
1t−1

ξ
(1)
1t ξ

(1)
2t−1

ξ
(1)
2t ξ

(1)
1t−1

ξ
(1)
2t ξ

(1)
2t−1

ξ
(1)
1t ξ

(1)
1t−1

ξ
(1)
1t ξ

(1)
2t−1

ξ
(1)
2t ξ

(1)
1t−1

ξ
(1)
2t ξ

(1)
2t−1



= 1M ⊗ ξ(p)t (A.5)

and

1M ⊗ ξ(p)t = 1M ⊗ (IMp ⊗ 1′M) ξt
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= 1M ⊗ (IMp ⊗ 1′M)



ξ1t

ξ2t

ξ3t

ξ4t

ξ5t

ξ6t

ξ7t

ξ8t



= 1M ⊗





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


⊗
[

1 1

]




ξ1t

ξ2t

ξ3t

ξ4t

ξ5t

ξ6t

ξ7t

ξ8t



= 1M ⊗





1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1







ξ1t

ξ2t

ξ3t

ξ4t

ξ5t

ξ6t

ξ7t

ξ8t



122



= 1M ⊗



ξ1t + ξ2t

ξ3t + ξ4t

ξ5t + ξ6t

ξ7t + ξ8t



= 1M ⊗



ξ
(2)
1t ξ1t−2 + ξ

(2)
1t ξ2t−2

ξ
(2)
2t ξ1t−2 + ξ

(2)
2t ξ2t−2

ξ
(2)
3t ξ1t−2 + ξ

(2)
1t ξ2t−2

ξ
(2)
4t ξ1t−2 + ξ

(2)
4t ξ2t−2



= 1M ⊗



ξ
(2)
1t

ξ
(2)
2t

ξ
(2)
3t

ξ
(2)
4t


= 1M ⊗ ξ(2)t (A.6)

Moreover,

1M ⊗ IMp ⊗ 1′M =



1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1



(A.7)

so that
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F = diag (vecP ⊗ 1Mp−1) (1M ⊗ IMp ⊗ 1′M)

=



p11 0 0 0 0 0 0 0

0 p11 0 0 0 0 0 0

0 0 p21 0 0 0 0 0

0 0 0 p21 0 0 0 0

0 0 0 0 p12 0 0 0

0 0 0 0 0 p12 0 0

0 0 0 0 0 0 p22 0

0 0 0 0 0 0 0 p22



×



1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1



=



p11 p11 0 0 0 0 0 0

0 0 p11 p11 0 0 0 0

0 0 0 0 p21 p21 0 0

0 0 0 0 0 0 p21 p21

p12 p12 0 0 0 0 0 0

0 0 p12 p12 0 0 0 0

0 0 0 0 p22 p22 0 0

0 0 0 0 0 0 p22 p22



(A.8)
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and

Fξt =



p11 p11 0 0 0 0 0 0

0 0 p11 p11 0 0 0 0

0 0 0 0 p21 p21 0 0

0 0 0 0 0 0 p21 p21

p12 p12 0 0 0 0 0 0

0 0 p12 p12 0 0 0 0

0 0 0 0 p22 p22 0 0

0 0 0 0 0 0 p22 p22





ξ1t

ξ2t

ξ3t

ξ4t

ξ5t

ξ6t

ξ7t

ξ8t



=



p11ξ1t + p11ξ2t

p11ξ3t + p11ξ4t

p21ξ5t + p21ξ6t

p21ξ7t + p21ξ8t

p12ξ1t + p12ξ2t

p12ξ3t + p12ξ4t

p22ξ5t + p22ξ6t

p22ξ7t + p22ξ8t



=



p11 (ξ1t + ξ2t)

p11 (ξ3t + ξ4t)

p21 (ξ5t + ξ6t)

p21 (ξ7t + ξ8t)

p12 (ξ1t + ξ2t)

p12 (ξ3t + ξ4t)

p22 (ξ5t + ξ6t)

p22 (ξ7t + ξ8t)


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=



p11ξ
(2)
1t

p11ξ
(2)
2t

p21ξ
(2)
3t

p21ξ
(2)
4t

p12ξ
(2)
1t

p12ξ
(2)
2t

p22ξ
(2)
3t

p22ξ
(2)
4t



(A.9)
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Appendix 2.B Sketch of MSM-VAR estimation alogrithm

using EM optimization

MS models are typically solved by the use of the Expectation Maximization (EM) al-

gorithm and the BLHK filter.

The EM algorithm is a heuristic procedure that allows to estimate a distribution param-

eters, given initial guesses about the shape of the distribution function and magnitude of

its parameters. The EM algorithm is especially useful for the estimation of MS models,

where, although the likelihood depends on the states, the latter are not observable, but

only inferred from the data. The EM algorithm is composed of two steps: an expecta-

tion step and a maximization step.

The BLHK filter is an algorithm used in the expectation step of the EM algorithm that

takes as inputs the density functions and the transition matrix and outputs a time series

of expected, inferenced and smoothed state vectors.

The EM algorithm will be showcased for MSM(M) models and their derivatives. Other

specifications employ the same apparatus but the state space extension.

2.B.1 Expectation step and the BLHK filter

In order to be employed, the EM algorithm requires a guess about the parameters of

both the distribution and the transition probabilities. Such a guess will be the input of

the expectation step of the first iteration of the alogrithm. Subsequent expectation steps

will use as inputs the parameter set output of the maximization step of the precedent

iteration.

Mathematically, given a primitive transition matrix P and the associated ergodic prob-

abilities π, we set

ξ̂1|0 = ⊗pl=0π (B.1)
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and

F = {diag [vec (P ) 1Mp−1 ]} (1M ⊗ IMp ⊗ 1′M) (B.2)

Then, the inferenced transition vectors are computed as

ξ̂t|t =
ηt � ξ̂t|t−1

1′N

(
ηt � ξ̂t|t−1

) , (B.3)

where

ηt =



f (yt| θ1, Yt−1)

f (yt| θ2, Yt−1)
...

f (yt| θN , Yt−1)


, (B.4)

f (·) being the density function of observation yt given state n and sample Yt, and where

the predicted transition vectors can be obtained as

ξ̂t+1|t = F ξ̂t|t, (B.5)

Finally, smoothed states vectors are computed as follows

ξ̂t|T =
(
F ′
(
ξ̂t+1|T � ξ̂t+1|t

))
� ξ̂t|t. (B.6)

Smoothed state probabilities vectors allow then for

ρ̂ = ξ̂(2) �
(
ιM ⊗ ξ̂(1)

)
, (B.7)

where ρ = vec(P ′) and
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ξ̂(i) =
T∑
t=1

ξ̂
(i)
t , (B.8)

keeping in mind that

ξ
(r)
t = (IMr ⊗ 1′Mp+1−r) ξ

(p+1)
t (B.9)

and

ξ
(1)
t−l = (1M l ⊗ IM ⊗ 1′Mp−l) ξ

(p+1)
t . (B.10)

2.B.2 Maximization Step - Likelihood function for EM optimiza-

tion

The log-likelihood of observing the parameters λ, given the sample YT is

l
(
λ|YT , λ(i−1)

)
:=

∫
ln [p (Y, ξ|λ)] p

(
Y, ξ|λ(i−1)

)
dξ. (B.11)

Then,

∫
ln [p (Y, ξ|λ)] p

(
Y, ξ|λ(i−1)

)
dξ =

∫
ln [p (Y |ξ, λ) Pr (ξ|λ)] Pr

(
ξ|Y, λ(i−1)

)
× p

(
Y |λ(i−1)

)
dξ

= p
(
Y |λ(i−1)

) ∫
ln p (Y |ξ, λ) Pr

(
ξ|Y, λ(i−1)

)
dξ

+ p
(
Y |λ(i−1)

) ∫
ln Pr (ξ|λ) Pr

(
ξ|Y, λ(i−1)

)
dξ,

(B.12)

so that
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l
(
λ|YT , λ(i−1)

)
∝

T∑
t=1

∑
ξt

ln [p (yt|ξt, Yt−1, θ)] Pr
(
ξt|YT , λ(i−1)

)
+

T∑
t=1

∑
ξt−1

ln [p (ξt|ξt−1, ρ)] Pr
(
ξt, ξt−1|YT , λ(i−1)

)
. (B.13)

Focusing only on the estimation of the VAR parameter vector θ allows to consider only

l (θ|YT ) ∝
T∑
t=1

∑
ξt

ln [p (yt|ξt, Yt−1, θ)] Pr
(
ξt|YT , λ(i−1)

)
, (B.14)

so that, by using the normality of the conditional densities

p (yt|st = n, Yt−1, θ) = (2π)−
K
2 |Σn|−

1
2 exp

{
−1

2
unt (γ)′Σ−1n unt (γ)

}
, (B.15)

given the smoothed state probabilities vectors estimated in the expectation step, it is

possible to write

l (θ|YT ) ∝ const− 1

2

T∑
t=1

N∑
n=1

ξ̂nt|T
{
Kln (2π) + ln |Σn|+ unt (γ)′Σ−1n unt (γ)

}
∝ const− 1

2

N∑
n=1

{
T̂nln |Σn|+

T∑
t=1

unt (γ)′
(
ξ̂nt|TΣ−1n

)
unt (γ)

}

∝ const− 1

2

N∑
n=1

{
T̂nln |Σn|+ un (γ)′

(
Ξ̂n ⊗ Σ−1n

)
un (γ)

}
∝ const− 1

2

N∑
n=1

T̂nln |Σn|+ u (γ)′W−1u (γ) , (B.16)

where
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T̂n = tr
(

Ξ̂n

)
= 1′T ξ̂n, (B.17)

Ξ̂n = diag (ξn1, . . . , ξnT ) , (B.18)

W−1 =


Ξ̂1 ⊗ Σ−11 . . . 0

... . . . ...

0 . . . Ξ̂N ⊗ Σ−1N

 , (B.19)

u (γ) =


u1 (γ)

...

uN (γ)

 = 1N ⊗ y −Xγ (B.20)

and

N = M (p+1). (B.21)

2.B.3 Maximization Step - The EM Maximum Likelihood Estima-

tor

At each iteration of the EM algorithm, the maximization step takes as input the smoothed

states vector and the transition probabilities from the expectation step and use them to

produce a new set of maximum likelihood parameters.

MSM Models Since in MSM models α and µ are not independent from each other,

they are computed through a recursion that needs two regression equations, both deriv-

ing from the canonical form
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N∑
n=1

ξ̂nt (yt − µn0) = A1

N∑
n=1

ξ̂nt (yt−1 − µn1) + . . .+ Ap

N∑
n=1

ξ̂nt (yt−p − µnp) + ut,

(B.22)

where

yt, µnl, ut ∈ M (K × 1) , (B.23)

N = M (p+1), (B.24)

Al ∈ M (K ×K) (B.25)

and where ξnt is a scalar representing derived states probabilities.

MSM - Regression equation 1 The first regression equation organizes the terms in

a functional form useful for the estimation of the vectorised autoregressive coefficients

α. Starting from this functional form, the estimator of the vectorized autoregressive

coefficients can be derived as a function of the mean parameters of the previous internal

iteration.

N∑
n=1

ξ̂nt (yt − µn0) =
N∑
n=1

ξ̂nt (x̄∗nt ⊗ Ik)α +
N∑
n=1

ξ̂ntunt, (B.26)

where

x̄∗nt = x̄t − e′n
(
L′1Q

′, . . . , L′pQ
′) ∈ M (1×MK) , (B.27)

x̄t =
(
y′t−1, . . . , y

′
t−p
)
∈ M (1×MK) , (B.28)
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Ll = 1′M l ⊗ IM ⊗ 1′Mp−l ∈ M
(
M ×Mp+1

)
, (B.29)

en being the n-th column of IN and Q a (K ×M) matrix of state dependent means. By

setting

α =
[
vec (A1)

′ , . . . , vec (Ap)
′]′ ∈ M (

K2p× 1
)
. (B.30)

we can write

N∑
n=1

(
Ξ̂n ⊗ IK

)
[y − 1T ⊗ µn] =

[
N∑
n=1

(
Ξ̂nX̄

∗
n

)
⊗ IK

]
α +

N∑
n=1

(
Ξ̂n ⊗ IK

)
un,

(B.31)

where

y = (y′1, . . . , y
′
T )
′ ∈ M (TK × 1) , (B.32)

X̄∗n =
(
x̄∗
′

n1, . . . , x̄
∗′
nT

)′
= X̄−1T⊗e′n

(
L′1M

′, . . . , L′pM
′) ∈ M (T ×Kp) , (B.33)

X̄ = (x̄′1, . . . , x̄
′
T )
′ ∈ M (T ×Kp) , (B.34)

un = (u′n1, . . . , u
′
nT )
′ ∈ M (TK × 1) , (B.35)

µn = (e′nL
′
0M

′)
′ ∈ M (1×K) , (B.36)
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Ξ̂n = diag
(
ξ̂n

)
∈ M (T × T ) (B.37)

and

ξ̂n =
(
ξ̂n1, . . . , ξ̂nT

)′
∈ M (T × 1) . (B.38)

Rearranging, we can write

y =
N∑
n=1

(
ξ̂n ⊗ IK

)
µn +

[
N∑
n=1

(
Ξ̂nX̄

∗
n

)
⊗ IK

]
α + u. (B.39)

MSM - Regression equation 2 The second regression equation arranges the terms

in an equation suited for the contemporaneous estimation of the vectorized conditional

mean coefficients µ. from this equation the estimator of the mean parameters can be ex-

pressed as a function of the autoregressive parameters of the previous internal iteration.

yt =
N∑
n=1

ξ̂nt (µn0 + A1µn1 + . . .+ Apµnp) + (x̄t ⊗ Ik)α + ut

=

(
N∑
n=1

ξ̂ntX
µ
n

)
µ+ (x̄t ⊗ IK)α + ut, (B.40)

where

µ ∈ M (MK × 1) . (B.41)

α =
[
vec (A1)

′ , . . . , vec (Ap)
′]′ ∈ M (

K2p× 1
)
. (B.42)

Xµ
n = (e′n ⊗ IK)Xµ ∈ M (K ×MK) , (B.43)
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Xµ = −
p∑
j=0

L′l ⊗ Al ∈ M
(
Mp+1K ×MK

)
, (B.44)

Ll = 1′M l ⊗ IM ⊗ 1′Mp−l ∈ M
(
M ×Mp+1

)
, (B.45)

A0 = −IK (B.46)

and

x̄t =
(
y′t−1, . . . , y

′
t−p
)
∈ M (1×MK) . (B.47)

Then, rearranging, the second regression equation can be formulated as

y =

(
N∑
n=1

ξn ⊗Xµ
n

)
µ+

(
X̄t ⊗ IK

)
α + u (B.48)

MSM - The estimator Consider, for the estimations that will follow, the log likeli-

hood function

l (θ|YT ) ∝ const− 1

2

T∑
t=1

N∑
n=1

ξ̂nt|T
{
Kln (2π) + ln |Σ|+ unt (γ)′Σ−1unt (γ)

}
∝ const− 1

2

N∑
n=1

{
T̂nln |Σ|+

T∑
t=1

unt (γ)′
(
ξ̂nt|TΣ−1

)
unt (γ)

}

∝ const− 1

2

N∑
n=1

{
T̂nln |Σ|+ un (γ)′

(
Ξ̂n ⊗ Σ−1

)
un (γ)

}
∝ const− 1

2

N∑
n=1

T̂nln |Σ|+ u (γ)′W−1u (γ) , (B.49)

where
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W−1 = Ξ̂⊗ Σ, (B.50)

Ξ̂ = diag
(
ξ̂
)

(B.51)

ξ̂ =
(
ξ̂′1, . . . , ξ̂

′
N

)′
(B.52)

and

ξ̂n =
(
ξ̂n1, . . . , ξ̂nT

)′
(B.53)

MSM - Estimation of α

Consider

y =
N∑
n=1

(
ξ̂n ⊗ IK

)
µ̃n +

[
N∑
n=1

(
Ξ̂nX̄

∗
n

)
⊗ IK

]
α +

N∑
n=1

(
Ξ̂n ⊗ IK

)
un

=
N∑
n=1

(
ξ̂n ⊗ IK

)
µ̃n +

[
N∑
n=1

(
Ξ̂nX̄

∗
n

)
⊗ IK

]
α + u, (B.54)

where µ̃m, ∀m = 1, . . . , M is either a guess, when initializing the EM algorithm,

the result of the previous EM cycle, at the beginning of the iteration internal to the

maximization step, or the result of a previous cycle of said internal iteration.

Expressing the state dependent error terms as a function of α leads to

un (α) = (y − 1T ⊗ µ̃n)−
(
X̄∗n ⊗ IK

)
α

= ȳ∗n −Xnα, (B.55)
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so that

u (α) = ȳ −Xα, (B.56)

where

ȳ =
[
(y − 1T ⊗ µ1)

′ , . . . , (y − 1T ⊗ µN)′
]′

=
(
ȳ∗
′

1 , . . . , ȳ
∗′
N

)′
(B.57)

X =
[(
X̄∗1 ⊗ IK

)′
, . . . ,

(
X̄∗N ⊗ IK

)′]′
= (X ′1, . . . , X

′
N)
′
. (B.58)

Then, the first order condition for α is

∂l (θ|YT )

∂α
=

∂

∂α

[
u (α)′W−1u (α)

]
= u (α)′W−1 ∂

∂α
u (α)

= (ȳ −Xα)′W−1X

= 0, (B.59)

so that

(ȳ −Xα)′W−1X = ȳ′W−1X − α′X ′W−1X

= 0 (B.60)

and, finally,

α̃ =
(
X ′W−1X

)−1
X ′W−1ȳ
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=

[
N∑
n=1

X ′n

(
Ξ̂n ⊗ Σ̃−1

)
Xn

]−1 N∑
n=1

X ′n

(
Ξ̂n ⊗ Σ̃−1

)
ȳ∗n

=

[
N∑
n=1

(
X̄∗n ⊗ IK

)′ (
Ξ̂n ⊗ Σ̃−1

) (
X̄∗n ⊗ IK

)]−1

×
N∑
n=1

(
X̄∗n ⊗ IK

)′ (
Ξ̂n ⊗ Σ̃−1

)
(y − 1T ⊗ µ̃n)

=

[
N∑
n=1

(
X̄∗

′

n Ξ̂nX̄
∗
n

)
⊗ Σ̃−1

]−1

×
N∑
n=1

[(
X̄∗

′

n Ξ̂n

)
⊗ Σ̃−1

]
(y − 1T ⊗ µ̃n)

=

[
N∑
n=1

(
X̄∗

′

n Ξ̂nX̄
∗
n

)
⊗ IK

]−1

×
M∑
m=1

∑
n(m)

(
X̄∗

′

n Ξ̂n

)
⊗ IK

 (y − 1T ⊗ µ̃m) . (B.61)

Notice that Σ̃ cancels out, otherwise it would be the result of either a guess, at the

beginning of the EM algorithm, or the previous maximization step of the EM algorithm.

MSM - Estimation of µ

Consider

y =

(
N∑
n=1

ξn ⊗ X̃µ
n

)
µ+

(
X̄t ⊗ IK

)
α̃ + u, (B.62)

where α̃ is either a guess, when initializing the EM algorithm, the result of the previous

EM cycle, at the beginning of the iteration internal to the maximization step, or the

result of a previous cycle of said internal iteration.

Expressing the state dependent error terms as a function of µ, leads to

un (µ) = y −
(
X̄ ⊗ IK

)
α−

(
1T ⊗ X̃µ

n

)
µ, (B.63)

so that
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u (µ) = 1N ⊗ ȳ −Xµ, (B.64)

where

ȳ = y −
(
X̄ ⊗ IK

)
α (B.65)

and

X =

[(
1T ⊗ X̃µ

1

)′
, . . . ,

(
1T ⊗ X̃µ

N

)′]′
. (B.66)

Then, the first order condition for µ is

∂l (θ|YT )

∂µ
=

∂

∂µ

[
u (µ)′W−1u (µ)

]
= u (µ)′W−1 ∂

∂µ
u (µ)

= (1M ⊗ ȳ −Xµ)′W−1X

= 0, (B.67)

so that

(1M ⊗ ȳ −Xµ)′W−1X = (1M ⊗ ȳ)′W−1X − µ′X ′W−1X

= 0 (B.68)

and, finally,
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µ̃ =
(
X ′W−1X

)
X ′W−1 (1N ⊗ ȳ)

=

[
N∑
n=1

(
1T ⊗ X̃µ

n

)′ (
Ξ̂n ⊗ Σ̃−1

)(
1T ⊗ X̃µ

n

)]−1

×

[
N∑
n=1

(
1T ⊗ X̃µ

n

)′ (
Ξ̂n ⊗ Σ̃−1

)] [
y −

(
X̄ ⊗ IK

)
α̃
]

=

[
N∑
n=1

(
1′T Ξ̂n1T

)
⊗
(
X̃µ′

n Σ̃−1X̃µ
n

)]−1

×

[
N∑
n=1

(
1′T Ξ̂n

)
⊗
(
X̃µ′

n Σ̃−1
)] [

y −
(
X̄ ⊗ IK

)
α̃
]

=

[
N∑
n=1

T̂nX̃
µ′

n Σ̃−1X̃µ
n

]−1

×

[
N∑
n=1

ξ̂′n ⊗
(
X̃µ′

n Σ̃−1
)] [

y −
(
X̄ ⊗ IK

)
α̃
]
, (B.69)

where Σ̃ is the result of either a guess, at the beginning of the EM algorithm, or the

previous maximization step of the EM algorithm.

MSM - Estimation of Σ

Given the estimates of α̃ and µ̃, the first order condition for Σ is

∂l (θ|YT )

∂Σ
=

∂

∂Σ

[
−T

2
ln |Σ|+ u (Σ)′W ∗−1u (Σ)

]
= −T

2
Σ−1 +

1

2
Σ−1u (Σ)′ u (Σ) Σ−1

= 0, (B.70)

where

W ∗−1 = IT ⊗ Σ−1, (B.71)
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u (Σ) = diag
[(√

ξ̂′1, . . . ,

√
ξ̂′N

)
⊗ IK

]
u (α̃, µ̃) (B.72)

and

ξ̂n =
(
ξ̂n1, . . . , ξ̂nT

)′
, (B.73)

so that

Σ̃ =
1

T

N∑
n=1

u (α̃, µ̃)′ Ξ̂nu (α̃, µ̃) . (B.74)

MSMAH-VAR Model In MSMAH models, the internal iteration is performed in a

similar fashion of the MSM models, but the functional form for the estimation of both

the autoregressive coefficients and the variance covariance matrix must be adapted to

make the estimators be functions of state conditional parameters. The model can be

initially expressed as

M∑
m=1

∑
n(m)

ξ̂nt (yt − µm0) =
M∑
m=1

∑
n(m)

ξ̂ntAm1 (yt−1 − µn1)

+ . . .+
M∑
m=1

∑
n(m)

ξ̂ntAmp (yt−p − µnp) +
M∑
m=1

∑
n(m)

ξ̂ntunt,

(B.75)

where

n (m) : n = (m− 1)
N

M
+ 1, . . . , m

N

M
. (B.76)

MSMAH - Regression equation 1 The first regression equation allows to express

the estimator of autoregressive parameters as a function of the state conditional mean
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parameters estimated in the previous internal iteration.

M∑
m=1

∑
n(m)

ξ̂nt (yt − µm0) =
M∑
m=1

∑
n(m)

ξ̂nt (x̄∗nt ⊗ IK)αm +
M∑
m=1

∑
n(m)

ξ̂ntunt, (B.77)

where

x̄∗nt = x̄t − e′n
(
L′1Q

′, . . . , L′pQ
′) ∈ M (1×MK) , (B.78)

x̄t =
(
y′t−1, . . . , y

′
t−p
)
∈ M (1×MK) , (B.79)

Ll = 1′M l ⊗ IM ⊗ 1′Mp−l ∈ M
(
M ×Mp+1

)
, (B.80)

en being the n-th column of IN andQ a (K ×M) matrix of state dependent means, and

αm =
[
vec (Am1)

′ , . . . , vec (Amp)
′]′ ∈ M (

K2p× 1
)
, (B.81)

so that

α = (α1, . . . , αM) ∈ M
(
K2p×M

)
. (B.82)

Rearranging

M∑
m=1

∑
n(m)

(
Ξ̃n ⊗ IK

)
[y − 1T ⊗ µm] =

M∑
m=1

∑
n(m)

[(
Ξ̃nX̄

∗
n

)
⊗ IK

]
αm

+
M∑
m=1

∑
n(m)

(
Ξ̃n ⊗ IK

)
un, (B.83)
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where

y = (y′1, . . . , y
′
T )
′ ∈ M (TK × 1) , (B.84)

X̄∗n =
(
x̄∗
′

n1, . . . , x̄
∗′
nT

)′
= X̄−1T⊗e′n

(
L′1M

′, . . . , L′pM
′) ∈ M (T ×Kp) , (B.85)

X̄ = (x̄′1, . . . , x̄
′
T )
′ ∈ M (T ×Kp) , (B.86)

un = (u′n1, . . . , u
′
nT )
′ ∈ M (TK × 1) , (B.87)

µn = (e′nL
′
0M

′)
′ ∈ M (1×K) , (B.88)

Ξ̂n = diag
(
ξ̂n

)
∈ M (T × T ) (B.89)

and

ξ̂n =
(
ξ̂n1, . . . , ξ̂nT

)′
∈ M (T × 1) , (B.90)

so that

y =
M∑
m=1

∑
n(m)

(
ξ̃n ⊗ IK

)µm +
M∑
m=1

∑
n(m)

(
Ξ̃nX̄

∗
n

)
⊗ IK

αm + u. (B.91)

MSMAH - Regression equation 2 The second regression is arranged to allow for the

contemporaneous estimation of the conditional mean parameters.

143



yt =
N∑
n=1

ξ̂nt (µn0 + A1µn1 + . . .+ Apµnp) +
M∑
m=1

∑
n(m)

ξ̂nt (x̄t ⊗ Ik)αm + ut

=

(
N∑
n=1

ξ̂ntX
µ
n

)
µ+

M∑
m=1

∑
n(m)

ξ̂nt (x̄t ⊗ Ik)

αm + ut, (B.92)

where

µ ∈ M (MK × 1) , (B.93)

αm =
[
vec (Am1)

′ , . . . , vec (Amp)
′]′ ∈ M (

K2p× 1
)
, (B.94)

Xµ
n = (e′n ⊗ IK)Xµ

m, ∀n ∈ n (m) ∈ M (K ×MK) , (B.95)

Xµ
m = −

p∑
l=0

L′l ⊗ Aml, ∈ M
(
Mp+1K ×MK

)
, (B.96)

Ll = 1′M l ⊗ IM ⊗ 1′Mp−l ∈ M
(
M ×Mp+1

)
, (B.97)

Am0 = −IK (B.98)

and

x̄t =
(
y′t−1, . . . , y

′
t−p
)
∈ M (1×MK) . (B.99)

Rearranging,
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y =

(
N∑
n=1

ξ̂n ⊗Xµ
n

)
µ+

M∑
m=1

∑
n(m)

(
Ξ̂nX̄

)
⊗ IK

αm + u (B.100)

MSMAH - The estimator Consider, for the estimations that will follow, the log like-

lihood function

l (θ|YT ) ∝ const− 1

2

T∑
t=1

M∑
m=1

∑
n(m)

ξ̂nt|T
{
Kln (2π) + ln |Σm|+ unt (γ)′Σ−1m unt (γ)

}
∝ const− 1

2

M∑
m=1

∑
n(m)

{
T̂nln |Σm|+

T∑
t=1

unt (γ)′
(
ξ̂nt|TΣ−1m

)
unt (γ)

}

∝ const− 1

2

M∑
m=1

∑
n(m)

{
T̂nln |Σm|+ un (γ)′

(
Ξ̂n ⊗ Σ−1m

)
un (γ)

}

∝ const− 1

2

M∑
m=1

∑
n(m)

T̂nln |Σm|+ u (γ)′W−1u (γ) , (B.101)

where

W−1 =


Ξ̂1 ⊗ Σ−11 . . . 0

... . . . ...

0 . . . Ξ̂N ⊗ Σ−1N

 . (B.102)

MSMAH - Estimation of αm

Consider

y =
M∑
m=1

∑
n(m)

(
ξ̂n ⊗ IK

) µ̃m +
M∑
m=1

∑
n(m)

(
Ξ̂nX̄

∗
n

)
⊗ IK

αm + u, (B.103)

where µ̃m, ∀m = 1, . . . , M is either a guess, when initializing the EM algorithm,

the result of the previous EM cycle, at the beginning of the iteration internal to the
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maximization step, or the result of a previous cycle of said internal iteration.

Expressing the state dependent error terms as a function of αm leads to

un (αm) = (y − 1T ⊗ µ̃m)−
(
X̄∗n ⊗ IK

)
αm

= ȳ∗m −Xnαm, n ∈ n (m) , (B.104)

so that

u (αm) = 1 N
M
⊗ ȳ∗m −Xmαm, (B.105)

where

Xm =
(
X ′

(m−1) N
M

+1
, . . . , X ′

m N
M

)′
. (B.106)

Then, the first order condition for αm is

∂l (θ|YT )

∂αm
=

∂

∂αm

[
u (αm)′W−1

m u (αm)
]

= u (αm)′W−1
m

∂

∂α
u (αm)

= (ȳm −Xmαm)′W−1
m Xm

= 0, (B.107)

where

W−1
m =


Ξ̂(m−1) N

M
+1 ⊗ Σ̃−1m . . . 0

... . . . ...

0 . . . Ξ̂m N
M
⊗ Σ̃−1m

 , (B.108)
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so that

(ȳm −Xmαm)′W−1
m Xm = ȳ′mW

−1
m Xm − α′mX ′mW−1

m Xm

= 0 (B.109)

and, finally,

α̃m =
(
X ′mW

−1
m Xm

)−1
X ′mW

−1
m

(
1 N
M
⊗ ȳ∗m

)
=

∑
n(m)

X ′n

(
Ξ̂n ⊗ Σ̃−1m

)
Xn

−1 ∑
n(m)

X ′n

(
Ξ̂n ⊗ Σ̃−1m

) ȳ∗m
=

∑
n(m)

(
X̄∗n ⊗ IK

)′ (
Ξ̂n ⊗ Σ̃−1m

) (
X̄∗n ⊗ IK

)−1

×

∑
n(m)

(
X̄∗n ⊗ IK

)′ (
Ξ̂n ⊗ Σ̃−1m

) (y − 1T ⊗ µ̃m)

=

∑
n(m)

(
X̄∗

′

n Ξ̂nX̄
∗
n

)
⊗ Σ̃−1m

−1

×

∑
n(m)

(
X̄∗

′

n Ξ̂n

)
⊗ Σ̃−1m

 (y − 1T ⊗ µ̃m)

=

∑
n(m)

(
X̄∗

′

n Ξ̂nX̄
∗
n

)
⊗ IK

−1

×

∑
n(m)

(
X̄∗

′

n Ξ̂n

)
⊗ IK

 (y − 1T ⊗ µ̃m) . (B.110)

Notice that Σ̃m cancels out, otherwise it would be the result of either a guess, at the

beginning of the EM algorithm, or the previous maximization step of the EM algorithm.

MSMAH - Estimation of µ
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Consider

y =

 M∑
m=1

∑
n(m)

ξ̂n ⊗ X̃µ
n

µ+
M∑
m=1

∑
n(m)

(
Ξ̂nX̄

)
⊗ IK

 α̃m + u (B.111)

where α̃ is either a guess, when initializing the EM algorithm, the result of the previous

EM cycle, at the beginning of the iteration internal to the maximization step, or the

result of a previous cycle of said internal iteration.

Expressing the state dependent error terms as a function of µ, leads to

un (µ) = y −
(
X̄ ⊗ IK

)
α̃n −

(
1T ⊗ X̃µ

n

)
µ. (B.112)

Since

α̃ ∈ M
(
K2p×M

)
, (B.113)

then

α̃n = (e′nL
′
0α̃
′)
′
, (B.114)

where

α̃n = α̃m, ∀n ∈ n (m) , (B.115)

and

n (m) = (m− 1)
N

M
+ 1, . . . , m

N

M
. (B.116)

Then,

u (µ) = ȳ −Xµ, (B.117)
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where

ȳ =
{[
y −

(
X̄ ⊗ IK

)
α̃1

]′
, . . . ,

[
y −

(
X̄ ⊗ IK

)
α̃N
]′}′ (B.118)

and

X =

[(
1T ⊗ X̃µ

1

)′
, . . . ,

(
1T ⊗ X̃µ

N

)′]′
. (B.119)

Then, the first order condition for µ is

∂l (θ|YT )

∂µ
=

∂l

∂µ

[
u (µ)′W−1u (µ)

]
= u (µ)′W−1 ∂l

∂µ
u (µ)

= (ȳ −Xµ)′W−1X

= 0, (B.120)

so that

(ȳ −Xµ)′W−1X = ȳ′W−1X − µ′X ′W−1X

= 0 (B.121)

and, finally,

µ̃ =
(
X ′W−1X

)
X ′W−1ȳ

=

 M∑
m=1

∑
n(m)

(
1T ⊗ X̃µ

n

)′ (
Ξ̂n ⊗ Σ̃−1m

)(
1T ⊗ X̃µ

n

)−1
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×


M∑
m=1

∑
n(m)

(
1T ⊗ X̃µ

n

)′ (
Ξ̂n ⊗ Σ̃−1m

)y −
∑
n(m)

(
Ξ̂nX̄

)
⊗ IK

 α̃m



=

 M∑
m=1

∑
n(m)

(
1′T Ξ̂n1T

)
⊗
(
X̃µ′

n Σ̃−1m X̃µ
n

)−1

×


M∑
m=1

∑
n(m)

(
1′T Ξ̂n

)
⊗
(
X̃µ′

n Σ̃−1m

)y −
∑
n(m)

(
Ξ̂nX̄

)
⊗ IK

 α̃m



=

 M∑
m=1

∑
n(m)

T̂nX̃
µ′

n Σ̃−1m X̃µ
n

−1

×


M∑
m=1

∑
n(m)

ξ̂′n ⊗
(
X̃µ′

n Σ̃−1m

)y −
∑
n(m)

(
Ξ̂nX̄

)
⊗ IK

 α̃m

 (B.122)

where Σ̃m, ∀m = 1, . . . , M is the result of either a guess, at the beginning of the EM

algorithm, or the previous maximization step of the EM algorithm.

MSMAH - Estimation of Σm

Given the estimates of α̃ and µ̃, the first order condition for Σm is

∂l (θ|YT )

∂Σm

=
∂

∂Σm

−1

2

∑
n(m)

T̂nln |Σm|+ u (Σm)′W ∗−1
m u (Σm)


= −1

2

∑
n(m)

T̂n

Σ−1m +
1

2
Σ−1m u (Σm)′ u (Σm) Σ−1m

= 0, (B.123)

where

W ∗−1
m = IT ⊗ Σ−1m , (B.124)

T̂n = tr
(
ξ̂n

)
, (B.125)
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and

u (Σm) = diag
[(√

ξ̂′
(m−1) N

M
+1
, . . . ,

√
ξ̂′
m N
M

)
⊗ IK

]
u (α̃m, µ̃m) . (B.126)

Finally, the estimator for Σm can be expressed as

Σ̃m =
1

T̂m

∑
n(m)

u (α̃m, µ̃m)′ Ξ̂nu (α̃m, µ̃m) (B.127)
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Appendix 2.C Proposition 2

Consider

ξt ⊗ (A (st) yt−1) =



I (st = 1)
∑M

m=1 I (st = m)Amyt−1

I (st = 2)
∑M

m=1 I (st = m)Amyt−1
...

I (st = M)
∑M

m=1 I (st = m)Amyt−1


, (C.1)

∀b = 1, M ⇒ I (st = b)
M∑
m=1

I (st = m)Amyt−1 =


Abyt−1, if I (st = b) = 1

0, if I (st = b) = 0

(C.2)

Then

ξt ⊗ (A (st) yt−1) =



I (st = 1)
∑M

m=1 I (st = m)Amyt−1

I (st = 2)
∑M

m=1 I (st = m)Amyt−1
...

I (st = M)
∑M

m=1 I (st = m)Amyt−1



=



ξ1tA1yt−1

ξ2tA2yt−1
...

ξMtAMyt−1



=



ξ1t ⊗ (A1yt−1)

ξ2t ⊗ (A2yt−1)

...

ξMt ⊗ (AMyt−1)


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=



(
F(1)ξt−1

)
⊗ (A1yt−1)(

F(2)ξt−1
)
⊗ (A2yt−1)

...(
F(M)ξt−1

)
⊗ (AMyt−1)


+



v1t ⊗ (A1yt−1)

v2t ⊗ (A2yt−1)

...

vMt ⊗ (AMyt−1)



=



([p11 . . . pM1] ξt−1)⊗ (A1yt−1)

([p12 . . . pM2] ξt−1)⊗ (A2yt−1)

...

([p1M . . . pMM ] ξt−1)⊗ (AMyt−1)


+



v1t ⊗ (A1yt−1)

v2t ⊗ (A2yt−1)

...

vMt ⊗ (AMyt−1)



=



([p11 . . . pM1]⊗ A1) (ξt−1 ⊗ yt−1)

([p12 . . . pM2]⊗ A2) (ξt−1 ⊗ yt−1)
...

([p1M . . . pMM ]⊗ AM) (ξt−1 ⊗ yt−1)



+



v1t ⊗ (A1yt−1)

v2t ⊗ (A2yt−1)

...

vMt ⊗ (AMyt−1)



=


p11A1 . . . pM1A1

... . . . ...

p1MAM . . . pMMAM

 (ξt−1 ⊗ yt−1) + vt ⊗ (A (st) yt)

= Πψt−1 + vt ⊗ (A (st) yt) . (C.3)
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Appendix 2.D Krolzig MSMH(3)-DVAR(1) parameters

Parameters from Krolzig [27]. The equation estimated is a MSMH(3)-DVAR(1) regres-

sion, such as

∆yt = µ (st) +A (∆yt−1 − µ (st)) + εt, εt ∼ N (0, Σ (st)). ξ̄ represents the ergodic

state probabilities vector.

A =



0.2611 0.0486 −0.0491 0.2805 0.1756 0.1942

0.1353 −0.1208 0.0885 0.0892 −0.0438 0.1322

0.3405 −0.0349 −0.1690 0.0697 −0.0619 0.0002

0.1466 −0.1929 −0.0869 −0.1512 0.1849 0.1359

0.5093 −0.0940 0.1147 0.2400 −0.0883 0.3965

0.2214 0.0519 0.0960 −0.0526 0.1102 −0.0565



Σ1 =



0.3490 −0.3009 −0.1210 0.2879 −0.0043 −0.1371

−0.3009 1.1041 0.7852 0.1396 0.1568 −0.0554

−0.1210 0.7852 4.2340 0.4872 0.2583 0.3914

0.2879 0.1396 0.4872 1.7697 0.1680 0.4827

−0.0043 0.1568 0.2583 0.1680 0.2563 −0.0908

−0.1371 −0.0554 0.3914 0.4827 −0.0908 1.2117



Σ2 =



0.5479 −0.0616 −0.0358 0.1163 0.1942 0.1029

−0.0616 0.3746 0.1008 0.3399 0.0955 0.0972

−0.0358 0.1008 1.0126 0.5358 0.1223 0.1096

0.1163 0.3399 0.5358 1.5798 0.3222 0.0055

0.1942 0.0955 0.1223 0.3222 0.7137 0.0775

0.1029 0.0972 0.1096 0.0055 0.0775 1.0847


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Σ3 =



1.9401 1.2769 0.4678 0.1393 0.8160 0.6396

1.2769 1.5155 0.4951 0.4007 0.0912 0.1197

0.4678 0.4951 0.7174 0.1230 −0.3385 −0.4429

0.1393 0.4007 0.1230 0.5569 −0.2180 0.1382

0.8160 0.0912 −0.3385 −0.2180 1.0667 1.0594

0.6396 0.1197 −0.4429 0.1382 1.0594 1.7205



µ1 =



1.2692

2.8917

1.4081

1.2664

1.6168

1.8695


, µ2 =



0.5998

1.0280

0.5785

0.7225

0.7755

0.7742


, µ3 =



−0.4463

0.7623

0.3866

−0.8935

−0.1095

−0.0551



P =


0.9213 0.0786 0.0001

0.0287 0.8418 0.1295

0.0000 0.4148 0.5852



ξ̄ =


0.2178

0.5961

0.1861



155



Appendix 2.E GOP MSIH(3)-VAR(1) parameters

Parameters from Guidolin et al. [18]. The equation estimated is a MSIH(3)-VAR(1)

regression, such as

yt = ν (st) +Ayt−1 + εt, εt ∼ N (0, Σ (st)). ξ̄ represents the ergodic state probabili-

ties vector and P is the transition matrix.

A =



0.693 0.066 0.270 0.201 −0.056 −0.003 0.005 −0.008

0.228 0.87 0.092 0.127 −0.039 0.006 0.043 0.068

0.009 0.004 0.823 0.062 0 −0.002 −0.007 −0.009

−0.009 −0.001 0.153 0.601 0.001 0.001 0.006 0.006

0.053 0.032 −0.244 0.193 0.785 −0.053 −0.035 −0.008

0.042 −0.028 0.067 −0.357 0.278 1.058 0.043 −0.008

0.004 −0.161 0.701 −0.325 −0.033 0.02 0.981 0.090

−0.039 0.191 −0.843 0.605 −0.006 0.007 −0.029 0.872



Σ1 =



0.0207 0.0056 0.0055 0.0077 0.0032 0.0009 0.0011 0.0007

0.0056 0.0069 0.0067 0.0034 0.0024 0.0001 0.0003 0.0003

0.0055 0.0067 0.2884 0.0299 −0.0019 0.0007 0.0044 0.0036

0.0077 0.0034 0.0299 0.0729 0.0025 −0.0014 −0.0024 −0.0025

0.0032 0.0024 −0.0019 0.0025 0.0151 0.0014 0.0000 −0.0006

0.0009 0.0001 0.0007 −0.0014 0.0014 0.0035 0.0043 0.0033

0.0011 0.0003 0.0044 −0.0024 0.0000 0.0043 0.0076 0.0063

0.0007 0.0003 0.0036 −0.0025 −0.0006 0.0033 0.0063 0.0058


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Σ2 =



0.8593 0.2285 2.2585 0.9105 −0.0658 −0.0204 −0.0210 −0.0165

0.2285 0.1521 0.9331 0.1350 −0.0135 0.0055 0.0093 0.0094

2.2585 0.9331 19.1319 5.7417 −0.1530 −0.0047 0.0043 0.0766

0.9105 0.1350 5.7417 9.7219 −0.0235 −0.0511 −0.1337 −0.1194

−0.0658 −0.0135 −0.1530 −0.0235 0.1069 0.0375 0.0122 0.0051

−0.0204 0.0055 −0.0047 −0.0511 0.0375 0.0324 0.0171 0.0095

−0.0210 0.0093 0.0043 −0.1337 0.0122 0.0171 0.0266 0.0219

−0.0165 0.0094 0.0766 −0.1194 0.0051 0.0095 0.0219 0.0240



Σ3 =



0.0090 0.0051 0.0090 −0.0116 −0.0001 0.0001 −0.0005 −0.0010

0.0051 0.0106 0.0188 0.0021 −0.0001 −0.0000 −0.0008 −0.0007

0.0090 0.0188 2.5154 0.2534 −0.0013 0.0006 −0.0075 −0.0082

−0.0116 0.0021 0.2534 1.1342 0.0014 −0.0017 −0.0084 −0.0075

−0.0001 −0.0001 −0.0013 0.0014 0.0005 0.0001 −0.0003 −0.0002

0.0001 −0.0000 0.0006 −0.0017 0.0001 0.0004 0.0013 0.0011

−0.0005 −0.0008 −0.0075 −0.0084 −0.0003 0.0013 0.0090 0.0087

−0.0010 −0.0007 −0.0082 −0.0075 −0.0002 0.0011 0.0087 0.0102


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ν1 =



0.193

0.227

1.166

1.892

−0.148

−0.073

−0.198

−0.140



, ν2 =



−0.365

0.152

0.376

0.975

−0.070

−0.014

−0.101

−0.069



, ν3 =



0.035

0.196

−0.003

0.017

−0.103

0.015

−0.077

−0.057



µ1 =



1.349

3.585

6.866

7.106

0.183

0.220

0.562

1.546



, µ2 =



4.453

6.861

29.016

17.022

−5.343

−3.793

−0.352

1.489



, µ3 =



5.456

6.024

8.992

7.773

4.388

4.644

4.840

5.047



P =


0.992 0.008 0.000

0.059 0.832 0.109

0.000 0.029 0.971



ξ̂ =


0.6078

0.0824

0.3098


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Figure 2.1: Simulated path of the Markov chain (Krolzig)
Panels show activation of state one, two and three respectively as simulated from a
Markov chain using Krolzig [27] parameters.
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Figure 2.2: Simulated path of the time series Krolzig
Simulated paths under Krolzig [27] parametrization for real GNP of USA, Japan and
West Germany and the real GDP of United Kingdom, Canada and Australia.
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Figure 2.3: Markov switching total connectedness (Krolzig)
Total connectedness for a MSMH(3)-DVAR(1) as implied from a simulation with
Krolzig [27] parameters and computed using smoothed state probabilities.
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Figure 2.4: Comparison between total connectedness and inferred state probabili-
ties (Krolzig)
Upper panel shows total connectedness as retrieved from the simulation with Krolzig
[27] parameters. Panels two, three and four report smoothed state probabilities for state
one, two and three, respectively.
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Figure 2.5: Simulated path of the Markov chain (GOP)
Panels show show activation of state one, two and three from a Markov chain simulation
using Guidolin et al. [18] parameters.
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Figure 2.6: Simulated path of the time series (GOP)
Simulated paths, subject to Guidolin et al. [18] parameters, for investment grade short
term (IGST), investment grade long term (IGLT), non investment grade short term
(NIGST) and non investment grade long term (NIGLT) corporate bonds yields and one
month, one year, five years and ten years Treasury bills yields.
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Figure 2.7: Markov switching total connectedness (GOP)
Total connectedness for a MSIH(3)-VAR(1) as implied from a simulation with Guidolin
et al. [18] parameters and computed using smoothed state probabilities.
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Figure 2.8: Comparison between total connectedness and infered state probabilities
(GOP)
Upper panel shows total connectedness as retrieved from the simulation with Guidolin
et al. [18] parameters. Panels two, three and four report smoothed state probabilities for
state one, two and three, respectively.
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