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Abstract

The first paper provides formal arguments and empirical evidence that justi-

fies the use of the cross-sectional variance as a measure of average idiosyncratic

volatility. The observability at any frequency of this measure allows new results

on the relation of idiosyncratic risk and future returns. The paper shows that the

cross-sectional variance predicts the return of the equally-weighted market port-

folio over short horizons and that the predictability power of idiosyncratic risk is

further increased when adding a measure of cross-sectional skewness to the cross-

sectional variance factor in the predictive regressions. Finally, it provides evidence

that average idiosyncratic volatility is a positively rewarded risk factor.

The second paper proposes a method to estimate the structural breaks in

the mean of the dividend-price ratio. This bayesian technique incorporates the

uncertainty about the location and magnitude of the breaks and yields the current-

regime mean of this classic stock return’s predictor. Adjusting the dividend-price

ratio by its current regime mean, improves the explanatory power of the dividend-

price ratio of future returns in-sample, as well as its out-of-sample forecasting

ability to a very significant extent.

The third paper decomposes the growth rate of the standard portfolio insurance

strategy and unveils the (perhaps) surprising role that the correlation between the

underlying assets plays on the performance of this type of investment strategy.

The paper also introduces the growth optimal portfolio insurance strategy, which

combines the growth-rate maximization objective with the constraint of insuring a

fixed proportion of the portfolio, expressed in terms of the value of a given stochas-

tic benchmark. The results suggest that the growth optimal strategy outperforms

the equivalent standard parametrization of the strategy over long horizons.
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I would like to thank Jean René Giraud, from Koris International, for his

support and for encouraging me to work on the subject of the third paper of this

thesis. A fascinating topic in which I plan to keep working in the future.
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Chapter 1

Idiosyncratic Risk and the

Cross-Section of Stock Returns
René Garcia, Daniel Mantilla-Garćıa and Lionel Martellini*

Idiosyncratic volatility has received considerable attention in the recent fi-

nancial literature. Whether average idiosyncratic volatility has recently

risen, whether it is a good predictor for aggregate market returns and

whether it has a positive relationship with expected returns in the cross-

section are still matters of active debate. We revisit these questions from

a novel perspective, by taking the cross-sectional variance of stock returns

as a measure of average idiosyncratic variance. Two key advantages of this

measure are its model-free nature and its observability at any frequency,

which allows us to present new results on the properties of daily idiosyn-

cratic volatility series. Through central limit arguments, we formally show

that the cross-sectional dispersion of stock returns can be regarded as a

consistent and asymptotically efficient estimator for idiosyncratic volatility.

We empirically confirm that the cross-sectional measure provides a very

good proxy for average idiosyncratic risk as implied by standard asset pric-

ing models and that it predicts well aggregate returns, especially at the

daily frequency. The predictability power of idiosyncratic risk is further

increased when adding a measure of cross-sectional skewness to the cross-

sectional variance factor. We finally provide evidence that idiosyncratic risk

is a positively rewarded risk factor.

Keywords: Idiosyncratic Risk, Cross-sectional Variance, Asset Pricing.
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Chapter 1

1.1 Introduction

The recent financial literature has paid considerable attention to idiosyncratic

volatility. Campbell et al. (2001) and Malkiel and Xu (2002) document that id-

iosyncratic volatility increased over time, while Brandt et al. (2009) show that

this trend completely reversed itself by 2007, falling below pre-1990s levels and

suggest that the increase in idiosyncratic volatility through the 1990s was not a

time trend but rather an “episodic phenomenon”. Bekaert et al. (2008) confirm

that there is no trend both for the United States and other developed countries.

A second fact about idiosyncratic volatility is also a source of contention. Goyal

and Santa-Clara (2003) put forward that idiosyncratic volatility has forecasting

power for future excess returns, while Bali et al. (2005) and Wei and Zhang (2005)

find that the positive relationship is not robust to the sample chosen. Finally,

while some economic theories suggest that idiosyncratic volatility should be pos-

itively related to expected returns, Ang et al. (2006) find that stocks with high

idiosyncratic volatility have low average returns.

An underlying issue in all these studies is the measurement of idiosyncratic

volatility. Campbell et al. (2001) use a value-weighted sum of individual firm id-

iosyncratic variances, computed as the variances of residuals of differences between

individual firm returns and the return of an industry portfolio to which the firm

belongs.1 In addition to this measure, Bekaert et al. (2008) use also the individual

firm residuals of a standard Fama and French three-factor model to compute a

value-weighted aggregate idiosyncratic volatility.2

We revisit the issues regarding the dynamics and forecasting power of idiosyn-

cratic variance by using instead the cross-sectional dispersion of stock returns.

Through central limit arguments, we provide the formal conditions under which

1This amounts to imposing unit beta restrictions in an industry-market model.
2This is also the approach followed in Ang et al. (2006).
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Chapter 1

the cross-sectional variance (CSV) of stock returns asymptotically converges to-

wards the average idiosyncratic variance.1 One key advantage of this measure is

obviously its observability at any frequency, while the previous approaches have

used monthly measures based on time series of daily returns. A second important

feature is that this measure is model-free, since we do not need to obtain residuals

from a particular model to compute it.

We confirm empirically that the cross-sectional variance is an excellent proxy

for the idiosyncratic variance obtained from the CAPM or the Fama-French mod-

els, as done in the previous literature. Correlations between the CSV measure

and the model-based measures estimated monthly, are always above 99%, whether

we consider equally-weighted or capitalization-weighted measures of idiosyncratic

variance. We also estimate a regime-switching model for CSV time series at both

daily and monthly frequencies and find remarkably coherent results in terms of pa-

rameter estimates. If we were to build a daily series of model-based idiosyncratic

variance, we will roll a window of one-month of daily data, which will result in a

very persistent time series. We construct such a daily series but could not find

any regimes. This reinforces the usefulness of the CSV to capture idiosyncratic

volatility at high frequency.

The regime-switching model indicates clearly that the CSV is counter-cyclical,

the dispersion of returns being high and quite variable when economic growth

subsides. We analyze further the relation between CSV and economic and financial

variables. In particular, we find that there exists a substantial correlation between

the equal-weighted CSV and consumption growth volatility. This is consistent

with Tédongap (2010) who provides strong evidence that consumption volatility

1Goyal and Santa-Clara (2003) argue informally that their measure can be interpreted as a
measure of cross-sectional dispersion of stock returns, but do not establish a formal link between
the two. In the practitioners’ literature (see DiBartolomeo (2006)), cross-sectional dispersion of
returns is called variety and is used in risk management and performance analysis.

3



Chapter 1

risk explains a high percentage of the cross-sectional dispersion in average stock

returns for the usual set of size and book-to-market portfolios that have been used

in tests of asset pricing models. In intertemporal asset pricing models of Bansal

and Yaron (2004), Bollerslev et al. (2009) and Bollerslev et al. (2009), consumption

growth volatility is a measure of economic uncertainty, which is a priced risk factor

that affects returns, therefore providing a rationale for the observed correlation

between CSV and consumption growth volatility.

On the debate about predictability of aggregate returns by the idiosyncratic

variance, we first verify empirically that the CSV measure leads to the same con-

clusions that other studies (in particular Goyal and Santa-Clara (2003) and Bali

et al. (2005)) have reported at the monthly frequency. Then, we report new re-

sults at the daily frequency. Specifically, we show that the predictive power of

idiosyncratic volatility is much stronger both quantitatively and statistically at

the daily frequency than at the monthly frequency. This relationship is robust to

the inclusion of return variance and option-implied variance as additional variables

in the predictive regressions.

We find that the relation is much stronger and stable across periods between

the equally-weighted measure of aggregate idiosyncratic volatility and the returns

on the equally-weighted index than for the market-cap weighted equivalents. Eco-

nomic sources of heterogeneity between firms, as diverse as they can be, are better

reflected in an equally weighted measure, all other things being equal. This argu-

ment is consistent with previous findings in Bali et al. (2005), who argue that the

relationship between equal-weighted average idiosyncratic risk and the market-cap

weighted index on the sample ending in 1999:12 is mostly driven by small stocks

traded in the NASDAQ. Of course, when the bubble burst, the market capitaliza-

tion of dot.com small firms was relatively more affected causing the relationship to

break down in 2000 and 2001. This effect is not prevalent in an equally-weighted

4



Chapter 1

index, for which the relationship remains strong.

However, the frequency at which predictive regressions are run has an impor-

tant impact on the results, since at lower frequencies we find little evidence of

predictability for the equally-weighted measure of CSV. At quarterly and annual

frequencies, we find that the capitalization-weighted measure of CSV is a very

strong predictor of the aggregate value-weighted returns. When using CSV CW

alone as a predictor we obtain remarkable R2s of 4% and 26% at quarterly and

annual frequencies, respectively. Adding the implied variance brings the R2s to al-

most 19% and 29%. In all these predictability regressions, the sign of the CSV CW

variable is negative. We relate these results to potential explanations in terms of

missing factors, Guo and Savickas (2008), or dispersion of investors’ opinions, Cao

et al. (2005).

Finally, we unveil an asymmetry in the relationship between idiosyncratic vari-

ance and returns and show that the predictive power of specific risk is substantially

increased when a cross-sectional measure for idiosyncratic skewness is added as

explanatory variable. In fact, this is yet another key advantage of our measure

that it lends itself to straightforward extensions to higher-order moments.

The statistical significance of the moments of the cross-sectional distribution in

these predictive regressions of future returns is not the same as the cross-sectional

pricing of stocks or portfolios. However, as emphasized in Goyal and Santa-Clara

(2003), the two pieces of evidence are related. Using a Fama-MacBeth proce-

dure with several sets of portfolios, we find support for a positive and significant

price of risk for the exposure to the idiosyncratic variance risk. Theoretical ratio-

nalizations of a positive relation between idiosyncratic risk and expected returns

can be found in the asset pricing literature. Levy (1978), Merton (1987) and

Malkiel and Xu (2002) pricing models relate stock returns to their beta with the

market and their beta to market-wide measures of idiosyncratic risk. In these
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models, an important portion of investors’ portfolios may differ from the market.

Their holdings may be affected by corporate compensation policies, borrowing con-

straints, heterogeneous beliefs and include non-traded assets that add background

risk to their traded portfolio decisions (e.g. human capital and private businesses).

These theoretical predictions are also in line with Campbell et al. (2001)’s argu-

ment that investors holding a limited number of stocks hoping to approximate a

well-diversified portfolio would end up being affected by changes in idiosyncratic

volatility just as much as by changes in market volatility. More recently, Guo and

Savickas (2008) argue that changes in average idiosyncratic volatility provide a

proxy for changes in the investment opportunity set and that this proxy is closely

related to the book-to-market factor1.

Ang et al. (2006) and Ang et al. (2009) find results that are opposite to our

findings and to these theories since stocks with high idiosyncratic volatility have

low average returns but cannot fully rationalize this result. However, Huang et al.

(2009) find that the negative sign in the relationship between idiosyncratic variance

and expected returns at the stock level becomes positive after controlling for return

reversals. Similarly, Fu (2009) documents that high idiosyncratic volatilities of

individual stocks are contemporaneous with high returns, which tend to reverse

in the following month.

The rest of the paper is organized as follows. In Section 1.2, we provide a formal

argument for choosing the cross-sectional variance of returns as a measure of aver-

age idiosyncratic volatility, explore its asymptotic and finite-distance properties,

as well as the assumptions behind its use, and compare it to other measures for-

merly selected in the literature. Section 1.3 provides an empirical implementation

1Alternative explanations of the relation between idiosyncratic risk and return are the firm’s
assets’ call-option interpretation by Merton (1974) where equity is a function of total volatility
as in Black and Scholes (1973) as well as Barberis et al. (2001) prospect theory asset pricing
model with loss aversion over (owned) individual stock’s variance.
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of the concept, again in comparison with other measures, by studying its time-

series behavior, outlining the presence of regimes and a counter-cyclical property.

In Section 1.4, we provide new results on the predictability of returns by idiosyn-

cratic volatility, and we also extend the analysis to idiosyncratic skewness. Section

1.5 focuses on the analysis of the cross-sectional relationship between idiosyncratic

risk and expected returns. Section 1.6 concludes and a technical appendix collects

proofs and more formal derivations.

1.2 The Cross-sectional Variance as a Measure

of Idiosyncratic Variance

Let Nt be the total number of stocks in a given universe at day t, and assume with

no loss of generality a conditional single factor model for excess stock returns.1

That is, we assume that for all i = 1, ..., Nt, the return on stock i in excess of the

risk-free rate can be written as:

rit = βitFt + εit. (1.1)

where Ft is the factor excess return at time t, βit is the beta of stock i at time t,

and εit is the residual, with E(εit) = 0 and cov (Ft, εit) = 0. We assume that the

factor model under consideration is a strict factor model, that is cov (εit, εjt) = 0

for i 6= j.2

1Assuming a single factor structure is done for simplicity of exposure only and the results
below can easily be extended to a multi-factor setting.

2This assumption is made in the single index or diagonal model of Sharpe (1963) and in
the derivation of the APT in Ross (1976). It implies that all commonalities are explained by
the factor model in place. One should notice that the very definition of idiosyncratic risk relies
precisely on the assumption of orthogonal residuals: assuming that the model is the “true” factor
model implies that the“true” idiosyncratic risk is the one measured with respect to that model,
which in turn implies that no commonalities should be left after controlling for the common
factor exposure.
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Given T observations of the stock returns and the factor return, one can use

the residuals of the regression to obtain a measure of the idiosyncratic variance

of asset i by: σ2
i = 1

T

∑T
t=1 ε

2
it. An average measure of idiosyncratic variance

over the T observations (say a month) can be obtained by averaging across assets

such individual idiosyncratic variance estimates. This is the approach that has

been followed by most related papers with observations of the returns at a daily

frequency to compute monthly idiosyncratic variances.

We propose instead to measure at each time t the cross-sectional variance of

observed stock returns. Using formal central-limit arguments, we show that, under

mild simplifying assumptions, this cross-sectional measure provides a very good

approximation for average idiosyncratic variance. In contrast with most previous

measures of average idiosyncratic variance, the CSV offers two main advantages:

it can be computed directly from observed returns, with no need to estimate other

parameters such as betas, and it is readily available at any frequency and for any

universe of stocks.

1.2.1 Measuring the cross-sectional variance

To see this, first let (wt)t≥0 be a given weight vector process. The return on the

portfolio defined by the weight vector process (wt) is denoted by r
(wt)
t and given

by:

r
(wt)
t =

Nt∑
i=1

witrit. (1.2)

We restrict our attention to non-trivial weighting schemes, ruling out situations

such that the portfolio is composed by a single stock. We also restrict the weights

to be positive at every given point in time. Hence, a weighting scheme (wt) is a

vector process which satisfies 0 < wit < 1 ∀ i, t.

The cross-sectional variance measure is defined as follows.
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Definition (CSV ): The cross-sectional variance measure under the weight-

ing scheme (wt), denoted by CSV
(wt)
t , is given by

CSV
(wt)
t =

Nt∑
i=1

wit

(
rit − r(wt)

t

)2

. (1.3)

A particular case of interest is the equally-weighted CSV (or EW CSV),

denoted by CSV EW
t and corresponding to the weighting scheme wit = 1/Nt ∀ i, t:

CSV EW
t =

1

Nt

Nt∑
i=1

(
rit − rEWt

)2
, (1.4)

where rEWt is the return on the equally-weighted portfolio.

Another weighting scheme of interest is the cap weighting scheme. If we de-

note by cit be the market capitalization of stock i at the beginning of the month

corresponding to day t, Ct =
∑Nt

i=1 cti the total market capitalization and rCWt the

return on the market capitalization-weighted portfolio, the cap-weighted (CW)

(or CW CSV) is defined as:

CSV CW
t =

Nt∑
i=1

wCWit
(
rit − rCWt

)2
, (1.5)

where wCWit =
∑Nt

i=1
cit
Ct

.

For any given weighting scheme (in particular EW or CW), the correspond-

ing cross-sectional measure is readily computable at any frequency from observed

returns. This stands in contrast with the previous approaches that have used

monthly measures based on time series regressions on daily returns. The second

important feature of the CSV is its model-free nature, since we do not need to

specify a particular factor model to compute it.1

1While Goyal and Santa-Clara (2003) and Wei and Zhang (2005)consider the equally-
weighted CSV in conjunction with other measures, they do not provide a thorough discussion
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1.2.2 A Formal Relationship between CSV and Idiosyn-

cratic Variance

The following proposition establishes a formal link between CSV and idiosyncratic

variance. It is an asymptotic result (Nt → ∞) obtained under the assumptions

of homogeneous betas and residual variances across stocks, i.e. βit = βt = 1 ∀ i,

E(ε2
it) = σ2

ε (t) ∀i. These assumptions will be relaxed below.

Proposition 1 (CSV as a proxy for idiosyncratic variance - asymp-

totic results):

Assume βit = βt = 1 ∀ i (homogeneous beta assumption) and E(ε2
it) = σ2

ε (t) ∀i

(homogeneous residual variance assumption), then for any strictly positive weight-

ing scheme, we have that:

CSV
(wt)
t =

Nt∑
i=1

wit

(
rit − r(wt)

t

)2

−→
Nt→∞

σ2
ε (t) almost surely. (1.6)

Proof See Appendix A.1.

This result is important because it draws a formal relationship between the

dynamics of the cross-sectional dispersion of realized returns and the dynamics

of idiosyncratic variance. Note that this asymptotic result CSV
(wt)
t −→ σ2

ε (t)

holds for any weighting scheme that satisfies 0 < wit < 1 ∀ i, t. Of course,

at finite distance, different weighting schemes will generate different proxies for

idiosyncratic variance. In the empirical analysis that follows, we shall focus on

the equally-weighted scheme, while also considering the cap-weighted scheme for

comparison purposes. Formal justification for our focus on the equally-weighted

scheme is provided in the next section, where we show that the EW CSV is the

about the conditions under which it can be interpreted as a proxy for idiosyncratic variance nor
their empirical validity in the data, as we provide in this paper.
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best estimator for idiosyncratic variance within the class of CSV obtained under

a strictly positive weighting scheme.

1.2.3 Properties of CSV as an Estimator for Idiosyncratic

Variance

First, we derive in Proposition 2 the bias and the variance of the CSV as an

estimator of idiosyncratic variance. Then we study their asymptotic limits as the

number of firms grows large and conclude that the equally-weighted CSV is the

best among all-positively-weighted estimators.

Proposition 2 (Bias and variance of CSV):

Maintaining the homogenous beta assumption (βit = βt = 1 ∀ i, t) and the homo-

geneous residual variance assumption (E(ε2
it) = σ2

ε (t) ∀i), for any strictly positive

weighting scheme, we have that:

E
[
CSV

(wt)
t

]
= σ2

ε (t)

(
1−

Nt∑
i=1

w2
it

)
(1.7)

To analyze the variance of the CSV estimator, we further make the assumption

of multi-variate normal residuals ε ∼ N(0,Σε), where Σε denotes the variance

covariance matrix of the residuals. Under this additional assumption, we obtain:

V ar
[
CSV

(wt)
t

]
= 2σ2

ε (t)

( Nt∑
i=1

w2
it

)2

+
Nt∑
i=1

w2
it − 2

Nt∑
i=1

w3
it

 (1.8)

Proof See Appendix A.2 for a proof in the slightly more general case when the

homogeneous specific variance assumption has been relaxed.

Hence the CSV is a biased estimator for idiosyncratic variance, with a bias

given by the multiplicative factor
(

1−
∑Nt

i=1w
2
it

)
, which can be easily corrected
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for since it is available in explicit form. In the end, the bias and variance of the

CSV appear to be minimum for the EW scheme, which corresponds to taking

wit = 1/Nt at each date t. It is easy to see, that this bias disappears and the

variance tends to zero for the equally-weighted scheme when the number of stocks

grows large, as explained in the following proposition.

Proposition 3 (Properties of the equally-weighted CSV)

The bias and variance of the EW CSV as an estimator for specific variance

disappear in the limit of an increasingly large number of stocks:

E
[
CSV EW

t

]
−→
Nt→∞

σ2
ε (t) .

V ar
(
CSV

EW )
t

)
−→
Nt→∞

0.

Proof See Appendix A.2 for a proof in the slightly more general case when the

homogeneous specific variance assumption has been relaxed..

The equally-weighted CSV thus appears to be a consistent and asymptotically

efficient estimator for idiosyncratic variance. As such, it is the best estimator in

the class of CSV estimators defined under any positive weighting scheme, and it

dominates in particular the cap-weighted CSV as an estimator for idiosyncratic

variance. If we relax the homogeneous residual variance assumption, we obtain

that:

E
[
CSV EW

t

]
−→
Nt→∞

1

Nt

Nt∑
i=1

σ2
εit
.

Hence, the assumption of homogenous residual variances comes with no loss of

generality. In the general case with non-homogenous variances, the CSV simply

appears to be an asymptotically unbiased estimator for the average idiosyncratic

12
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variance of the stocks in the universe. We also have:

V ar
(
CSV EW

t

)
< 2σ̄4

ε (t)

(
1

Nt

)
−→
Nt→∞

0.

where the quantity σ̄2
ε (t) is an upper bound for the individual idiosyncratic vari-

ances (see Appendix A.2).

We now discuss the impact on these results of relaxing the homogeneous beta

assumption.

1.2.4 Relaxing the Homogeneity Assumption for Factor

Loadings

Relaxing the homogenous beta assumption involves a bias that remains strictly

positive even for an infinite number of stocks and an equal-weighting scheme. We

characterize this bias in the next proposition in order to gauge its magnitude for

given models of returns.

Proposition 4 Bias of CSV as an estimator for average idiosyncratic

variance in the presence of heterogenous betas: Relaxing the assumptions

βit = βt = 1 ∀ i, t (homogeneous beta assumption) we have, for any strictly positive

weighting scheme:

E
[
CSV

(wt)
t

]
=

Nt∑
i=1

witσ
2
εi

(t)−
Nt∑
i=1

w2
itσ

2
εi

(t) + E
[
F 2
t CSV

β
t

]
, (1.9)

where CSV β
t denotes the cross-sectional variance of stock betas:

CSV β
t =

Nt∑
i=1

wit

(
βit −

Nt∑
j=1

wjtβjt

)2

.

Proof See Appendix A.2.3.
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The first term
∑Nt

i=1witσ
2
εi

(t) in equation (1.9) represents the average idiosyn-

cratic variance of stocks within the universe under consideration. The second term

−
∑Nt

i=1w
2
itσ

2
εi

(t) is the negative bias that was also present even in the presence ho-

mogenous beta assumptions. If we focus on the equally-weighted scheme, the sum

of these two terms is equal to 1
Nt

∑Nt
i=1 σ

2
εi

(t)
(

1− 1
Nt

)
so that the bias disappears

in the limit of an increasingly large number of stocks. The third term E
[
F 2
t CSV

β
t

]
in equation (1.9) represents, on the other hand, an additional (positive) bias for

the CSV as an estimator of average idiosyncratic variance, which is introduced by

the cross-sectional dispersion in betas, and which does not disappear in the limit

of a large number of stocks.

Using the explicit expression provided here, in section 1.3.1 we directly measure

this beta dispersion bias using the CAPM and the Fama and French three-factor

model as benchmark factor models. As we will see, although the cross-sectional

dispersion of betas has a non-negligible magnitude, once it is multiplied by the

square of the return of the market portfolio its relative size with respect to the

level of idiosyncratic risk becomes very small. An extensive analysis of the CSV

in the empirical section suggests that the homogeneous beta assumption does not

represent a material problem for the CSV as an estimator of idiosyncratic variance

as implied by standard asset pricing models (i.e. CAPM and Fama-French).

1.2.5 Competing Measures of Idiosyncratic Risk

In this section, we describe measures that have been used in the literature, and

which will be used for comparison purposes in subsequent sections of the paper.

The standard approach consists of considering idiosyncratic variance either relative

to the CAPM and or to the Fama-French (FF) model (Fama and French (1993)):

rit = b0it + b1itXMKTt + b2itSMBt + b3itHMLt + εFFit (1.10)
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where rit denotes the excess return at time t of stock i, XMKT is the excess return

on the market portfolio, SMB is the size factor and HML is the value factor. The

idiosyncratic variance for asset i is the variance of the residuals of the regression,

that is, σ2(εFFit ). To obtain an estimate for average idiosyncratic variance, Bekaert

et al. (2008) and Wei and Zhang (2006) use a market capitalization weighting:

FFCW
t =

Nt∑
i=1

witσ
2(εFFit ). (1.11)

For comparison purposes we also look at the equally-weighted average of FF id-

iosyncratic variance in what follows. An alternative approach to average (mostly)

idiosyncratic risk estimation has been suggested by Goyal and Santa-Clara (2003),

with a measure given by:

GSEWt =
1

Nt

Nt∑
i=1

[
Dt∑
d=1

r2
id + 2

Dt∑
d=2

ridrid−1

]
, (1.12)

where rid is the return on stock i in day d and Dt is the number of trading days

in month t.1

Campbell et al. (2001) propose yet an alternative measure of average idiosyn-

cratic variance, under a very particular setting that allows one to avoid running

regressions each period.2 However, their measure is not instantaneous since a

window of data is still needed to estimate individual variances. In what follows,

we do not repeat the analysis with this measure because Bekaert et al. (2008)

have shown that it is very closely related to the measure obtained from standard

asset pricing models. In particular, Bekaert et al. (2008) find that the measure of

Campbell et al. (2001) and the FF-based one have a correlation of 98% and share

1As in Goyal and Santa-Clara (2003), when the second term makes the estimate negative, it
is ignored. This measure has been originally used in French et al. (1987).

2They assume that all betas are equal to one and substract industry returns in addition to
market returns to control for risk.

15



Chapter 1

most of the same structural breaks.

1.3 Empirical Implementation

In order to perform an empirical analysis of our measure for idiosyncratic risk,

we collect daily US stock returns (common equity shares only) and their market

capitalization from CRSP data base. Our longest sample runs from July 1963

to December 2006. We also extract the FF factors and the one-month Treasury

bill from Kenneth French web-site data library for the same sample period. Each

month, we drop stocks with missing returns and with non-positive market cap-

italization at the beginning of the month. The number of firms varies between

377 and 7293, and remains greater than one thousand 75% of the time. The max-

imum number of stocks is reached during the .com bubble. Then, we estimate

every month the cap-weighted idiosyncratic variance as in equation (1.11), as well

as the equal-weighted version.1 Similarly, we estimate the cap-weighted and equal

weighted average idiosyncratic variance relative to the CAPM. We also estimate

the GS average variance measure as in equation (1.12) and its cap-weighted ver-

sion. Finally, we estimate on a daily basis the equal and cap-weighted versions

of the CSV as in equations (1.4) and (1.5). In order to construct the monthly

series for our cross-sectional measures, we estimate the average of the daily series

at the end of each month. For comparison purposes we also estimate the FF-based

average idiosyncratic variance (EW and CW) on a daily basis using a rolling win-

dow sample of one month. We annualize all figures in order to compare daily

and monthly measures. Following Bekaert et al. (2008), we fit a regime-switching

model to the monthly and daily series in order to further compare the different

measures. Last, we look at the relation between the CSV measures of idiosyncratic

1We use previous period market capitalization and assume it is constant within the month.
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variance and selected economic and financial variables.

1.3.1 Measuring the CSV bias

Some of the previous research on idiosyncratic volatility has been conducted under

the assumption of homogeneous betas across stocks (see Campbell et al. (2001) and

Goyal and Santa-Clara (2003) in particular). As illustrated in Proposition 4 and

discussed in Appendix A.2.3, the presence of non-homogeneous betas introduces a

positive bias on the CSV as an estimator for average idiosyncratic variance, which

is given by the first term in equation (1.9). We now measure the impact of this

bias with respect to the CAPM as a benchmark model.

First, we compute the bias E
[
F 2
t CSV

β
t

]
for every month in the sample using

beta estimates for each stock with both the equal-weighted and the cap-weighted

market returns. To gauge its importance, we divide it by the average idiosyncratic

variance, also measured with respect to the CAPM.1

Table D.1 presents a summary of the distribution of the time series of cross-

sectional dispersion of betas, its product with the squared return of the market

portfolio (hence the bias itself) and the proportion of this bias with respect to

the average idiosyncratic variance at the end of every month. Although the cross-

sectional dispersion of betas is sizable, once it is multiplied by the squared return

of the market portfolio, the size of the bias remains relatively small. The median of

the distribution of
F 2
t CSV

β
t

σ2
εt

, is 0.348% for the equal-weighted scheme and 0.351%

for the cap-weighted measure, computed over the whole sample (July 1963 to

December 2006). The 97.5 quantiles are 3.24 and 3.47 respectively.

On the other hand, the formal discussion about the properties of the CSV

as a measure of idiosyncratic variance on section 1.2.4 also uncovered the fact

1This is measured as in equation (1.11) with just the market returns with both weighting
schemes.
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that another bias (but negative in sign) coming from the CSV weighting scheme

concentration is also introduced. Proposition 2 predicts two properties about this

weighting bias: first, it should be negative and minimal for an equally-weighted

scheme. Second, it should be very small for a high number of stocks. The beta-bias

then is more likely to dominate the concentration-bias when using an equal-weight

scheme.

Using the explicit expression for this bias provided in Proposition 4 we estimate

the proportion of the size of this weights-concentration bias with respect to the

average idiosyncratic variances implied by the CAPM.1 In the last line of the upper

and lower panels of Table D.1 we report quantiles of the distribution of this bias

for both weighting schemes. The corresponding medians are 0.030% and 0.426%

for the EW and CW schemes respectively. Since the bias is of opposite sign to the

beta cross-sectional dispersion bias, we need to assess the resulting overall bias.

We measure the total bias as the intercept of a regression of the CSV on the

average idiosyncratic variance estimated with respect to the CAPM or the Fama-

French three-factor model:

CSV wt
t = bias+ ψσ2

model (wt) + ζt, (1.13)

where wt refers to the weighting scheme (equal-weight or market-cap) and model

stands for either the CAPM or the Fama-French three-factor model.

Table D.2 reports summary statistics for regression (1.13). The bias of the CSV

measured with respect to standard asset pricing models is small in magnitude for

both weighting schemes (in the order of 10−5). While it remains statistically

significant, we can safely consider that the impact of the bias remains immaterial

1As noted earlier, it would be straightforward to remove the impact of this bias by dividing

the CSV measure by the factor
(

1−
∑Nt

i=1 w
2
it

)
, equal to

(
1− 1

Nt

)
in the EW case.
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for any practical purposes. Another interesting finding is the sign of the bias. For

the equal-weighted quantities, the sign of the bias is positive, while it is negative

for the cap-weighted ones. Therefore, the beta bias dominates the weighting bias

for equal-weighted averages in both models. This is consistent with the prediction

made by the theoretical analysis regarding the relative impact of the weighting-

bias for different weighting schemes. Regarding the model, the bias is larger when

the idiosyncratic variance is measured with respect to the Fama-French model

instead of the CAPM for both weighting schemes, as expected, but its magnitude

remains negligible.

1.3.2 Comparison with Other Measures

In this section we compare the CSV measure to the afore-mentioned, more conven-

tional, measures of idiosyncratic risk (i.e., FF-based, CAPM-based and GS). To

obtain these other measures, we need to re-estimate the relevant factor model us-

ing a rolling window of one-month worth of daily data to allow for time-variation

in beta estimates (or total-variance variation for the GS). In Table D.3, we re-

port summary statistics for the monthly time series of annualized idiosyncratic

variances based on 516 observations from January 1964 to December 2006.1

On the monthly series, the annualized means of the equally-weighted CSV, FF-

based and CAPM-based measures are 38.4%, 38.3% and 38.7%, respectively, while

the EW GS variance is 34.2%. The standard deviations are 8.5%, 8.6%, 8.7% for

the CSV, FF-based and CAPM-based measures and 7.0% for the GS measure. For

the cap-weighted version, the CSV, FF and CAPM idiosyncratic variance measures

have an annualized mean of 8.5%, 7.6%, 8.0%, respectively and the GS measure

mean is 11.2%. The standard deviations are also closer for the CSV, FF and

1In this section of the paper, we start the sample period in January 1964 to allow for direct
comparison with Bekaert et al. (2008). In the predictability section, we instead start the sample
in July 1963.
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CAPM measures than for GS. Although GS argue that their measure fundamen-

tally constitutes a measure of idiosyncratic risk, with the idiosyncratic component

accounting for about 85% of the total EW average measure, it is strictly speaking

an average of total stock variance. Our CSV measure is very close to idiosyncratic

variance measures derived from traditional asset pricing models, confirming that

the assumption about beta homogeneity is not a major problem.

The cross-correlation matrix reported in Table D.3 provides further evidence

on the closeness of the CSV to the other model-based measures. Correlations are

very high between CSV EW and CAPMEW (99.93%) and FFEW (99.75%, as well

as between CSV CW and CAPMCW (99.48%) and CSV CW and FFCW (98.56%).

The high correlations between the CAPM and the FF measures (99.88% and

99.18% for EW and CW respectively) also indicate that adding factors does not

drastically affect the estimation of idiosyncratic variance. Correlations between

the GS measures and the other measures are always smaller but remain close

to 90% when considering the same weighting scheme. Correlations between mea-

sures for different weighting schemes are much lower, irrespective of the estimation

method, indicating that the choice over the weighting scheme is fundamentally im-

portant for estimating idiosyncratic variance, as stressed in our theoretical analysis

in section 1.2.

Table D.4 provides mean and standard-deviation estimates for the daily aver-

age idiosyncratic variance measures. The mean of the EW CSV is 38.4%, prac-

tically equal to the mean of EW idiosyncratic variance based on the FF model.

For the cap-weighted measures, the CSV has a slightly higher mean than the FF-

based one. For the CSV daily series, the standard deviation is higher than for the

FF-based measure for both weighting schemes. This is due to the different na-

ture of the two series. The CSV only includes information from the cross-section

of realized returns, while the FF idiosyncratic variance is a persistent, overlap-
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ping, rolling-window estimate. Each daily estimate of idiosyncratic variance for

the FF model differs from the previous one by only two observations out of the

approximately 21 trading days included in a month (the first and last days).

The smoothness of the idiosyncratic variance estimates obtained with the

rolling-window methodology is illustrated in Figures D.1 and D.2, which plot daily

CSV and FF idiosyncratic variances for each weighting scheme respectively. It

should also be noted that the estimation of the FF-measure is computationally

much more expensive than for the CSV measure, which is based on observable

quantities.

The lower panel of Table D.4 presents cross-correlations for the daily series

of idiosyncratic variance measures. Although the coefficients are smaller than for

the monthly series, the relationship remains strong provided the comparison is

done for the same weighting scheme: 82.6% and 73.9% for EW and CW measures

respectively. The difference with the monthly series correlations may again be

explained by the presence of the smoothed estimation procedure inherent to the

FF-based measure. Overall, it appears that the CSV measure is extremely close to

CAPM or FF-based measures at the monthly frequency, when the latter measures

suffer from no particular bias, and that the CSV measure appears to be a good

and instantaneous proxy for idiosyncratic variance at the daily frequency, when

the standard measures are subject to artificial smoothing due to overlapping data.

1.3.3 Extracting Regimes in Idiosyncratic Risk

Bekaert et al. (2008) fit a Markov regime-switching model with a first-order auto-

correlation structure (see Hamilton (1989b)) for the monthly series of idiosyncratic

variance based on the FF model. In this section, we want to estimate this model

with our CSV measure both at the monthly and daily frequencies. While we ex-
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pect that the fit will be close to Bekaert et al. (2008) for the monthly series given

our previous results on the similarity of the series, we want to verify whether such

a model provides a similar fit for the daily series.

In this model, two regimes are indexed by a discrete state variable, st, which

follows a Markov-chain process with constant transition probabilities. Let the

current regime be indexed by i and the past regime by j and xt be the original

idiosyncratic variance. In this parsimonious model, xt follows an AR(1) model:

xt − µi = φ(xt−1 − µj) + σiet, i, j ∈ {1, 2} (1.14)

The transition probabilities are denoted by p = P [st = 1|st−1 = 1] and q =

P [st = 2|st−1 = 2]). The model involves a total of 7 parameters, {µ1, µ2, σ1, σ2, φ, p, q}.

We first verify that the CSV and the FF-based measures give the same re-

sults for the monthly series. The estimation results for the monthly series of the

FFCW , CSV CW , FFEW and CSV EW are reported in the upper panel of Table

D.5. For corresponding weighting schemes, the parameters in both regimes are

similar between the two measures. For both measures the low-mean, low-variance

regime presents a higher probability of remaining in the same state.

We then fit the same model to the daily time series and present the parameter

estimates in the lower panel of Table D.5. It should be stressed that for our CSV

measure, the parameter values of the average level of idiosyncratic variance µ in

both regimes are found to be quite close to the values obtained with the monthly

series. This result suggests that the process observed at the daily frequency is not

just a noisy series, but actually captures the same underlying process observed at

the monthly frequency. This stands in sharp contrast with the FF-based measure,

for which the maximum-likelihood estimation procedure could not recognize two

regimes when daily data is used, as evidenced by the fact that the parameter
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values for the mean level of idiosyncratic variance are basically the same for the

two regimes. This problem, combined with an autocorrelation parameter very

close to one, is likely caused by the overlapping data problem present in the daily

FF measure, which corresponds to the smoothing effect mentioned in the previous

section.

In Figures D.3 and D.4 we plot the filtered probabilities (conditional on infor-

mation up to time t) of remaining in state 1 (high-mean and high variance regime),

as well as the monthly CSV and FF average idiosyncratic variance time series for

the CW and EW weighting schemes, respectively.1 At the monthly frequency, our

measure and the FF-based measure appear to be remarkably close for both the

equal-weighted and cap-weighted schemes. Also, we find that the dates of regime

changes, marked by the filtered probabilities, are the same most of the times for

the cap-weighted and the equal-weighted measures.2 We also find that periods in

the higher-mean and higher-variance regime are more persistent for the equally-

weighted measure compared to the cap-weighted measure (except during the tech

bubble period). Overall, our filtered probability series resembles closely the one

presented in Bekaert et al. (2008) for the cap-weighted FF and Campbell et al.

(2001) measures.3

The shaded areas in Figures D.3 and D.4, which time stamp the NBER re-

cession periods, indicate that the peaks in the probability of remaining in the

high-mean high-variance regime coincide most of the times with the contraction

periods. Therefore, the CSV measure is counter-cyclical, the dispersion of returns

1These are estimates of the transition probabilities conditional to information up to time t
given all sample data.

2One notable exception is the regime change of 1980 : 05, which is present for the cap-
weighted measure and absent for the equally-weighted one.

3The small difference might come from the fact that Bekaert et al. (2008) fit a model with
two different autocorrelation coefficients (one for each regime) as opposed to one. However, they
find the two coefficients to be fundamentally equal in both regimes, which supports using a more
parsimonious model.
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being high and quite variable when economic growth subsides. In the next section,

we want to analyze further the relation between the CSV and other economic and

financial variables.

1.3.4 CSV Relation with Economic and Financial Vari-

ables

To put this analysis in the proper context, we should go back to the very na-

ture of idiosyncratic risk. In an asset pricing model, it represents the risk that

belongs specifically to an individual firm, after accounting for the sources of risk

that are common to all firms. In the previous sections, we have shown that the

cross-sectional variance of returns provides a very good measure of this idiosyn-

cratic risk, even if it ignores the risk exposures to the usual common risk factors

such as the market return or the Fama-French factors. Yet we concluded our

time series analysis of CSV by stressing its strong counter-cyclical behavior. To

pursue this analysis further we need therefore to rely on equilibrium models that

link returns to economic fundamentals. Recently, Bansal and Yaron (2004) have

revived consumption-based asset pricing models by showing that two sources of

long-run risk — expected consumption growth and consumption volatility as a

measure of economic uncertainty — determine asset returns. Further, Tédongap

(2010) provides strong evidence that consumption volatility risk explains a high

percentage of the cross-sectional dispersion in average stock returns for the usual

set of size and book-to-market portfolios that have been used in tests of asset

pricing models. Another strand of literature based on the intertemporal CAPM

or the conditional CAPM has linked the cross-section of expected returns to other

economic or financial variables such as the term spread, default spread, implied

or realized measures of aggregate returns variance, and many others.
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While our CSV measure is based on the cross-sectional dispersion of realized

returns over the whole universe of traded stocks, as opposed to the cross-sectional

dispersion of average returns of a limited number of size and book-to-market port-

folios, the same theoretical implications should prevail. Therefore, we present be-

low a simple correlation and graphical analysis of the relation between the CSV and

some of these key variables. For the economic variables, we chose consumption-

growth volatility as a measure of economic uncertainty. Following Bansal and

Yaron (2004) and Tédongap (2010), we filter consumption-growth volatility with

a GARCH model. For consumption, we used FRED’s personal consumption ex-

penditures of non-durables and services monthly series, divided by the consumer

price index and the population values to obtain a per-capita real consumption

series. We then compute its growth rate from July 1963 to 2006.1 The second

economic variable we consider is inflation volatility, which we filter also with a

GARCH process.2 For the financial variables we use Welch and Goyal (2008)’s

data for corporate bond yields on BAA and AAA-rated bonds, long-term govern-

ment bond yield and 3-months T-bill rate to estimate the credit spread and term

spread (as the difference between the first and the second rate in both cases).3

In Table D.6 we report the correlations between the equally-weighted and cap-

weighted measures of cross-sectional variance and the five economic and financial

variables during the 1990-2006 period. We also explore some potential asymme-

tries by computing the CSV EW for the positive and negative returns.

1The series IDs at the FRED’s webpage are, PCEND and PCES for “Personal Consumption
Expenditures: Nondurable Goods” and “Personal Consumption Expenditures: Services”, CPI-
AUCNS for “Consumer Price Index for All Urban Consumers: All Items” and POP for “Total
Population: All Ages including Armed Forces Overseas”. Bansal and Yaron (2004) used the
Bureau of Economic Analysis data available at www.bea.gov/national/consumer spending.htm
on real per-capita annual consumption growth of nondurables and services for the period 1929
to 1998. The series is longer but is available only at annual and quarterly frequencies.

2For space considerations, we do not report parameter estimates for the two AR(1)-
Garch(1,1) we estimate. They are available upon request from the authors.

3Data available at Amit Goyal’s webpage: http://www.bus.emory.edu/AGoyal/Research.html
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The highest correlation (0.401) is obtained between consumption growth volatil-

ity and the equally-weighted measure CSV EW . In Figure D.5 we plot the two

series for the period 1990 to 2006. While the CSV series is much noisier than

consumption-growth volatility, the coincident movements between the two series

are quite remarkable. After a high volatile period just before 2000, both series

show a marked downward trend after the turn of the century. A reasonable ex-

planation for this strong correlation is to think about a common factor (aggregate

economic uncertainty) affecting the idiosyncratic variance of each security. Aggre-

gating over all securities will make the CSV a function of economic uncertainty.

In intertemporal asset pricing models of Bansal and Yaron (2004), Bollerslev et al.

(2009) and Bollerslev et al. (2009), economic uncertainty is a priced risk factor

that affects returns, therefore providing a fundamental rationale for the observed

correlation between CSV and consumption growth volatility. This suggests that

CSV should appear to be priced when a Fama-MacBeth procedure is applied to

a set of portfolios. We explore this issue in Section 1.5. The correlation of the

cap-weighted CSV with consumption growth volatility is not as high (0.241) since

it puts more weight on large cap securities, which are in general less affected by

economic uncertainty. Looking at the split between CSV EW+ and CSV EW−, we

see that the correlation is higher for the CSV when conditioning on the negative

returns (0.346). This suggests that return dispersion in bear periods is relatively

more affected by economic uncertainty.

The next most highly negatively correlated variable is inflation volatility (-

0.367). Since 1998, inflation volatility seems to have been on an upward trend,

while the cross-sectional variance of returns has been sharply declining. This

is clearly apparent in Figure D.6. In presence of higher inflation uncertainty,

investors will move towards allocating more to stocks relative to bonds in their

portfolios, generating a general increase in stock returns that reduces their cross-
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sectional variance. The T-bill rate is also relatively highly correlated with CSV EW

(0.302). In the type of equilibrium models we have referred to, the risk-free rate,

proxied here by the T-bill, will be a function of consumption growth volatility,

hence its positive relation with the cross-sectional variance.

For the financial variables (credit spread and term spread), it is interesting to

note that the higher correlations are with the cap-weighted measures of the cross-

sectional variance. The signs are intuitive. Credit risk affects differently individual

firm returns and therefore tends to increase CSV, while a pervasive term spread

risk will reduce dispersion by being common to many securities due to a move of

investors away from bonds into the stock market.

Given that the cross-sectional variance is significantly linked with economic and

financial factors that have been shown to predict returns, we explore in the next

section the predictive power of CSV for aggregate returns at various frequencies,

especially at daily frequencies, since our measure of idiosyncratic variance allows

us to measure CSV at any frequency without any artificial smoothing effect. This

is a main advantage over other methods of recovering this idiosyncratic variance.

1.4 New Evidence on the Predictability of the

Market Return

There is an ongoing debate on the predictive power of average idiosyncratic vari-

ance for average (or aggregate) stock market returns. Goyal and Santa-Clara

(2003) find a significantly positive relationship between the equal-weighted av-

erage idiosyncratic stock variance and the cap-weighted portfolio returns for the

period 1963:07 to 1999:12. They find that their measure of average idiosyncratic

(in fact total) variance has a significant relationship with next month return on
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the cap-weighted portfolio. The regression in GS is as follows:

rCWt+1 = α + βνEWt + εt+1, (1.15)

where νEWt corresponds to GSEWt . In a subsequent analysis, Bali et al. (2005) ar-

gue that this relationship disappeared for the extended sample 1963:07 to 2001:12,

and attribute the relationship observed in GS to high-tech-bubble-type stocks (i.e.,

stocks traded on the NASDAQ) and a liquidity premium. In a similar way, Wei

and Zhang (2005) find that the significance of the relationship found by GS dis-

appeared for their sample 1963:07 to 2002:12 and argue that the presumably tem-

porary result of GS was driven mainly by the data in the 1990s. Wei and Zhang

(2005) criticize the fact that GS looked at the relationship between an equally-

weighted average stock variance and the return on a cap-weighted average stock

return, as opposed to an equally-weighted portfolio return. Moreover, both Bali

et al. (2005) and Wei and Zhang (2005) find no significant relationship between the

cap-weighted measures and the cap-weighted portfolio return in all three sample

periods (ending in 1999, 2001 and 2002, respectively).

1.4.1 Monthly Evidence

In this section we confirm existing results and extend them in a number of di-

mensions, including a longer sample period. The first panel in Table D.7 presents

the predictability regression of equally-weighted variance measures on the cap-

weighted return as in Goyal and Santa-Clara (2003) and Bali et al. (2005) for

their sample periods, as well as the extended sample up to 2006:12. The re-

gression is as in equation 1.15, where νEWt corresponds to the EW CAPM-based

measure and the CSV.1 For comparison purposes we start the sample period in

1As explained before, the monthly CSV is the average of its daily values during the month.

28



Chapter 1

this section in 1963:07, as in Goyal and Santa-Clara (2003), Bali et al. (2005) and

Wei and Zhang (2005).

For the monthly series, we confirm that there is a significant positive relation-

ship in the first sample, and also that it weakens for the subsequent extended

samples.1 The Newey and West (1987) autocorrelation corrected t-stat for 12 lags

of the β coefficient of both CSV and the CAPM-based measures goes from 3.5

for the first sample period down to 0.9 for the largest sample. Consequently, the

adjusted R2 goes from 1.3% down to 0.04%. This result confirms the findings of

Bali et al. (2005) and Wei and Zhang (2005) for the further extended sample. In

section 1.4.4 we propose a possible explanation for this puzzling result.

In the second panel of Table D.7 we present the results of the regression between

the equally-weighted average return with the lagged equally-weighted idiosyncratic

variance measure, as given by:

rEWt+1 = α + βνEWt + εt+1 (1.16)

where νEWt is taken as the CAPM-based average idiosyncratic variance or as the

CSV measure. In contrast with the former regression, the relationship is found to

be significantly positive for the three sample periods for both measures.2

In the third panel of Table D.7 we present the results for the three sample

periods of the one-month-ahead predictive regression of the cap-weighted market

1We found a similar result using the GS measure of equally-weighed average variance. We
do not present these regression results for the sake of brevity given that they generate a similar
picture, which has also been confirmed in Bali et al. (2005) and Wei and Zhang (2005).

2Wei and Zhang (2005) find a significantly positive relation between the equal-weighted GS
measure and the equal-weighted market return for the initial sample. They also test the robust-
ness of the relation by using an equally-weighted cross-sectional variance of monthly returns.
They found a significantly positive coefficient for predicting the equal-weighted portfolio return
mainly for the long samples starting in 1928 but not for the sample going from 1963 to 2002.
Note that our cross-sectional measures differ. Ours is an average of the daily cross-sectional
variances over the month. Theirs is the cross-sectional variance of the returns computed over
the month.
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portfolio using the cap-weighted idiosyncratic variance return as a predictor. In

this case, the beta of the idiosyncratic variance is not significant for all three

sample periods. This result confirms the findings of Bali et al. (2005) and Wei

and Zhang (2005) for the extended sample.

1.4.2 New Predictability Evidence at Daily Frequency

Prevailing measures used in the literature require a sample of past data to estimate

additional parameters, constraining existing evidence to the monthly estimations.

Fu (2009) finds that high idiosyncratic volatilities of individual stocks are contem-

poraneous with high returns, which tend to reverse in the following month. Huang

et al. (2009) find that the negative relationship between idiosyncratic variance and

expected returns at the stock level uncovered in Ang et al. (2006) and Ang et al.

(2009) becomes positive after controlling for the return reversals. This provides ad-

ditional motivation for looking at the predictability relation at a higher frequency

than the monthly basis. Using the CSV as a proxy for aggregate idiosyncratic

variance allows us to check this relationship at the aggregate (market) level in a

more direct way (without having to control for reversals). Taking advantage of the

instantaneous nature of the CSV, we run the same predictability regression (1.16)

on the one-day-ahead portfolio return using the average idiosyncratic variance.

The upper panel of Table D.8 shows that at a daily basis, this relationship is

much stronger, with (Newey-West corrected) t-stats of coefficients for the average

idiosyncratic variance across the three samples ranging between 4 and 4.7.

In the lower panel of Table D.8 we report the results for the one-day-ahead pre-

dictive regression on the cap-weighted pairs (CSV and market return) for which we

find the relation also to be positive and significant, but with a much more obvious

deterioration of the t-stat of the cap-weighted idiosyncratic variance coefficient,
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going from about 5.91 in the first sample down to 1.97 for the longest sample. For

this reason and for brevity, we now focus on the relationship between aggregate

idiosyncratic risk and the equal weighted market return.1

1.4.3 Interpretation of Predictability results

Given this evidence on the predictability of average aggregate returns by idiosyn-

cratic risk, a natural question to ask would be: why does the relationship between

the equal-weighted measure and the cap-weighted differ across different sample

periods?

Wei and Zhang (2005), Bali et al. (2005) argue that the relationship between id-

iosyncratic risk and the market index first found by Goyal and Santa-Clara (2003)

on the sample ending in 1999:12 was driven by small stocks traded in the NASDAQ

and the data coming from the dot-com bubble period. Although we confirm their

empirical findings for our sample period, we disagree with their conclusion that the

relationship between average idiosyncratic risk and expected returns disappeared

since the end of the dot-com bubble. Even though it appears clear that NASDAQ

companies played an important role in the relationship of the equal-weighted aver-

age idiosyncratic variance with the average market-capitalization expected return

during the end of the 1990s, which (obviously) weakened after the burst of the

bubble, we find that the relationship between average idiosyncratic risk and future

average market returns is robust to choices of the sample period, provided that

adequate weighting schemes and horizons are chosen to test this inter-temporal

relationship.

The transitory relationship between the equal-weighted average idiosyncratic

variance and the cap-weighted market index observed up to the end of the 1990,

1The corresponding results using a market cap-weighted scheme can be obtained from the
authors upon request.
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can be explained by the heterogeneous and transitory nature of the omitted sources

of risk captured by idiosyncratic risk and its relation with the inflated valuation

of several NASDAQ companies during that period 1.

Some intuition behind the far more robust relationship between the equally-

weighted average idiosyncratic variance and the equally-weighted portfolio comes

precisely from the logic of standard asset pricing theory. As discussed in the

introduction, there are multiple reasons for which average idiosyncratic risk should

be related to average returns, due to the heterogeneous sources that may compose

idiosyncratic risk. According to CAPM, only systematic risk should explain future

returns. However, if during a certain period of time there exists anomalies of

any kind (priced omitted risk factors) that, presumably, are not proportionally

reflected in the current market capitalization of the companies carrying these

factors, then the omitted sources of risk are more likely to explain the returns of

a portfolio where all kinds of firms are represented in a similar manner, such as

the EW as opposed to a portfolio where big companies are proportionally better

represented than smaller ones.

Along these lines, Pontiff (2006) argues that idiosyncratic risk is the largest

holding cost borne by rational arbitrageurs in their pursuit of mispricing oppor-

tunities. This theory implies that the current level of idiosyncratic risk should

predict returns since it should measure the amount of current mispricing oppor-

tunities present in the market. Assuming that the same mispricing opportunities

disappear in the long run, it appears more likely to observe this relationship be-

1The strongest omitted factors in that period (call it the irrational.com factor), partially
captured by the equally weighted idiosyncratic variance, started to be increasingly represented in
the market-cap index, due to the suddenly-higher market capitalization of precisely the group of
companies carrying this temporarily strong omitted factor. The posterior reversal of the situation
(i.e., the burst of the bubble) subsequently explains the sharp fade in the relationship between
the average idiosyncratic variance and the market-cap portfolio, precisely due to the posterior
sudden deterioration of the market capitalization of most stocks carrying this irrational.com
factor, and hence notably reducing their representation in the market-capitalization index.
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tween idiosyncratic variance and returns over very short horizons. Moreover, all

things being equal, large-cap stocks are less likely to present misspricing and hence

the predictability implied by this theory would be more likely to be present on

the equal-weighted index return rather than the cap-weighted index return, as we

observed in predictive regressions at daily and monthly horizons.1 The sign of the

relationship is not predicted by Pontiff’s theory in general, because it depends on

whether the average (equal or cap-weighted) portfolio is over- or under-priced (it

predicts a positive sign for underpriced stocks and a negative sign for overpriced

stocks).

1.4.4 Robustness Checks

In this section, we test further explore the relationship documented in the former

section in several dimensions. We first want to place the return predictability by

idiosyncratic variance in the context of the literature of the risk-return trade-off.

Most of the literature on this topic is based on a linear regression between return

and volatility. We want to see if including the return variance in the regression

changes the predictability results. Second, we test the robustness of the relation-

ship in the presence of an option implied volatility measure. Third, we further

test the predictability relationship at quarterly and annual horizons. Finally, we

look for the potential asymmetry in the relationship between idiosyncratic vari-

ance and future average returns, when the cross-sectional variance is split in two

and is computed for returns above or below the mean. Such an asymmetry often

exists for positive and negative returns in the volatility modeling of financial time

series. The reported presence of asymmetries will provide us with a motivation for

1It is well known that large cap stocks are more liquid than small-cap stocks, which implies a
higher number of people trading them and usually a higher number of analysts looking at them.
Together with less constraints to short-selling, we expect a higher price efficiency for large cap
stocks.
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extending the cross-sectional dispersion measure to the third moment and find this

measure is related with average idiosyncratic skewness and has strong predictive

power of the average market return.

1.4.4.1 Inclusion of Return Variance

In order to check wether the relationship between the market portfolio expected

return and the aggregate level of idiosyncratic variance (which we document at

the monthly and daily frequency) is robust to the inclusion of the variance of the

market portfolio, we run the following joint regression:

rEWt+1 = α + βCSVt + ϑV ar
(
rEWt

)
+ εt+1. (1.17)

We also run the univariate regression:

rEWt+1 = α + ϑV ar
(
rEWt

)
+ εt+1. (1.18)

For the monthly estimations of V ar
(
rEWt

)
we use the realized sample variance

over the month (from daily returns). For daily estimations we fitted an AR(1)-

EGARCH(1,1) model on the overall sample.1 In the first two panels of Table D.9,

we report regression results at the monthly and daily frequency of both (1.17) and

(1.18). In the latter univariate regression, the variance of the equally-weighted

portfolio returns does not appear to be significant in explaining the average future

returns at the monthly and daily frequencies.

In the regression from equation (1.17), the coefficient of V ar
(
rEWt

)
, ϑ, is neg-

ative and non-significant at the monthly frequency. At the daily frequency, the

1Using the overall sample to estimate the parameters would only give the portfolio variance
an advantage to predict future returns. However, from the results we see that even when using
such forward-looking estimates for V ar

(
rEWt

)
, the significance of the CSV remains strong.
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coefficient ϑ was still found to be negative and (marginally) significant. The sig-

nificance of the CSV coefficient remains valid for both monthly and daily frequen-

cies, and if anything improves slightly after the inclusion of the equally-weighted

portfolio variance.

The latter two panels of Table D.9 present the regression results at the monthly

and daily frequency of both (1.17) and (1.18) but using the cap-weighted index and

CSV equivalents. The relationship at the daily horizon becomes non significant

after the inclusion of the realized variance of the market cap-weighted index. At

the monthly horizon the relationship remains non significant.

In Table D.10, where we report the quarterly and annual predictability with

and without the market variance, we confirm that the equally-weighted cross-

sectional variance does not forecast future average returns at low frequencies.

However, for the cap-weighted measure of CSV, we observe predictability over

the period 1963 to 2006 when it is joined with market variance. The sign is

negative while the market variance enters with a positive sign as predicted by the

benchmark risk-return trade-off1

One fair remark on the results of the predictability regressions is that the rela-

tionship using equal-weighted measures only holds at shorter horizons (i.e. daily

and monthly). However, this result is in line with Pontiff (2006)’s interpretation

of idiosyncratic risk as a barrier for arbitrageurs and with the evidence presented

by Fu (2009) at the stock level, who finds that high idiosyncratic volatilities of

individual stocks are contemporaneous with high returns, which tend to reverse

in the following month.

1See also Guo and Savickas (2008) for similar results.
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1.4.4.2 Inclusion of Market Realized Variance and Implied Variance

Other measures of variance have been used in trying to link market returns to a

measure of market risk. Implied variance (V IX2) has been used as a forward-

looking measure of market variance in addition to realized variance (the sum of

squared returns at higher frequency than the targeted frequency for the measure of

variance)1. We use these measures in Table D.11 along with both CSV measures

for daily and monthly predictability. We repeat the exercise in Table D.12 for

quarterly and annual frequencies. For these regressions we start the sample in

1990 for data availability for the implied volatility.

Results are similar to the ones in the previous section with market variance.

For CSV EW , we observe predictability at high-frequency but not at low frequency,

while it is the opposite for CSV CW . For the daily estimates with CSV EW , we

find a R2 of almost 5% when we include all three measures of variance, and all

coefficients are significant. But the remarkable result, undocumented until now to

our knowledge, is the very high R2 obtained at quarterly and annual frequencies

for the CSV CW measure. When using CSV CW alone as a predictor we obtain

R2s of 4% and 26% at quarterly and annual frequencies, respectively. Adding the

implied variance brings the R2s to almost 19% and 29%. If instead one uses the

realized variance instead of implied variance the R2s are close to 11% and 34%.

In all these predictability regressions, the sign of the CSV CW variable is negative.

Guo and Savickas (2008) argue that average idiosyncratic volatility is neg-

atively related to future stock market returns possibly because of its negative

correlation with the aggregate book-to-market ratio.2 If idiosyncratic volatility is

1For example, for the monthly variance, one will sum the daily squared returns, while for
the daily variance, it is customary to use five-minute or one-minute squared returns.

2The argument starts by considering average idiosyncratic volatility as a proxy for changes
in the opportunity set related related to technological shocks. They argue that technological
innovations have two effects on the firm’s stock price: they tend to increase the level of the
firm’s stock price because of growth options and they also tend to increase the volatility of the
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measured from a CAPM model then it will capture the missing book-to-market fac-

tor. This explanation runs counter to our previous findings regarding the very high

correlation between the measures of idiosyncratic volatility based on the CAPM

and the Fama-French models. The two series were almost identical. A more ap-

pealing explanation may be to think of cross-sectional variance as a measure of

dispersion of returns reflecting the dispersion of opinions among market partici-

pants. The negative sign of this relationship at quarterly and annual horizons in

the presence of market variance as the second predictor (and also at monthly hori-

zons in the presence of implied variance as the second predictor) is consistent with

the model of Cao et al. (2005), in which dispersion of opinions among investors is

positively related to stock market volatility but negatively related to conditional

excess stock market returns. Furthermore, one may argue that differences of opin-

ions forge themselves over a period of time and hence this effect is more likely to

be present at horizons longer than a day.

More generally, we may interpret the CSV as measuring the hedging terms in an

intertemporal CAPM model. In this regard, it is interesting to see that the positive

risk-return trade-off at the aggregate level, i.e., the relationship between market

volatility and expected returns, becomes significant only when taking into account

the presence of the omitted factors as captured by the CSV. It is also interesting

to note that the interactions of the CSV with the realized variance of the market

take place at longer horizons (quarterly and annual), while its interactions with

implied variance (V IX2) tend to be more important at shorter horizons.

firm’s stock price because of the uncertainty about which firms will benefit from the new oppor-
tunities. The final argument is to say that the book-to-market ratio captures these investment
opportunities
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1.4.4.3 Asymmetry in the Cross-Sectional Distribution of Returns

We now explore for a potential asymmetry in the relationship between idiosyn-

cratic variance and future average returns, when the cross-sectional variance is

split in two and is computed for returns above or below the mean.

This asymmetry may be the result of the leverage effect put forward by Black

(1976) since we are considering individual firms in the cross section. We also

mentioned in an earlier section that consumption volatility risk affects differently

small and large firms or value and growth firms. Therefore, we explore i) whether

the predictability power is the same for the CSV of returns to the left and right of

the center of the returns’ distribution, ii) whether the relationship is driven by one

of the sides and iii) whether the relationship with both sides would have the same

sign on their coefficient. In order to do this, we define the CSV +
t as the cross-

sectional variance of the returns to the right of the cross-sectional distribution (i.e.,

meaning the cross-section distribution that includes all stocks such that rit > rEWt )

and conversely define the CSV −t as the cross-sectional variance of the returns to the

left of the cross-sectional distribution (i.e., meaning the cross-section distribution

that includes all stocks such that rit < rEWt ). Then we run the following regression:

rEWt+1 = α + β+CSV +
t + β−CSV −t + εt+1. (1.19)

Table D.13 presents the results of regression (1.19) for daily, monthly, quarterly

and annual estimates, and shows a couple of interesting findings. First, splitting

the CSV into right and left sides of the cross-sectional distribution made the

adjusted R2 of the predictive regression jump from 0.8% to 1.17% on monthly

data and from 0.6% to 1.36% on daily data. Second, there is an asymmetric

relationship between the CSV of the returns to the right and left of the cross-

sectional distribution and the expected market return: the coefficient of the CSV +
t
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is positive while the one of CSV −t is negative in both daily and monthly regressions.

However, the coefficients (of both right and left CSVs) are significant only on the

daily regression. The summary statistics of the predictive regression on the cap-

weighted index using the equivalent cap-weighted CSV measures, displayed in the

lower panel of Table D.13, are qualitatively similar to the results on the equal-

weighted measures.

These findings suggest that a measure of asymmetry of the cross-sectional dis-

tribution would be relevant in the context of exploring the relationship between

market expected returns and aggregate idiosyncratic risk. Another key advantage

of the CSV measure is that it can be easily extended to higher-order moments.

We consider below the skewness of the cross-sectional distribution of returns and

assess its predictive power for future returns. To the best of our knowledge, this

additional factor, which appears as a natural extension of the CSV for measur-

ing idiosyncratic risk1, is entirely new in this context.2 We follow Kim and White

(2004) and use a quantile-based estimate (see Bowley (1920)), generalized by Hink-

ley (1975), as a robust measure of the skewness of the cross-sectional distribution

of returns:3

RCS =
F−1(1− α1) + F−1(α1)− 2Q2

F−1(1− α1) + F−1(α1)
(1.20)

for any α1 between 0 and 0.5 and Q2 = F−1(0.5). The Bowley coefficient of

skewness is a special case of Hinkley’s coefficient when α1 = 0.25 and satisfies the

Groeneveld and Meeden (1984)’s properties for reasonable skewness coefficients.

1We show formally in an appendix available upon request from the authors that there is
a link between idiosyncratic skewness and the skewness of the cross-sectional distribution of
returns.

2At the stock level, Kapadia (2009) uses cross-sectional skewness to explain the puzzling
finding in Ang et al. (2006) that stocks with high idiosyncratic volatility have low subsequent
returns.

3The usual non-robust skewness measure of the cross-section of returns is highly noisy com-
pared to the proposed robust measure, especially at the daily frequency.
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It has upper and lower bounds {−1, 1}.

In Table D.14, we report the results of predictive regressions at the daily and

monthly frequencies where we add the robust measure of the cross-sectional skew-

ness to the equally-weighted CSV. The first observation is that the CSV coefficients

are very close to the values estimated with the CSV as the only regressor (0.4 for

the daily frequency and 0.25 for the monthly one). The t-stats are also almost

identical to the ones found in the CSV regressions. However, skewness appears

to be a major contributor to the predictability of returns since the R2 increases

significantly compared to the regressions with CSV alone. At the daily frequency,

the adjusted R2 increases to a value of 5.8%. At the monthly frequency, it is still

4.6%. This large increase in predictability when adding skewness suggests that

macroeconomic or aggregate financial shocks affect asymmetrically the distribu-

tion of returns.

1.5 Is Average Idiosyncratic Risk Priced?

According to Merton’s ICAPM, a factor that predicts stock returns in the cross

section should also predict aggregate market returns (see Campbell (1993)). By

the reverse argument, motivated by the predictability power of (equal-weighted)

cross-sectional variance on the average return in the market, we explore in this sec-

tion whether the CSV EW , interpreted as a risk factor, is rewarded and commands

a premium in the cross-section.

1.5.1 CSV Quintiles’ Premium

Using daily excess returns every month we run the following regression for each

stock i:1

1We use stocks with non missing values during the current month.
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rit = α + βi,csvCSV
EW
t . (1.21)

At the end of every month in the sample, we sort stocks using the CSV EW

factor loading, βcsv, and form equally-weighted and cap-weighted quintile portfo-

lios. We calculate the average return during the overall period for each quintile

and the average return difference (i.e., premium) between the first quintile and

each of the other four quintiles.

The results for the equally-weighted quintile portfolios are displayed in the

upper panel of Table D.15 and in the lower panel for the cap-weighted quintiles.

As we can see from this table, all premia are significantly different from zero

and economically meaningful. The difference between the first quintile (the one

with higher sensitivity) and the second, third and fourth quintile, is around an

annualized 30%, while the difference with the fifth quintile is around 15%. This

result suggests that the relationship of the CSV and stock returns might not be

best described in the simple linear form, which is in line with the asymmetric

effect found in section 1.4.4, with the quantities CSV + and CSV −.

1.5.2 Fama-MacBeth Procedure

In order to use the standard set of assets in the asset pricing literature, we extract

daily returns data from Kenneth French data library on their 100 (10x10) and 25

(5x5) size/book-to-market portfolios for the period July 1963 to December 2006.

Then we run every calendar month the following regression for each portfolio:1

rit = α + βi,xmktXMKTt + βi,smbSMBt + βi,hmlHMLt + βi,csvCSV
EW
t . (1.22)

1As before, XMKT stands for excess market return, SMB and HML are the size and book
to market Fama-French factors, also directly extracted from Kenneth French data library.
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Using the recorded factor loading, β (monthly) time series, we run the following

cross-sectional regression every month on the next month’s excess returns and

record the γ coefficients:

rmit+1 = γ0 + γxmktβi,xmkt(t) + γsmbβi,smb(t) + γhmlβi,hml(t) + γcsvβi,csv(t). (1.23)

We finally test whether the average γ coefficients are statistically different from

zero. In order to take into account possible serial correlation in the coefficients,

we compute the t-statistic using Newey and West (1987) standard errors with 4

lags (same number of lags as in Ang et al. (2009)).

We use four sets of assets: 100 (10x10) size/book-to-market equally-weighted

portfolios and cap-weighted weighted portfolios, and 25 (5x5) size/book-to-market

equally-weighted and cap-weighted portfolios. For each of them, we use the

CSV EW as the fourth risk factor. The first two panels of Table D.16 present

the corresponding Fama-MacBeth regression results. The table displays the annu-

alized coefficients and standard errors (multiplied by 12 from the original monthly

values), as well as their corresponding autocorrelation-corrected t-stat and the

average R2. We find the γ coefficient for CSV EW to be positive and significant

when we use the 100 and 25 size/book-to-market Fama-French equally-weighted

portfolios. However, it is not significant when we use the 25 market cap-weighted

portfolios and marginally significant for the 100 market cap-weighted portfolios

(although positive in both cases). This later result, again, is not entirely surpris-

ing considering that the cross-sectional variation in returns is reduced through the

market-capitalization adjustment.
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1.6 Conclusion

In this paper we formally introduce an instantaneous cross-sectional dispersion

measure as a proxy for aggregate idiosyncratic risk that has the distinct advan-

tage of being readily computable at any frequency, with no need to estimate other

parameters. It is therefore a model-free measure of idiosyncratic risk. We ex-

tensively show how this measure is related to previous proxies of idiosyncratic

variance, such as the Goyal and Santa-Clara (2003) measure and measures rela-

tive to the classic Fama and French (1993) and CAPM models, which have been

previously shown to be very close to the Campbell et al. (2001) proxy as well. We

confirm previous findings of Goyal and Santa-Clara (2003), Bali et al. (2005) and

Wei and Zhang (2005) on the monthly predictability regressions for the extended

sample period using our cross-sectional measure and more standard measures of

idiosyncratic variance. We find that the results are robust across these measures.

Thanks to the instantaneous nature of our measure, we are able to extend to

daily data the evidence on the predictability power of idiosyncratic variance on

the future market portfolio return. We provide a statistical argument to support

the choice of an equally-weighted measure of average idiosyncratic variance as

opposed to a market-cap weighted and explain why both empirically and theo-

retically such a measure should forecast better the equal-weighted market return.

We also showed that this cross-sectional measure displays a sizable correlation

with economic uncertainty, as measured by consumption growth volatility, and

with several economic and financial variables. One additional advantage of our

measure is that it generalizes in a straightforward manner to higher moments and

we showed that the asymmetry of the cross-sectional distribution is a very good

predictor for future returns. We leave for further research an exhaustive analysis

of the properties of the skewness of cross-sectional return distribution as a measure
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of average idiosyncratic skewness. We also leave for further research an empirical

analysis of the CSV measure using international data.
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Predicting Stock Returns in the

presence of Uncertain Structural

Changes and Sample Noise
Daniel Mantilla-Garćıa and Vijay Vaidyanathan*

The power of the dividend price ratio to predict future stock returns has

been the subject of intense scrutiny. Most studies on return predictability

assume that predictor variables follow stationary processes with constant

long run means. In view of recent evidence of the role of structural breaks

in the dividend-price ratio mean, we propose an estimation method that

explicitly incorporates the uncertainty about the location and magnitude

of structural breaks in the predictor in order to extract the regime mean

component of the dividend-price ratio. We find that adjusting for structural

changes in the ratio’s mean and estimation error improves the predictive

explanatory power of the dividend-price ratio in-sample, as well as its out-

of-sample forecasting ability to a very significant extent.

Keywords: Return Predictability, Structural Breaks, Bayesian Change Point Analysis, Dividend-

Price Ratio, Out-of-sample.
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and comments. Daniel Mantilla-Garćıa is PhD in Finance candidate at EDHEC Business School
and Head of Research and Development at Koris International (daniel.mantilla@koris-intl.com).
Vijay Vaidyanathan is PhD in Finance candidate at EDHEC Business School and President of
EDHEC-Risk Indices and Benchmarks - North America (vijay.vaidyanathan@edhec-risk.com).

45



Chapter 2

2.1 Introduction

Although the voluminous literature related to the predictability of returns has a

long history (e.g. see Spiegel (2008)), the issue remains the subject of controversy

and a very active field of research. The subject of debate in the empirical literature

encompasses its very existence and nature, the type of predictors as well as the

models and methods used to forecast returns. Perhaps the only uncontroverted

fact about return predictability is that it is a central question in financial economics

from both theoretical and applied standpoints.

A variety of financial variables have been proposed as predictors, including

the dividend price ratio, dividend growth ratio, price earnings ratio, dividend

payout ratio, stock variance, book value, book to price ratio etc. (see Goyal and

Welch (2008) for a comprehensive list). Of these, the dividend price ratio is seen

as particularly promising, in part because of the Campbell and Shiller (1988)

linearization of the definition of a return. This identity discussed in Cochrane

(2008) states that either the dividend price ratio or dividend growth must predict

returns. Goyal and Welch (2003) take a contrarian view. While acknowledging

the identity they argue that it need not hold in short horizons, where, in effect,

the current dividend price ratio predicts little more than the following period’s

dividend price ratio.

An overview of this vast literature suggests that the evidence of predictability

has failed to be conclusive. Supporting evidence has come in two flavors: one

arguing that predictability must exist (e.g. Cochrane (1992), Cochrane (2008)),

and the other showing some positive results that are not strong enough to be

considered as sufficient proof by its detractors (e.g. Goyal and Welch (2003), Goyal

and Welch (2008)). The sources of skepticism include the scarce out-of-sample

prediction results, the marginal statistical significance of regression coefficients,
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the instability of regression coefficients, and the sample sensitivity of the evidence

(e.g. Timmermann (2008)).

The branch of the literature that supports the existence of predictability rejects

the classical random-walk paradigm of unpredictable and approximately constant

expected returns, and posits one that admits the possibility that expected returns

contain a time-varying component, either related to economic-cycles (e.g. Lettau

and Ludvigson (2005)) or the existence of other regimes that imply predictability

of future returns. In this view, the poor out-of-sample R2 is not necessarily viewed

as invalidating the null hypothesis of predictable returns. For instance, Cochrane

(2008) states: (p. 1566) “One can simultaneously hold the view that returns are

predictable, ... , and believe that such forecasts are not very useful for out-of-

sample forecasting and portfolio advice, given uncertainties about the coefficients

in our data sets”. Indeed, there is even some question about whether the poor

performance of out-of-sample tests implies that in-sample results are spurious

(Inoue and Kilian (2004)).

Although out-of-sample predictability has been alleged by some to be weak,

a few recent methodological proposals for return forecasting finally appear to be

successful. Campbell and Thompson (2008) demonstrate that the performance of

the out-of-sample tests can be shown to be significant, for instance, by imposing

weak and theoretically sound restrictions on the signs of the model parameters.

Arguing model uncertainty and instability, Rapach et al. (2009) find that using

combinations of individual forecasts (e.g. average forecast from univariate pre-

dictive regressions) produce economically significant out-of-sample predictability

evidence of the equity premium for quarterly data.

In another vein, Ferreira and Santa-Clara (2010) propose an entirely new

methodology to forecast returns out-of-sample, which seems to be very successful

in producing stock returns’ forecasts, at both annual and monthly horizons. This
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so called “sum-of-the-parts method” consists of decomposing returns into dividend

yield, earnings growth, and price-earnings ratio growth and separately forecasting

the three components to obtain stock market returns forecasts. Interestingly, there

is no in-sample test for this approach as there is within the predictive regression

framework. One potential extension of their method would be to use the model

we propose here for the dividend yield mean to better forecast the dividend yield

(instead of returns).

Assuming an AR(1) process with a constant trend for expected returns and

starting from the Campbell-Shiller identity, Lacerda and Santa-Clara (2010) derive

a predictor composed by the dividend-price ratio series adjusted with a forecast

of the dividend growth and the mean of dividend-price ratio itself that seem to

be very successful for predicting at annual horizons, out-of-sample. Their adjust-

ment is quite different from ours because the resulting adjusted predictor series

seems to be even less stationary than the original dividend-price ratio series. How-

ever, since Lacerda and Santa-Clara (2010)’s adjustment uses an estimation of the

dividend-price ratio mean, it might be possible to further improve return forecast-

ing accuracy by combining the estimation method we propose to estimate the d-p

mean, with their adjustment.

Although the Campbell-Shiller identity would imply a linear relationship be-

tween the dividend-price ratio and expected returns, McMillan (2009) uses a

framework significantly different from the linear predictive regression called the

exponential smooth transition model (ESTR). This non-linear model assumes

that the parameters describing the relationship between returns and the d-p ra-

tio change over time, taking different values corresponding to a fixed number of

regimes. They propose a model that implies 4 different regimes over which the

model parameters migrate over time in a smooth fashion. They find that their

model out-performs the random walk model in terms of root mean square predic-
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tion error, for monthly data in 3 out of 8 markets over the 1980-2007 period.

In a similar spirit, Dangl and Halling (2009) propose to use predictive re-

gressions with time-varying coefficients to predict the risk premium at monthly

horizons and find significant improvements in terms of mean square prediction er-

ror with respect to the random walk when combining univariate predictive models.

Similar to Rapach et al. (2009), they report that their predictions are significantly

better during recession periods. Dangl and Halling (2009) document that uncer-

tainty about the level of time-variation in coefficients and uncertainty about the

choice of predictive variables are equally important sources of predictive variance.

A priori, structural breaks in the predictors and time varying coefficients may co-

exist. Hence, models such as Dangl and Halling (2009) or McMillan (2009), and

ours can be seen as potentially complementary for return forecasting purposes.

Thus, regardless of the point of view on predictability, there is agreement

that the uncertainty about the regression coefficients contributes to weakening the

predictive power, both in-sample and out-of-sample. Indeed, there is overwhelming

evidence (e.g. Ang and Bekaert (2002), Pastor and Stambaugh (2001)) of the

presence of such structural breaks. The existence and importance of such breaks

have been emphasized by Paye and Timmermann (2003), Pastor and Stambaugh

(2001) and Pettenuzzo and Timmermann (2005).

Recently, Lettau and van Nieuwerburgh (2008) shows that adjusting the d-

p ratio for structural breaks in its mean, leads to a significant increase in the

significance and magnitude of the (in-sample) predictor’s coefficient and the re-

gression R2. However, using their model in combination with a regime switching

model (Hamilton (1989a)), they produce out-of-sample forecasts that do not out-

perform the return’s historical average in terms of mean square error. Lettau

and van Nieuwerburgh (2008)’s adjustments derive the location of the break by

using the Bai-Perron algorithm (Bai and Perron (2003), Bai and Perron (1998)),
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which estimates the most likely (using a specified criterion) number and location

of break points, and subsequently assumes that the timing of the breaks is certain

to estimate the d-p ratio regime mean. Unfortunately, the information on the true

location of the break is itself uncertain, and therefore introduces uncertainty in

the estimate of the parameters.

In this paper, we propose an alternative mechanism to adjust for structural

breaks in the d-p ratio’s mean by incorporating the uncertainty about the timing

of the structural breaks. In contrast to the Bai-Perron algorithm, we suggest a

Bayesian approach for detecting the change points. Instead of using likelihood

measures to estimate the breaks, the Bayesian approach we use produces a prob-

ability for each observation to be a change point. Thus, we are able to use all

observed data to characterize the distribution of change points, and generate a

posterior mean for the predictor. We show that incorporating the uncertainty

related to the locations of the structural changes in this manner produces an

adjusted predictor series that is better behaved (stationary) and significantly im-

proves the level and significance of the regression coefficient and the regression

R2 with respect to Lettau and van Nieuwerburgh (2008)’s adjustment. We also

show that these improvements are robust to choices of the sample period as well

as alternative indices of the stock market portfolio. In order to estimate the prob-

ability of a change point and the posterior mean, we use the BH-BCP algorithm

of Barry and Hartigan (1993), Erdman and Emerson (2007). Finally, exploiting

a measure of uncertainty produced by the bayesian algorithm, we propose a sam-

ple noise shrinking methodology that, in combination with the structural changes

adjustment, provides sound evidence of out-of-sample return predictability that

could have been exploited in real time.
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2.2 Dividend-Price Ratio Predictability Power

and Structural Changes

The theoretical motivation to use the dividend price ratio to forecast returns comes

from Campbell and Shiller (1988)’s log linearization of the ratio, for which the dp’s

stochastic component is related to expected returns as follows:

dpt = d̄p+ Et

∞∑
j=1

ρj−1
[
(rt+j − r̄)− (∆dt+j − d̄)

]
, (2.1)

where ρ =
(
1 + exp(d̄p)

)−1
is a constant, establishing an inter-temporal rela-

tion between future returns and dividends. Cochrane (2008) argues this identity

implies that the dividend-price ratio must predict either future returns or dividend

growth. Given the lack of predictability power of dividend growth by the dividend

price ratio that he and other authors documented “if both returns and dividend

growth are unforecastable, then the price/dividend ratio is constant, which it ob-

viously is not”. However, Cochrane (2008)’s argument stands in contrast to the

evidence presented by Goyal and Welch (2008), which find that the predictive

power of the dividend price ratio (and a battery of other commonly used predic-

tors) have vanished after the oil crisis in the mid 70’s.

One should note that the framework in equation (2.1) implies that the steady-

state of the economy is constant over time, meaning that the long-run growth

dividend rate d̄, the long run dividend price ratio level, d̄p as well as the average

long-run return of equity, r̄ are fixed. Although this assumption seems to hold

reasonably in the data for the dividend growth and returns, the dividend price

ratio displays structural changes in its mean, making this assumption unrealistic.

However, Lettau and van Nieuwerburgh (2008) extended the Campbell-Shiller

framework to allow variations (and even permanent changes) in the steady-state of
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the economy. Under mild assumptions1 about the dividend-price ratio steady state

level dynamics, they show that, similar to the case with constant steady-state, the

log dividend-price ratio is the sum of the steady-state dividend-price ratio and the

discounted sum of expected returns minus expected dividend growth in excess of

steady-state growth and returns,

dpt = dpt + Et

∞∑
j=1

ρj−1
t

[
(rt+j − r̄)− (∆dt+j − d̄)

]
(2.2)

where ρt =
(
1 + exp(dpt)

)−1
. The difference between (2.2) and (2.1) is that

the mean of the log dividend-price ratio not only varies over time but it could also

be non-stationary.

On the other hand, a standard specification of forecasting variables used by

Stambaugh (1986), Stambaugh (1999), Nelson and Kim (1993), Lewellen (1999),

Pástor and Stambaugh (2009) and others, is to assume predictors xt to be a

stationary processes with constant mean,

xt = µ+ ut (2.3)

where the mean of the predictor variable, µ is constant and the stochastic com-

ponent, ut is assumed to be stationary. It is also standard to assume a linear

relationship2 between the predictor and expected returns, conditional to available

information, F at time t,

1Lettau and van Nieuwerburgh (2008) assume the steady-state log dividend-price ratio to
be (approximately) a martingale, Etdpt+j = dpt. They note that although steady-state growth,
expected return and mean dividend-price ratio must be constant in expectations, the steady-state
might shift unexpectedly.

2For a predictive framework where this assumption is relaxed see Pástor and Stambaugh
(2009). However, their predictive system also assumes stationary processes for the predictors,
making our model also relevant for their more general setting.
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E
(
rt+1|Ft

)
= r̄ + b[xt − µ]. (2.4)

The presence of structural changes in the steady-state mean of the dividend-

price ratio documented by Lettau and van Nieuwerburgh (2008) implies a non-

stationary series, which would not be a well-suited predictor variable in this set-

ting1. However, the decomposition of the dividend-price ratio into a stationary

stochastic term and a non-stationary time-varying steady state mean in (2.2), im-

plies that a stationary predictor variable could be obtained from the difference

between the current level of dpt and its non-stationary component dpt. Using this

idea, and replacing µt = dpt and xt = dpt equations (2.3) and (2.4) turn into:

xt = µt + ut (2.5)

E (rt+1|Ft) = r̄ + b[xt − µt] = a+ bx̃t. (2.6)

Hence, the adjusted series x̃t, which should be a stationary one, could be

obtained if the timing and magnitudes of shifts in the steady state mean dp can be

adequately estimated. Lettau and van Nieuwerburgh (2008) used the structural

breaks methodology developed by Bai and Perron (1998) to identify the most

probable dates when a break happened in the dividend price ratio series. Lettau

and van Nieuwerburgh (2008) then treated the blocks (i.e. regimes or sub-periods)

implied by the break dates as independent sets of information, from which they

estimate the conditional mean of the underlying process by simply calculating

the sample average for each block which is assumed to be constant within the

sub-period. This methodology to estimate dpt does not take into account the

uncertainty intrinsic to the estimation of the regime changes and the parameter

1Put here references on problems with persistent predictors
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estimation error, and is ill-adapted for out-of-sample return forecasting1.

Instead, we propose estimating the time-varying mean of the dividend-price

ratio by using an algorithm that explicitly incorporates the uncertainty about the

time when the regime changes happen. This algorithm, originally developed by

Barry and Hartigan (1993), called Bayesian Change Point analysis (BCP), allows

us to decompose the dividend price ratio into its persistent current-regime mean

and its stationary components. This decomposition, induces significant improve-

ment for return predictability evidence in both in-sample and out-of-sample tests,

as we show in the following sections.

In the rest of this section we explain in more detail how the BCP algorithm in-

corporates the uncertainty about the structural changes in the steady-state mean

level of the dividend price ratio, then we discuss how this model compares with

other models of time series structural breaks and then we introduce a comple-

mentary methodology to adjust for parameter estimation error for out-of-sample

return forecasting in this context.

2.2.1 Modeling Structural Change Uncertainty with BCP

Consider a sequence of numbersX, consisting of T observationsX1, X2, ..., XT . We

define a partition of X, denoted by ρ, as a sequence of T indices U1, U2, ..., UT = 1,

where each Ui is 1 if the ith element of X is the end of a block and is 0 otherwise.

A block, in this context, is a sub-sequence of X consisting of contiguous elements

from X. Thus a partition splits X into a series of non-overlapping contiguous

sub-sequences, or blocks. We denote a block by an index pair of the preceding

block ending and the block’s ending indices (i, j). Thus, each block (i, j) consists

1If one would use Lettau and van Nieuwerburgh (2008)’s methodology to forecast return
out-of-sample, just after a break date is declared all past observations are dropped, leaving just
one data point with which to estimate the current steady-state level of dp, which is a priori, not
a very reliable estimate.
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of observations Xi+1, Xi+2, ...Xj.

For example, consider the sequence of length 6, X = 2, 4, 3, 6, 8, 7. One possible

partition of X is ρ = 001001. This partitions X into two blocks, the first is block

(0, 3) comprising of the sub-sequence 2, 4, 3 and the second block is (3, 6) which

is the sub-sequence 6, 8, 7. Another possible partition of X is ρ = 101001 which

splits X into 3 blocks - the singleton (i.e. of length 1) block (0, 1), and the blocks

(1, 3) and (3, 6). Note that we use the index 0 to denote the first index of the first

block.

In the context where X is a time series, each block therefore corresponds to

a contiguous period in time, and represents a temporal “regime” that serves to

group all observations during that regime into a block. Any partition ρ is a T

dimensional vector, where the T th component must be 1, but each of the other

T − 1 values can either be a 0 or a 1.

The algorithm works by considering the space of all possible partitions P of the

sequence X. Since X is of length T , and each data point (except the last, which

must be an end-of-block) represents a possible end-of-block (i.e a change point),

there are 2T−1 possible partitions of X. However, it is possible to compute an

exact solution in polynomial time rather than exponential time, because many of

the blocks across the different partitions are identical. Since there are are
(
N+1

2

)
possible blocks, the exact solution is O(n3), making it computationally taxing.

Furthermore, it is possible to use Gibbs sampling methods to obtain an MCMC

approximation in linear time.

To see how sampling from P can yield the parameters of interest, recall that

any partition ρ ∈ P can be represented by ρ = U1, U2, ..., UT where Ui is zero if

i is not the end of a block, and Ui is 1 if i is the end of a block. UT is fixed at

1. If one knew the distribution of ρ, then E(Ui) (under the prior) would yield the

probability that the ith observation represented a change point.
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The key insight of the BH-BCP algorithm is that given a partition and distri-

bution parameter, we can obtain the likelihood of that combination of partition,

parameters and data.

Thus, instead of enumerating all possible partitions, the algorithm samples

from the space of all possible partitions, given the observed data. If we draw as

a sample a partition ρ = U1, U2, ..., UT = 1, each Ui has a value of 1 at a change

point and 0 otherwise. Hence, the mean of the Ui across all the samples yields

the posterior probability that i is a change point. In a similar manner, we can

estimate the means for each block in the sample partition, and combine block

mean estimates from all sampled partitions to estimate the posterior block mean

for the series as well as the posterior variance of the block means.

2.2.2 The BH-BCP Gibbs Sampling Algorithm

The algorithm starts with the following assumptions. The ith block is assumed to

have a block mean of µi and all data points in X are assumed to be drawn from

N(µi, σ
2). The probability of any point i being a change point is assumed to be p,

independently for each i. BH-BCP then imposes a prior distribution on µi to be

N(µ0, σ
2
0/l) where li is the length of block i. This has the effect of giving a “higher

probability to small departures from µ0 in large blocks than it does in small blocks;

we can expect to identify small departures if they persist for a long time” (Barry

and Hartigan (1993)). An estimate of the block mean µi is µ̄i = (1−w)B̄i +wµ0

where B̄i is the sample mean of the block Bi, µ0 is the sample mean of X and w is

the ratio σ2/(σ2
0 + σ2). Of course, w also needs to be estimated from the data as

do pi, for which BH-BCP provides a fully bayesian solution with reasonable priors

for µ0, σ
2, p, w.

In order to sample from P, the sampler exploits the fact that the conditional
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distribution pi = f(Ui|S, Uj∀i 6= j) is easily computed, allowing us to sample

a value of Ui from this conditional distribution. The sampler begins with P =

0, 0, 0, ..., 1. For each step of the markov chain, we sample from f(Ui|S, Uj∀i 6=

j). As Erdman and Emerson (2008) have pointed out, the expressions given in

Barry and Hartigan (1993) are numerically unstable, and we use their alternate

formulation provided in Erdman and Emerson (2008), given by:

pi
1− pi

=
P (Ui = 1|S, Uj∀i 6= j)

P (Ui = 0|S, Uj∀i 6= j)
=

∫ p0
0
pb(1− p)n−b−1dp∫ p0

0
pb−1(1− p)n−bdp

×

∫ w0

0
wb/2

(W1+B1w)(n−1)/2dw∫ w0

0
w(b−1)/2

(W0+B0w)(n−1)/2dw

where b is the number of blocks, W0, B0,W1, B1 are the within and between

the blocks sum of squares when Ui takes the values of 0 and 1 respectively. The

integrals are incomplete beta functions which are easily computed, using numerical

procedures dating back to Newton (e.g. DiDonato and Morris Jr (1992)). p0 and

w0 are tuning hyper-parameters that can be set to values of less than 1 in order

to impose ad-hoc heuristics to limit possible values of pi and wi. However, our

implementation makes no ad-hoc impositions, and we consider the full distribution

by keeping them both at 1. Carefully choosing ad-hoc limiting values through these

parameters marginally improve our results, but we opt to avoid these limits and

fix them at the full value of 1.

Given a value for pi, we can now sample a value for Ui from the Uniform

distribution, and then proceed to the next step of the chain. At the end of T − 1

steps, we would have a sample P from P which can be repeated for as many

MCMC iterations as needed. The jth MCMC iteration yields a sample partition

Pj from P, from which we derive an estimate for wj and therefore for µi,j for

i ∈ {1...T}. Averaging over all the MCMC iterations, we compute the posterior

mean πi for i ∈ {1...T} as the sample average of each µi,j over the j MCMC
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partitions. Similarly, we also compute the posterior variance νi ∈ {1...T} from

the sample. Although the primary object of interest at this stage is the posterior

mean, we shall show that the posterior variance plays a key role in allowing us

to estimate the precision of the posterior mean, which we exploit in obtaining an

optimal shrinkage estimator for out-of-sample forecasting.

2.2.3 Relation with alternative structural change models

The Bai-Perron method uses a dynamic programming algorithm to pick the most

likely partition P ∗ in P. The choice of P ∗ is made on the basis of user supplied

constraints on the number of blocks, and picking amongst feasible solutions using

an information criterion such as BIC, AIC or log likelihood. Specifically, the

algorithm does not provide guidance on constraints on the number of blocks, and

is unable to provide an estimate of posterior means or the variance of the posterior

means.

However, the Bai-Perron method yields results that are usually consistent with

BH-BCP in the sense that the break points identified by Bai-Perron tend to corre-

spond with points that BH-BCP ascribe high probabilities of being change points.

In that sense, the BH-BCP algorithm may be thought of as providing results that

are consistent with Bai-Perron while providing additional information on the dis-

tribution of other possible partitions, and the implications of that distribution on

the posterior means and variances of data points in X.

Another approach to identifying discontinuities in X that has been deployed

in the literature is to use a state-space approach that models each block as a state.

Similar to the BH-BCP algorithm, Markov Switching models have the appealing

ability to yield a sequence of filtered and smoothed probabilities that any point

represents a transition to a new state. However, Markov Switching models tend
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to be difficult to estimate in practice because of the relatively large number of

parameters that need to be estimated (as a function of the number of states).

Since we do not wish to impose either a fixed number of states, nor do we have any

particular motivation in estimating a state transition probability matrix, a Markov

State Switching model is not necessarily the most natural choice. However, in our

analysis of out-of-sample predictions, we include the results of using a Markov

Switching model to predict the current regime mean in Appendix B.1.

However, BH-BCP may be thought as a variation of a Markov Switching model

where the number of states is unconstrained and the likelihoods are computed

under the distribution implied by the imposed priors. Since the number of states is

unconstrained, there are no constraints on the transition probability matrix either.

The transition probability matrix reduces to a transition probability sequence

representing the probability that any particular data point in the input sequence

represents a transition to a new state.

In our approach to return predictability with dividend-price ratio, regression

coefficients are determined conditional upon structural breaks on the predictor

variable. In this sense, one could see predictive regressions with time-varying co-

efficients (see Dangl and Halling (2009) for instance) as an alternative approach to

adjust for structural changes, where the breaks are captured by allowing variations

or structural instability in the coefficients instead of in the predictor’s mean. In

the time-varying coefficient approach, the size and uncertainty of structural breaks

are captured through a presumed variation of (estimated) parameters, which are

unobservable.

On the other hand our approach admits the existence of structural breaks on

the observed dividend-price ratio’s historical data. Furthermore, it is interesting

to see that equation (2.6) can also be interpreted as a model with a time varying

intercept (given by r̄ − bExt) as opposed to a time varying slope coefficient.

59



Chapter 2

2.3 Shrinking Noisy Parameter Estimates

The R2 of the predictive regression reflects the correlation of realized returns with

the estimation of expected returns (forecasts) obtained with parameters fitted to

the same sample used to assess predictability accuracy. While expected returns

are not observable, realized returns, which are a combination of expected and

unexpected returns, are arguably the best approximation we have to assess the

forecasting performance of a model for expected returns1. On the other hand,

if there is “noise” in model parameters estimates (such as adjusted predictors or

regression coefficients) for small samples the predictive regression may over fit the

parameters to the observed “noisy” sample, producing inaccurate out-of-sample

forecasts. If this is the case, then the out-of-sample predictions would not be as

robust as implied by the regression statistics. One way to mitigate the over-fitting

problem inherent in predictive regressions is parameter shrinkage. In this sec-

tion we propose a minimum variance shrinkage for the estimated BCP-adjusted

dividend price ratio and describe the (mean-squared error) optimal shrinkage for

the estimated regression coefficients proposed by Ashley (2006), which we subse-

quently use for out-of-sample predictability tests.

2.3.1 BCP adjusted dividend price ratio and minimum

variance shrinkage

Although the BH-BCP algorithm is best suited to in-sample estimation of the

posterior mean, the fact that it also produces posterior variances can be exploited

to compute an optimal shrinkage estimator for out of sample forecasts as well.

1There might be other ways to measure expected returns, based for example in analysts
forecast, but they might be as subject as realized returns to measurement errors. Having said
this, from a practical perspective, predicting realized returns, and not expected returns is what
“matters”.
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The typical out-of-sample forecast involves estimating values for the intercept

a and slope b parameters of the linear model as well as the latest value of the

adjusted predictor, x̃i. From equation (2.6), the ith return forecast is obtained as,

r̂i+1 = â+ b̂ ˆ̃xi, (2.7)

where ˆ̃xi = xi − πi is an estimate of x̃i = xi − µi . Unfortunately, since

the regime mean, µi is not observable –but it has to be estimated– the adjusted

predictor estimated value is an imperfect predictor. Hence, the observed value

of the adjusted predictor contains an unobservable predictive component and an

unobservable noise component.

The alternative to using the observed estimated value of the predictor is to

take the extreme position that the observed predictor value has no predictive

component and any deviation from the current value of the posterior mean, πi is

comprised entirely of noise. As equation (2.6) illustrates, only deviations from the

latest value of the regime mean predicts deviations from the steady-sate return

average. Under this assumption, this model feature squares nicely with the random

walk hypothesis, making r̂i = r̄1.

On the other hand, using the observed adjusted predictor value is the alternate

extreme position that the observed value is entirely composed of the predictive

component with no noise. Thus we have two different estimates for the value of

the predictive component of the predictor variable: (i) the random walk estimate,

which would ignore the observed data entirely for forecasting purposes and assume

it has zero predictive power (null deviation from the current value of the regime

mean), and (ii) the näıve estimate, which would assume that the estimated value

of the predictor was fully informational and contained no small-sample noise.

1One can see this by replacing xi = πi in equation (2.6).
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Instead of using one or the other estimate, we combine these two approaches

using a linear shrinkage estimator to obtain an estimate that is optimal in the sense

of it being the minimum variance estimator under the modeled assumptions.

Denote prw and p̃ as the random walk and the näıve estimates of x̃. Under the

random walk hypothesis, the predictor estimate is such that the adjusted value

is 0, i.e. prw = xi − πi = 0 which implies that xi = πi, because any deviation

from the posterior mean of the predictor value is noise. Since the regime mean is

not observable, the estimation error would be proportional to the variance of its

estimator. Hence, we estimate the variance of the random walk predictor estimate

V ar(prw) as is the mean of the posterior variance ν, which we denote as ν̄.

On the other hand, an estimator for the variance of the näıve estimator p̃i =

xi−πi is simply the variance of the estimated adjusted predictor, V ar(p̃) = V ar(ˆ̃x).

The minimum variance estimator that combines these two estimates is a weighted

sum of the two estimators, weighted by the reciprocal of the variances. Since the

predictor value for the random walk is zero, we get:

p∗i =
V ar(p̃)

ν̄ + V ar(p̃)
× prwi +

ν̄

ν̄ + V ar(p̃)
× p̃i

p∗i =
V ar(p̃)

ν̄ + V ar(p̃)
× 0 +

ν̄

ν̄ + V ar(p̃)
× (xi − πi).

Under the assumptions above, the linear shrinkage estimator predictor with the

lowest variance is given by:

p∗i =
ν̄

ν̄ + V ar(p̃)
× (xi − πi),

where xi is the ith observation of the unadjusted predictor and πi is the ith es-

timated value of the regime mean. Plugging the shrunk estimator for the adjusted
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predictor back in equation (2.7), yields the BCP-adjusted out-of-sample forecast:

r̂i+1 = â+ b̂p∗i . (2.8)

2.3.2 Optimal shrinkage for Predictive Regression Coeffi-

cients

The predictive regression coefficients are also estimated values, that a priori suffer

from the same small-sample over-fitting problem previously mentioned. Ashley

(2006) shows that the unbiased forecast is no longer squared-error optimal in this

setting. Instead, the minimum mean squared error forecast represents a shrinkage

of the unbiased forecast toward zero. Similar to the minimum variance shrinkage

proposed for the adjusted predictor, the shrinkage target for the slope coefficient

also coincides with a prior of no predictability (random walk). Following Connor

(1997) we correct the estimated regression coefficients as,

b∗ =
s

s+ j
b̂

a∗ = r̄s − b∗x̄s,

where x̄s is the historical mean of the predictor up to time s. As the the slope

coefficient is shrunk toward zero, the intercept needs to be adjusted to preserve the

unconditional return mean. The shrinkage intensity j (measured in units of time

periods) is proportional to the weight given to the prior model of no predictability.

Ashley (2006) shows that the mean-squared error optimal shrinkage intensity is

given by j = 1/ρ, where ρ represents the expected explanatory power of the

predictive model, and is defined as the expectation of a function of the regression
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R-square:

ρ = E

[
R2

1−R2

]
≈ E

[
R2
]
.

Plugging the shrunk estimator for the adjusted regression coefficients back in

equation (2.7), yields an out-of-sample forecast with shrinkage:

r̂s+1 = a∗ + b∗xs. (2.9)

2.4 Empirical implementation

Using annual returns (with and without dividends) for the value-weighted broad

market index from the Center for Research in Security Prices (CRSP) data for the

1927−2010 period, we construct the corresponding time series of the dividend-price

ratio1. Table E.1 reports the first and second order autocorrelation coefficients for

the log dividend-price together with an Augmented Dickey Fuller test, testing the

null hypothesis of a unit root. The first and second order autocorrelation coeffi-

cients are 0.92 and 0.84 respectively and the null hypothesis cannot be rejected.

These are clear signs of non-stationarity of the log dividend price ratio (raw) series.

Using the BCP algorithm, we decompose the dividend-price ratio into its

steady-state (current-regime) level and its transitory (hopefully stationary) com-

ponent. Figure E.1 displays in its upper panel the time series of the dp ratio

together with the estimated posterior mean. One can see that the posterior mean

is a slow moving (persistent) time series with smooth variations, in contrast to the

somehow artificial step function implied by the estimation procedure implemented

in Lettau and van Nieuwerburgh (2008). A priori, there might be an advantage in

using the BCP algorithm since Barry and Hartigan (1993) have shown that their

1We chose the start of the sample period as in Goyal and Welch (2008).
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method is superior to a number of structural change alternatives, in detecting

sharp short-lived changes in the parameters.

If the methodology we propose is able to extract the non-stationary component

of the dividend price ratio, the adjusted series d̃p, which is equal to the raw dp

series minus its posterior mean, should be a stationary one. If this is the case,

the adjusted series would be a better suited variable to forecast returns within

the classic linear predictive regression setting. In order to verify this hypothesis,

we perform the Augmented Dickey Fuller test and estimate the autocorrelation

coefficients on the adjusted series. We also perform this analysis on the dp series

adjusted by regime means using the methodology proposed by Lettau and van

Nieuwerburgh (2008) with one (1991) and two (1954 and 1994) structural breaks.

In Table E.1 we can see that both, the first and second order autocorrelation

coefficients (AC) drops dramatically with respect to the unadjusted series’ ones,

for quarterly and annual time series. Interestingly, the coefficients also present a

significant improvement with respect to the adjusted dp series using Lettau and

van Nieuwerburgh (2008)’s method. In annual data (upper panel of Table E.1) the

AC(1) went from 0.78 and 0.66 (for one and two breaks adjustment) to 0.02 for

the BCP adjusted and the AC(2) from to 0.55 and 0.30 to −0.19 respectively. The

lower panel of Table E.1 confirms an important improvement when the same break

points and the BCP method is applied, with AC(1) falling from 0.73 and 0.63 (for

one and two breaks adjustment) to −0.14 using the BCP adjustment and AC(2)

from 0.73 and 0.62 to 0.097 respectively. The Augmented Dickey Fuller test, is

also clearer in its rejection of the unit root null hypothesis for the BCP adjusted

series than for the ones using the Lettau and van Nieuwerburgh (2008) breaks

adjustment. The last line of each panel in Table E.1, shows that the posterior

mean is a very persistent series (more than the original dp series).
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2.4.1 Evidence from Predictability Regressions

We now turn to run the predictability regression using unadjusted log dp and ad-

justed series using one or two breaks as in Lettau and van Nieuwerburgh (2008) in

addition to the adjustment we propose using the Barry-Hartigan Bayesian Change

Point methodology. The upper and lower panels of Table E.2 summarizes the re-

sults of a one year ahead and one quarter ahead predictive regressions on the log

returns of the CRSP value-weighted broad market index, testing hypothesis (2.6).

First, the results confirm Lettau and van Nieuwerburgh (2008)’s finding: “While

the statistical significance of the coefficient on the unadjusted dividend-price ratio

is marginal, coefficients on the adjusted dividend-price ratios are strongly signifi-

cant.” Second, from the table we shall notice that the the d̃p adjusted using the

BCP posterior mean presents much higher coefficient values and Newey-West ad-

justed t-stats of 1.28 (8.02) while the adjusted series with the former methodology

have lower coefficient values of 0.23 (4.48) and 0.38 (4.57) for one and two breaks

respectively in annual data. The R2 is also improved for the BCP adjusted se-

ries (about 19%) with respect to the alternative one and two breaks adjustment

(9% and 15%) and with respect to the raw dp series (4%) on annual data. A

similar improvement is observed using quarterly series (lower panel of the table).

The higher predictability power of the BCP adjusted series is consistent with the

notable relative improvement achieved regarding the non-stationarity correction

reported in Table E.1.

Similar to results reported in Lettau and van Nieuwerburgh (2008), the former

results use the full sample to estimate the current level of the regime mean of

the dp ratio. We now test whether the robust predictability evidence presented

above, is robust to the sample period chosen and if it could have been recognized

before. Using a growing window of data, we estimate the model parameters (e.g.
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posterior mean) and run the predictive regression for every subsample using in-

formation available up to time t, just as if the test would have been performed in

real time every year. Starting the first calibration period with data up to 1965

(same as in Goyal and Welch (2008)) we repeat the exercise every year until the

end of the sample. Figure E.2 displays the Newey-West corrected t-stats for the

predictor’s coefficients time-series of regression and the corresponding R2s using

the raw dp series and the BCP-adjusted series1. We find regression’s coefficients,

t-stats and R2 to be remarkably stable over time and broadly consistent with

the in-sample result of the whole sample, in every sub period we looked at. The

predictor coefficient’s Newey-West adjusted t-stat has in fact increased since the

first subsample, where it presents a value over 5. These results contrast with the

less stable and decreasingly significant regression statistics when using the pure

dp ratio as a predictor.

Consistent with identity (2.2), our results indicate that the transitory compo-

nent of the dividend-price ratio has predictability power at the annual horizon,

while its steady-state regime-mean is a very persistent series. For this reason,

when the raw series of the d-p ratio is used as the predictor variable, as in (2.4)

predictive regression, its predictability is blurred by its persistent component.

2.4.2 Out-of-Sample Predictability Evidence

Goyal and Welch (2008) provided evidence that the random walk model outper-

forms the predictive regression models using (raw) financial ratios ratios among

other common predictor variables in out-of-sample predictability tests. Interest-

ingly, Lettau and van Nieuwerburgh (2008) find that, in spite of the considerably

1Lettau and van Nieuwerburgh (2008) report a similar growing-window exercise but they
use future information in order to declare the breaks in advance for adjusting the dp series. In
unreported results we run the same regression using a rolling window of data 30 points and
found that the coefficient is of the BCP adjusted series is always higher than the one obtained
with one or two breaks adjustments.
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improved in-sample predictability evidence documented using the dividend-price

ratio series adjusted for structural breaks in mean (using the methodology they

proposed), forecasts produced using the adjusted series could not out-perform the

historical average in out-of-sample tests.

Unlike the adjustment for structural breaks proposed in Lettau and van Nieuwer-

burgh (2008), the forecasting methodology we propose captures the uncertainty

in structural breaks of the steady-state level of the dividend-price ratio (see sec-

tion 2.2) and adjusts for parameter estimation error using the optimal shrinkage

introduced in section 2.3. We now turn to assess the forecasting accuracy of this

predictive methodology. For comparison purposes we also perform out-of-sample

forecasts using the raw dividend price ratio with and without Connor (1997)’s

regression coefficients’s shrinkage.

Similar to Goyal and Welch (2008), we split the sample in two: an initial

calibration sample comprised by data from 1927 up to 1965 and an out-of-sample

testing period (comprised by the rest of the available data) used to evaluate the

forecast accuracy (and significance) of real time forecasts that could have been

produced using the model proposed in former sections.

The standard way to measure the out-of-sample predictive power is a measure

based on the mean squared predictive error (MSE) of the predictive model with

respect to the MSE of the prevailing historical average (null hypothesis of no

predictability). Predictive errors are the difference between the predicted value at

time t and the realized return on the market at time t+ 1. A broadly used out-of-

sample performance measure in the predictability literature is the R2
OS introduced

by Campbell and Thompson (2008), which is given by:

R2
OS = 1− MSEpred

MSEmean
. (2.10)
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Where, MSEpred is the mean squared error of the model predictions and

MSEmean is the mean squared error of using the return’s historical average. A

positive value for R2
OOS means that the predictive model out-performed the histor-

ical average in terms of cumulative predictive error during the OOS period (and

hence an investor could have exploited its predictive power in real time).

We assess the statistical significance of the out-of-sample forecasting gains of

using the predictive model using the MSE-F statistic proposed by McCracken

(2007), given by

MSE − F = (T − s0)
(MSEmean −MSEpred)

MSEpred

which tests for equal MSE of the unconditional (historical mean) and con-

ditional forecasts (T stands for the total size of the sample period and s0 for

the initial calibration sample). We indicate statistical significance using asterisks

according to their critical values for recursive schemes (growing window tests).

We also consider a related forecasting power analysis chart introduced by Goyal

and Welch (2003), in which one plots the cumulative difference in MSE of the

forecasting model under scrutiny with respect to the prevailing average. In periods

during which the forecasting model provides a better (worse) estimate than the

historical average, the line presents a positive (negative) slope and the sign of the

plotted value matches the one that the R2
OS would have at each point in time.

We also look at an alternative measure of forecasting accuracy introduced in

Mincer and Zarnowitz (1969). The Mincer-Zarnowitz regression is given by:

rt+1 = α + βr̂t+1 + εt (2.11)

where r̂t+1 is the return forecast done at time t. Note that the regression R2
MZ

measures prediction accuracy only if the coefficient of the forecasted returns β is
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positive (accurate forecasts should have a positive relationship with the forecasted

returns).

In order to measure economic risk-adjusted benefits of the forecasts, we cal-

culate realized utility gains for a mean-variance investor on a real-time basis.

Following Campbell and Thompson (2008), and Goyal and Welch (2008) we com-

pute the average utility for a mean-variance investor with relative risk aversion

parameter γ = 3 who allocates her portfolio every period between stocks and risk-

free bills using forecasts of the stock market return with allocation limits to the

stock index of [0%, 150%]. We perform simultaneously 4 portfolio strategies using

4 different forecasting models for stock returns based on: (i) the historical aver-

age, (ii) the raw dividend price ratio combined with OLS regression coefficients,

(iii) the raw dividend price ratio combined with shrunk regression coefficients and,

(iv) BCP-adjusted dividend price ratio and shrunk parameter values. This exer-

cise also requires the investor to forecast the variance of stock returns which we

approximate simply with the sample estimate (for all of them). A mean-variance

investor who forecasts the equity premium will decide at the end of period t to

allocate the following share of her portfolio to equities in period t+ 1,

wk,t =

(
1

γ

)
r̂kt+1

σ̂2
t+1

,

where r̂kt+1 corresponds to the kth model excess return forecast1, where k =

{1, 2, 3, 4} corresponding to each of the above mentioned models. Over the out-

of-sample period, the investor perceives an average utility level of

Uk = θ̄k −
(

1

2

)
γσ̄2

k,

1We use the latest observed value of the risk free rate as the next period forecast and substract
it from the market return forecast of each model to obtain excess return forecasts.
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for which, θ̂k and σ̂2
k denotes the sample return mean and variance of the

portfolio strategy using the kth predictive model.

We report utility gains in excess of the non-predictability random walk model

which is the difference between utility gains using the kth predictability model

(k = {2, 3, 4}) minus the utility gains of using historical average to forecast returns

(k = 1), and multiply this difference by 100 to express it in average annualized

percentage return. The utility gain corresponds to the certainty equivalent return,

which can be interpreted as the portfolio management fee that an investor would be

willing to pay to have access to the additional information available in a predictive

model relative to the information in the historical return average (i.e. assuming

no predictability).

The upper panel of Table E.3 reports the R2
MZ and R2

OS (in percentage terms)

together with excess utility gains (denoted as ∆) obtained using the same calibra-

tion sample used in Goyal and Welch (2008) - using data up to 1965 - and perform

the test over the rest of the period to determine the out-of-sample performance

measures for each of the forecasting models. We obtain an R2
OS over 8% which

is significant at the 99% confidence level and positive utility gains, compared to

the negative R2
OS and utility losses obtained using the raw dividend-price ratio

as a predictor with both simple OLS and shrunk regression coefficients. These

results confirm that the predictive power of the (adjusted) dividend price ratio,

documented in Section 2.4.1, is not spurious. Additionally, they imply that the

forecasting methodology proposed in this paper could have been exploited in real

time by investors to obtain consistent benefits with respect to the no-predictability

assumption of stock market returns. Although we do not take into account trans-

action costs to assess the benefits of the strategy, they should not outweigh the

benefits in this case, given that portfolio rebalancing transactions occur only once

a year.
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Goyal and Welch (2008) argues that former predictability evidence was mainly

driven by data immediately after the oil price shock of 1975. To assess this concern,

we repeat the OOS predictability exercise starting to forecast in 1976. Finally we

perform the exercise starting to forecast in 1947, for which we have a calibration

sample with a reasonable minimum number of data points to estimate the model

parameters. The OOS performance measures, R2
OS, R2

MZ and excess utility gains,

for these additional out-of-sample periods are reported in the middle and lower

panels of Table E.3. We find again that the methodology proposed provides sig-

nificant forecasting improvement with respect to the no predictability benchmark

model and the other two forecasting alternatives considered.

We also report in Appendix B.1 the results of applying a regime-mean adjust-

ment computed by using Markov Switching models. We find that those models

are unable to consistently beat the random walk out of sample.

However, in unreported results1 we find that the forecasting accuracy of the

methodology at quarterly horizon with or without the error shrinkage methodol-

ogy, is not superior to the prevailing historical average over the sample periods

analyzed (i.e. we found negative R2
OS). Furthermore, Figure E.4 shows that the

predictive model is not always a better estimate than the prevailing historical av-

erage. In particular, during periods in which sharp structural changes took place

(such as the internet and the credit bubbles crashes) the forecasting accuracy of

the model diminished with respect to the non-predictability hypothesis estimate.

On the other hand, this is not entirely surprising because the BCP method is

designed to detect structural changes that took place in a time series and not to

detect when the next break will happen. In other words, the BCP algorithm can

tell us when structural changes did take place and is not intended to do any more.

In order to test this statement, we perform a pseudo out-of-sample test, in which

1Available upon request from the authors.
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we use the full sample to estimate the dividend-price ratio varying mean. In this

test, using past adjusted dp series and past returns, we estimate at every point in

time the regression parameters to forecast next period’s return, record the fore-

casting error and repeat the exercise during the OOS period 1965 to 2010. For

comparison purposes, we use the adjusted dp series adjusted by one and two breaks

as estimated by Lettau and van Nieuwerburgh (2008). In Table E.4 we present the

same OOS performance measures used for the OOS exercise for annual data and

the equivalent result in Table E.5 for quarterly data. In this Pseudo-OOS exer-

cises, we find a remarkable improvement in all three forecasting accuracy measures

with respect to the non-predictability benchmark. We also find again a significant

improvement with respect to the structural breaks adjustment proposed in Lettau

and van Nieuwerburgh (2008). Furthermore, the pseudo out-of-sample predictions

consistently outperformed historical average all along the OOS period as we can

see from Figure E.5, i.e. the forecasting power analysis chart displayed a (steep)

positive slope in almost every sub-period in the sample.

2.5 Robustness

In order to further test the robustness of the predictability evidence using the

forecasting methodology outlined in this paper, we repeat the out-of-sample fore-

casting exercise using different portfolios of assets, namely: the S&P 500 index,

the equal-weighted CRSP broad market index (Table E.6), the Fama-French Size

portfolios (Table E.7) and Book-to-Market portfolios (Table E.8).

For the other market indices (S&P 500 and EW CRSP broad market index)

we find qualitatively similar returns to the ones presented for the CRSP value-

weighted broad market index. For the size and book-to-market components, the

gains are less clear-cut, yet interesting. We find significant forecasting gains
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with respect to historical average only for the “big” stocks’ portfolio and for low

(growth) and high (value) - but not for medium- book-to-market stock portfolios.

2.6 Conclusion

The predictive power of dividend price ratio has been questioned by former empir-

ical studies (e.g. Goyal and Welch (2003) and Goyal and Welch (2008)) that find

that its return forecasting ability was temporary – a rather episodic phenomenon–

and its relation with future returns, spurious or unstable over time, due to the

persistent behavior that the ratio presented over the last few decades.

However, interpreting the observed level of the dividend price ratio as a devi-

ation from a current-regime changing mean level, restores a stationary predictor,

with renewed implications for return predictability. Considering that there is now

overwhelming evidence that there are structural breaks in the dividend-price ra-

tio mean, estimation of the break points is a crucial step towards extracting the

predictive component of the ratio.

Our methodology incorporates uncertainty related to the structural change in

prediction parameters. We show, using a Bayesian Change Point algorithm, that

incorporating this uncertainty significantly improves virtually every measure of

predictability evidence in regression coefficients, as well as providing robust ev-

idence across different sample periods and data sets that were not evident with

prior techniques. Taking advantage of one by-product measure of the bayesian

algorithm (i.e. posterior variance of the predictor variable), we introduce an es-

timation error shrinking methodology that, in combination with the structural

changes adjustment, provides evidence of out-of-sample return predictability that

could have been exploited in real time.
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Growth Optimal Portfolio

Insurance and Portfolio

Insurance’s Growth Rate

Characterization
Daniel Mantilla-Garćıa*

Through a decomposition of the growth rate of the standard portfolio in-

surance strategy (CPPI) we unveil the (perhaps) surprising role that the

correlation between the underlying assets plays on the performance of this

type of investment strategy. We also find a close relationship between the

growth rate and the long term value of the strategy even under common

leverage and short-selling constraints. Then we introduce the growth op-

timal portfolio insurance strategy (GOPI), which combines the intuitively

appealing objective of maximizing the value of the portfolio in the long run

and the common constraint of insuring a fixed proportion of the portfolio

expressed in terms of the value of a given benchmark. We find that this

strategy tends to outperform the equivalent CPPI with the standard mul-

tiplier over long horizons. Interestingly, the level of the optimal multiplier

turns out to be lower than the one implied by the standard methodology in

most scenarios. Hence the outperformance achieved by the GOPI does not

come at the cost of a higher risk exposure.

Keywords: Portfolio Insurance, Growth Rate, Growth Optimal Portfolio, Correlation.
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3.1 Introduction

The growth optimal portfolio (GOP) has been the subject of a long debate in

the literature of portfolio selection since its discovery by Kelly (1956) and Latane

(1959). It stands as an alternative to the utility maximization paradigm of portfo-

lio selection and recently a whole theory of asset pricing based on this portfolio has

been developed as an alternative to risk-neutral pricing (see for instance Platen

(2005) and Christensen et al. (2005) for a complete review of the role of the GOP

in finance today).

The GOP has interesting theoretical properties such as outperforming any

other portfolio in the long run in terms of wealth (see for instance Thorp (1971))

and to minimize the time to reach a given level of wealth (see Pestien and Sudderth

(1985)). It also has the intuitive appealing of maximizing the expected geometric

return mean and the median of wealth1 in the long run (see Ethier (2004)). These

properties gained it the support from several authors, in articles such as Markowitz

(1976), Breiman (1961), Luenberger (1998), Long et al. (1990). Authors arguing

in favor of the GOP believe that growth optimality is a reasonable investment

objective in itself for long horizon investors.

On the other hand criticisms of the GOP, such as Samuelson (1963) and Ophir

(1978), steam from the view that the only rational approach to portfolio selection

is to maximize expected utility. Although the GOP happens to be as well the

result of maximizing the expected utility of terminal wealth for the logarithmic

utility function (which is also a special case of the power utility), they argue that it

is too much of a stretch to treat every investor as a log-utility maximizing investor

(see Christensen (2005) and Hakansson and Ziemba (1995) for a review of the

1Maximizes the median of wealth in the long run for a portfolio has no relevance from an
utility maximization standpoint. However, for skewed distributions the median is a measure of
the most likely outcome, thus it might be an interesting property from a practical perspective.

76



Chapter 3

origin and debate about GOP portfolios).

The concept of utility based portfolio selection, although widely used, has

been criticized by the observation that investors may be unaware of their own

utility functions or behave in manners that would be in strong contrast with its

predictions (see for instance Bossaerts (2002)). Wether or not one has a strong

believe on which is the right way to represents investors preferences, there seems

to be complete agreement that, no matter how long (finite) horizon the investor

has, the GOP can neither proxy nor dominate every other strategy in terms of

expected utility, different from the log, because utility based portfolios would be

more attractive in terms of their risk profile (see Merton and Samuelson (1974)).

On the other hand, the growth optimization approach has a practical advantage

over the expected utility maximization one, namely its ability to empirically verify

ex-post its performance relative to other investment strategies. The growth rate

maximization approach and the long-run growth property are formulated in dollars

instead of utility units, thus “it seems plausible that individuals, who observe their

final wealth will not care that their wealth process is the result of an ex-ante correct

portfolio choice, when it turns out that the performance is only mediocre compared

to other portfolios” (Christensen et al. (2005)).

Christensen et al. (2005) also notes that, even if the GOP dominates another

portfolio with a very high probability, the probability of the outcomes where the

GOP performs poorly may still be unacceptable to an investor who is more risk

averse than a log-utility investor. In other words, the left tail distribution of the

GOP may be too “thick” for an investor who is more risk averse than the log-

utility investor. An alternative to introduce an investors’ risk aversion within the

growth maximization approach are the so-called fractional Kelly strategies. These

strategies use a fixed allocation between the risk free asset and the GOP that

depends on a risk aversion coefficient, similar to the classic approach of Sharpe’s
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ratio maximization and the fund separation theorem (see Grauer (1981) and Platen

(2005) for an alternative derivation of the CAPM and the introduction of the risk-

aversion parameter).

However, individual investors might have behavioral attitudes toward risk in-

compatible with the solely objective of maximizing the probability of attaining

the highest possible level of wealth in the long run at all costs (the latter objective

being represented in the GOP) and for which a fixed allocation to the riskless asset

might not be flexible enough to match these preferences. Furthermore, in spite of

their typically long horizons, institutional investors are often subject to short-term

regulatory constraints such as limits to their underperformance of a given bench-

mark or on the portfolio’s value relative to the price of their liabilities (funding

ratio constraints). In this paper, we introduce a portfolio strategy that addresses

this particular need for a well defined risk control relative to a benchmark com-

bined with the intuitively appealing objective of maximizing the growth rate of

the portfolio. In order to do so, we set the investment objective as maximizing the

growth rate of the portfolio subject to the constraint of insuring a minimum floor

value for the portfolio, the former being expressed in terms of the value of a given

stochastic benchmark. The result of combining this two objectives is equivalent

to maximize the growth rate of the classic portfolio insurance strategy, known as

Constant Proportion Portfolio Insurance (CPPI) (see Perold (1986), Black and

Jones (1987), Perold and Sharpe (1988) and Black and Perold (1989)).

Although most former research on the properties of the CPPI has focused on

the standard case with a riskless constant interest rate, we focus on the more

general case with a stochastic Reserve or “Core” asset, because of its particular

interest for pension funds, individual investors and portfolio managers1.

1There are at least three practical applications for which portfolio insurance strategies with a
reserve asset different from cash are crucial. First, from a pension fund perspective, holding too
much cash can be quite risky because its liabilities have typically long terms (duration). In this
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Through the decomposition and analysis of the CPPI’s growth rate we revisit

the properties of the portfolio insurance strategy. The characterization of the

portfolio insurance’s growth rate has conceptual and practical bi-products that

were obscure and/or unavailable with former analytical characterizations of the

strategy. In particular, we characterize and isolate the role that the correlation

between the reserve and the active (or risky) asset plays in determining the value

of the strategy and provide closed-form formulas for the value of the strategy in

dollar terms for the general case with a stochastically moving reserve asset. More

importantly, by maximizing the growth rate of the strategy we derive a growth-

optimal multiplier which defines the growth optimal portfolio insurance strategy

(GOPI). Our results suggest that the growth optimal strategy outperforms the

equivalent standard parametrization of the CPPI over long horizons. Interest-

ingly, the growth-optimal strategy presents a more conservative risk profile since

its multiplier is most of the times lower than the one implied by the standard

methodology.

Our analysis of the growth rate of the portfolio insurance strategy reveals that

the “diversification benefits” of low correlations among the underlying assets of

unleveraged fixed-mix portfolios is reversed for this type of strategy: the higher

the instantaneous correlation between the reserve and the risky assets, the higher

the value of the portfolio insurance strategy, everything else being equal. The

case the reserve asset is usually defined as a portfolio composed of fixed-income securities trying
to match the obligations of the fund. Second, individual investors might want to insure defined
long term benefits or bequest objectives and/or a stream of future consumption needs (Amenc
et al. (2009)). This objective can be addressed in the construction of the reserve asset in a similar
way as for the pension fund case by treating the future cash-flow needs as liabilities. Third, asset
managers might be given the objective of outperforming a particular Benchmark. One way to
comply with this relative performance objective is to define as the Core asset the (presumably)
stochastic Benchmark so that the possible underperformance of the portfolio with respect to the
Benchmark is limited to a well defined level, while still allowing for increasing upside potential
coming from available risk premia and active manager views (for a detailed explanation of the
practical advantages of this approach called Dynamic Core-Satellite allocation, see Amenc et al.
(2004)).
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intuition for this effect is that a higher level of correlation induces less relative

return reversals” between the two assets, and hence it diminishes what we call

the “rebalancing drag”1. The importance and the role of correlation, which grows

exponentially with the level of the multiplier, is thoroughly illustrated with a

graphical analysis. The positive effect of the correlation in this strategy might be

counter intuitive for some readers due to a very common confusion of this measure

with the relative trend of assets (see Lhabitant (2011) for a very clear illustration

of this misinterpretation).

The very definition of the growth rate of the portfolio is based on specific

model assumptions for the dynamics of the assets, continuous rebalancing and

unlimited leverage and short-selling. For this reason, we also provide an empirical

verification with real data of the close relationship between the growth rate and

the portfolio insurance’s value with discrete rebalancing and leverage/short-selling

constraints.

3.2 Assets’ Properties and Portfolio’s Growth

Rate

Former studies on the growth rate of rebalanced portfolios such as Fernholz (2002)

focus on the impact that rebalancing has on the compounded return of unleveraged

fixed-mix portfolios with assets that present similar long term returns and volatili-

ties. This approach addresses the particular objective of building equity portfolios

usually compared to buy-and-hold or market-cap-weighted benchmarks, such as

the S&P 500. In what follows we illustrate that the impact that assets’ properties

such as volatility, correlations and differences in expected return among assets,

1In that special case of the CPPI with a riskless asset in the Core, there is an equivalent
effect called “volatility cost” (Black and Perold (1992)) also known as “volatility drag”.
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have on the performance of portfolio insurance strategies is reversed with respect

to their effect on fixed-mix portfolios.

3.2.1 A first Intuition on the impact of Trends and Rever-

sals on (Leveraged) Return Compounding

One way to analyze the properties of the Dynamic Core-Satellite or Portfolio in-

surance strategy1 is to consider the return of the “index ratio”, i.e. the quotient of

the values of the performance-seeking asset (also called Satellite), denoted S and

the reserve asset (or Core), denoted R, i.e. I(t) = S(t)/R(t). Changes in the index

ratio are driven by the relative performance of the DCS’s components. Black and

Perold (1992) show that for a return δ in the index ratio, the fractional change

in the Cushion is proportionally magnified by m (the multiplier), ∆C/C = mδ.

Hence, the dynamics of the Cushion are equivalent to a leveraged buy-and-hold

investment in the index ratio, with a leverage factor equal to m.

1We refer as the “standard CPPI” to the particular case of the portfolio insurance strategy
allocating wealth between the riskless asset and a risky asset and we use the term “Dynamic Core-
Satellite portfolio” (DCS) to refer to the general case of Portfolio Insurance with a stochastic
reserve or “Core” asset and a performance-seeking or “Satellite” asset.
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Example:

In order to develop some intuition about the impact of trends and volatility in (leveraged) buy-

and-hold investments, consider the simplest case of a return series composed of two observations:

r = {r1, r2}. Let, ri take one of two values: u (up), for a positive return and −d (down) for

a negative one. An upward (downward) trend exists when r1 = r2 = u (r1 = r2 = −d) and

a “volatile” return reversal when r1 6= r2. The compounded return of a buy-and-hold (BH)

investment with leverage factor m presents the following properties (the same properties hold for

a BH investment with no leverage, i.e. m = 1):

• Upward trend: The total return is greater than the sum

r1:2 = (1 +mu)2 − 1 = 2um+ (mu)2

• Downward trend: The total return is less negative than the sum

r1:2 = (1−md)2 − 1 = −2dm+ (md)2

• “Volatile” returns: The total return is lower (or more negative) than the sum

r1:2 = (1 +mu)(1−md)− 1 = mu−md− udm2

Hence, due to the compounding effect of returns, assets with stronger trends and/or lower

“volatility”, are better buy-and-hold investments, everything else equal. This effects are mag-

nified with leveraged.

In general, for a return series of N observations the compounded return of

a buy-and-hold (BH) investment is equal to r1:N =
∏N

i=1(1 + ri) − 1, which is

commonly expressed in terms of the geometric average,

G =

(
N∏
i=1

(1 + ri)

) 1
N

− 1.

The following is a well known approximation1 for the geometric average that

1Markowitz (1959) proposes a similar approximation that has very close accuracy according
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relates it to the arithmetic average and the variance of returns (see Bernstein and

Wilkinson (1997)):

G ≈ A− 1

2

σ2

(1 + A)
,

where A and σ2 denote arithmetic average and variance of returns. Since A

is small compared to 1, the approximation is sometimes done as (see Booth and

Fama (1992))

G ≈ A− 1

2
σ2. (3.1)

Using the properties of the variance and the arithmetic average, it is straight-

forward to show that for leveraged investments the following similar relationship

holds,

Gm ≈ mA− 1

2

m2σ2

(1 +mA)
. (3.2)

Since the arithmetic average is a measure of “trend”, this formula confirms the

intuition shown in the two-observations example above, for the general case with

multiple observations: there is a volatility cost for holding an asset that is magni-

fied by any present leverage. Conversely, positive “trends” have a positive impact

on compounded returns but in a more than proportional amount (see second term

in the right hand side of Equation (3.2) for which the trend also diminishes the

volatility costs) and its effect is also magnified by leverage. Similarly, negative

trends have less impact on the total return for a lower level of volatility, every-

to unreported Monte-Carlo simulations of normally distributed random variables. The approxi-
mation in Markowitz is

G ≈ (1 +A) exp

(
−1

2

σ2

(1 +A)2

)
− 1.
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thing else equal. In other words, there is a tension between the “trend” and the

“volatility” in the compounded return of an investment. This tension is affected

by leverage, which gives proportionally more weight to the volatility cost than to

trend gains.

For a buy and hold strategy in a portfolio with two assets, the intuition follows

through. A buy and hold strategy allocates proportionally more wealth, with

respect to the previous period, to the asset presenting the highest return over

the latest period. If in the next period it occurs a (relative) return reversal, the

strategy would have allocated more wealth to the (relative) loser asset. Conversely,

if no reversal occurs but returns stay on the current trend (the latest winner asset

continues to be the winner asset), the BH portfolio allocation to the winner asset

would have been relatively higher, thus being a “winner strategy” in this market

configuration.

Another strategy of interest are the kind that rebalances (back) to a fixed set

of weights. A strategy aiming to keep a fixed proportion of the two assets, needs

to rebalance frequently as prices move. In order to keep a fixed-mix of weights, the

strategy needs to sell the latest relative winner asset and buy the relative loser.

For this reason, this type of strategies, namely unleveraged fixed-mix portfolios

present a “buy-low and sell-high” behavior when return reversals occur (winner

strategy) and a “buy-high and sell-low” one (loser strategy) in return trends, which

are the opposite effects of trends and reversals observed in simple and leveraged

buy-and-hold strategies.

3.2.2 On Portfolio Rebalancing and the Growth Rate

This section introduces the concept of the growth rate through the analysis of two

types of portfolio defined according to their rebalancing policy: buy-and-hold and
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fixed-mix portfolios. We look at buy-and-hold portfolios because their behavior

resembles to that of portfolio insurance strategies. We are also concerned with

the growth rate of fixed-mix strategies because we use it later on for deriving the

growth rate of portfolio insurance.

In what follows, we summarize some previous results about the growth rate of

portfolios defined by a vector of weights π, assigned to a constant set of multiple

assets. Throughout this analysis we assume continuous rebalancing and abstract

from transaction costs.

Consider the simple Black-Scholes model for the return of any risky asset A

driven by a brownian motion W as follows

dA(t)/A(t) = µdt+ σdW (t)

which has an explicit solution for the asset price given by

A(t) = A(0)eγt+σW (t) (3.3)

where W (t) =
√
tz(t) for z ∼ N(0, 1). The term γ is called the “growth rate” of

A because, for a long horizon, it is equal to the continuously compounded rate of

return of the asset:

γ =
1

t
ln

(
A(t)

A0

)
as t→∞. (3.4)

When t→∞, the brownian motion term disappears because σW (t)
t

=
√
tσz(t)
t
→

0. Hence, the growth rate is the continuously compounded rate of return but also

the continuous time version of the geometric return average, because

γ =
1

t
E

[
ln

(
A(t)

A0

)]
. (3.5)
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In fact, for assets following a geometric brownian motion, the growth rate, γ

and the asset’s drift µ (also called trend or mean return) are related as follows:

γ = µ− 1

2
σ2. (3.6)

Interestingly, Equation (3.6) is equivalent to the relationship between the geo-

metric and arithmetic return averages of Equation (3.1), derived in discrete time.

Fernholz and Shay (1982) show that the growth rate of a fixed-mix portfolio

composed by n securities is given by

γFMπ =
n∑
i

πiγi + γ∗π (3.7)

where,

γ∗π =
1

2

(
n∑
i

πiσ
2
i −

n∑
i

n∑
j

πiπjρijσiσj

)
.

The first term in Equation (3.7) is the weighted average of the growth rates

of the component assets, and the second term, γ∗π is called the excess growth

rate. Fernholz and Shay (1982) find that for unleveraged fixed-mix portfolios

(i.e. 0 ≤ π ≤ 1), the excess growth rate is always positive. This quantity is

higher for higher standard deviations of the individual assets and for relatively

lower or negative correlations. The intuition for the sign of the excess growth rate

of unleveraged fixed-mix portfolios comes precisely from their “buy-low sell-high”

behavior in the presence of return reversals1.

On the other hand, the value process of a Buy and Hold portfolio is given by

V BH
π (t) =

n∑
i

πi(0)Ai(t)

1This effect is sometimes called “volatility pumping”.
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where πi(0) is the proportion1 invested in asset i a time t = 0 and the growth

rate of the BH portfolio is:

γBHπ =
1

t
ln

(
n∑
i

πi(0)

(
Ai(t)

Ai(0)

))
as t→∞. (3.8)

From Jensen’s inequality and the concavity of the log the following inequality

holds,

n∑
i

πiγi =
1

t

n∑
i

πi ln

(
Ai(t)

Ai(0)

)
≤ 1

t
ln

n∑
i

πi

(
Ai(t)

Ai(0)

)
∀ 0 ≤ π ≤ 1. (3.9)

If the growth rates of the assets in the portfolio are equal then the inequality

becomes an equality, making the (unleveraged) FM portfolio superior to the BH

one (this is because there is no excess growth rate term on the BH’s growth

rate). Conversely, this implies that the BH portfolio presents an increase in return

relative to the FM one for higher differences in the growth rates of the component

assets (hence in trends of the relative performance of the assets).

In discrete time, using the approximation in Equation (3.1), Bernstein and

Wilkinson (1997) decompose the geometric average of a fixed-mix portfolio and

find the same expression of Fernholz’s excess growth rate and call it instead the

“diversification bonus”. Noting that the weighted average of the geometric mean

of the components is not exactly equal to the geometric average return of the buy-

and-hold portfolio, Bernstein and Wilkinson (1997) define a related quantity called

the “rebalancing bonus”, which is the difference between the geometric return of

a fixed-mix portfolio, GFM
π and the one of the buy and hold portfolio, GBH

π . The

1The weights of the BH portfolio vary with time as follows:

πBHi (t) =
πi(0)Ai(t)∑n
i πi(0)Ai(t)

.
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latter difference can be approximated as

GFM
π (t)−GBH

π (t) ≈
n∑
i

πi(1 +Gi)−

(
n∑
i

πi(1 +Gi)
t

)1/t

+ γ∗π. (3.10)

For unleveraged fixed-mix portfolios Bernstein and Wilkinson (1997) find that

the first two terms of the right hand side of (3.10) always give a negative contri-

bution, hence favoring the buy and hold portfolio. This term is large when the

differences between the geometric returns Gi across assets are large, and vanishes

when they are the same. This confirms the intuition that trends in (relative) re-

turns have a positive impact of BH investments and a negative one on unleveraged

FM strategies for the general case with multiple assets.

The geometric average and the value process are intrinsically related, since the

former is a trivial transformation of the latter1. Assuming a geometric brownian

motion for each of the n risky assets, Ai for 1 ≤ i ≤ n, the value process of a fixed-

mix portfolio can be expressed in terms of their model parameters, i.e. expected

returns, volatilities and correlations and the portfolio weights as follows (see for

instance Wise (1996), A.3 for the following formula):

V FM
π (t) = V0e

γ∗πt
n∏
i=1

(
Ai(t)

Ai(0)

)πi
. (3.11)

1The relationship between the value and the geometric average is given by

V (t) = V0(G+ 1)t.

In continuous time we have with continuous compounding growth rate, γ the relationship is

V (t) = V0e
γt.
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Replacing (3.3) in (3.11) we get,

V FM
π (t) = V0 exp

(
γ∗πt+

n∑
i=1

πiγit+ πiσiWi(t)

)
(3.12)

= V0 exp

(
γFMπ t+

n∑
i=1

πiσiWi(t)

)
. (3.13)

Since the weighted average of brownian motions is a brownian motion, Equa-

tion (3.13) matches the definition of the growth rate of Equation (3.3) for the

portfolio value process. In Equation (3.12) the portfolio’s value is written instead

as a function of the weighted average of the growth rates of the component assets

and its excess growth rate.

3.2.3 Portfolio Insurance’s Growth Rate and its Compo-

nents

Constant Proportion Portfolio Insurance (CPPI) asset allocation strategies split

the portfolio between a reserve asset (R) and a performance seeking asset (S), with

a dynamic allocation to the risky asset defined by the product of the available risk

budget or Cushion (C) at time t and a constant multiplier, m. The Cushion is

the difference between the current value of the portfolio and the level of the Floor

value to be guaranteed, so the value of the portfolio is

V PI
m (t) = Ft + Ct. (3.14)

Assuming perfect correlation between the floor and the reserve asset, we show

below that the Cushion can be interpreted as a leveraged fixed-mix portfolio that

allocates m% to the Satellite and (1 − m)% to the reserve asset. Consider the

dynamics of the Cushion:
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dCt = d(Vt − Ft)

= dVt − dFt

= Vt

(
mCt
Vt

dSt
St

+

(
1− mCt

Vt

)
dRt

Rt

)
− Ft

dRt

Rt

= mCt
dSt
St

+ (1−m)Ct
dRt

Rt

= Ct

(
m
dSt
St

+ (1−m)
dRt

Rt

)
.

Perold and Sharpe (1995) performed a graphical analysis of the payoff of stan-

dard CPPI portfolios allocating wealth between the riskless asset and a risky asset,

as a function of the value of the risky asset. Using the fact that the Cushion pro-

cess can be interpreted as a leveraged fixed-mix portfolio and Equation (3.11),

we can generalize their analysis for the case with a stochastically varying reserve

asset. This introduces a new feature to the analysis: the role of the assets’ cor-

relation1. For the two asset case the expression for the fixed mix portfolio value

(3.11) simplifies to

V FM
π (t) = V0

(
S(t)

S(0)

)π (
R(t)

R(0)

)1−π

e
1
2
π(1−π)(σ2

S+σ2
R−2ρσSσR)t. (3.15)

Using the fact that the Cushion dynamics are equivalent to a leveraged fixed

mix portfolio, we write the value of the portfolio insurance strategy, (3.14) as,

V PI
m (t) = kV0

(
Rt

R0

)
+ (1− k)V0

(
St
S0

)m(
Rt

R0

)1−m

eγ
∗
mt, (3.16)

1Another way to perform Perold and Sharpe (1995) graphical analysis’ generalization with
a stochastic reserve asset, is to do it in two dimensions using the change of numeraire proposed
in Black and Perold (1992). However, this approach would not shed light on the role that
correlation plays in the strategy, since the value of the portfolio would be expressed in terms of
the index ratio instead of the component assets’ value.
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where the Cushion’s excess growth rate γ∗m = 1
2
m(1 −m)(σ2

S + σ2
R − 2ρσSσR)

is in fact negative for m > 1, thus we call it a “rebalancing drag”1. Hence, con-

trary to the case of unleveraged fixed-mix strategies, volatility of component assets

has a perversive effect on leveraged fixed-mix and portfolio insurance strategies,

which confirms the intuition of Section 3.2.1. More interestingly, the diversifica-

tion benefits that unleveraged fixed-mix portfolios experience in the presence of

low or negative correlation between assets is also reversed for portfolio insurance

strategies (and for leveraged fixed-mix ones). A positive correlation decreases the

rebalancing drag, having a positive effect on compounded returns. The intuition

for this is that, a higher correlation induces fewer relative return reversals.

Former studies on the properties of portfolio insurance strategies largely disre-

gard the role that the correlation between the reserve asset and the performance

seeking asset can have in the performance of the strategy, because they tend to fo-

cus on the particular case with Cash as the reserve asset. When the reserve asset is

not equal to the riskless one, there is a correlation between the two components of

the portfolio insurance strategy. Although Black and Perold (1992) also study on

the properties of portfolio insurance in the case with a reserve asset different from

the theoretical riskless asset with constant risk-free rate ,they write the portfolio’s

value in terms of the reserve asset value, instead of dollar terms. This change of

numeraire yields a strategy in which the reserve asset is again the riskless asset

and the Satellite is an an artificial value process called the index ratio, which is

the value of the risky asset divided by the reserve asset’s value. Our approach

instead expresses the value of the portfolio in dollar terms, which illustrates the

impact of correlation in the portfolio’s value much clearly.

Using Equations (3.15) and (3.16), we illustrate the important impact that

1In the particular case with the riskless asset in the Core, this expression simplifies and
depends only on the volatility of the Satellite. Hence Black and Perold (1992) calls a discrete-
time equivalent of this term the “volatility cost”.
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correlation may have in a portfolio insurance strategy value. Figure F.1 draws the

portfolio’s value corresponding to four correlation levels, i.e. ρ = {−0.5, 0, 0.5, 0.75}

and different combinations of values for S = [50, 200] and R = [80, 120] af-

ter 5 years (i.e. for a starting value of 100 dollars these values are equivalent

to [−13%, 15%] and [−4%, 4%] return per annum respectively) with volatilities,

σS = 0.15 and σR = 0.05. The black surface draws the end of period value of a

CPPI strategy with m = 4 and k = 0.9 as given by Equation (3.16). The red sur-

face draws the end of period value of a Fixed-Mix Strategy as given by Equation

(3.15) with the same initial allocation: m(1− k) = π = 0.4.

As observed in Figure F.1, for a starting value of 100 dollars, the maximum

possible value attained by the CPPI for ρ = −0.5 is of 189.9 dollars which is

equivalent to 13.7% return per annum, while for ρ = 0.75, the CPPI reaches a

value of 278.9, or 22.8% return per annum, everything else equal.

On the other hand, this particular FM strategy presents a much more moderate

change with correlation: For a starting value of 100 dollars, the maximum possible

value attained by the FM strategy for ρ = 0.75 is 148.4 or 8.2% per annum, while

for ρ = −0.5, the FM reaches a value of 150.1, or 8.5% per annum, everything else

equal. Thus, the important gain obtained by the CPPI strategy with respect to

the FM strategy, observed in Figure F.1 (area of black surface over red surface),

as correlation increases comes mostly from the the increase in value of the CPPI

strategy and not from the FM’s value decrease.

Using expression (3.12), the portfolio insurance value (3.16) can be written in

terms of the assets’ growth rates and covariances as follows (see appendix C.1),

V PI
m (t) = F0e

γRt+σRWR(t) + C0e
(γ∗m+mγS+(1−m)γR)t+mσSWS(t)+(1−m)σRWR(t). (3.17)
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In Appendix C.1 we show that the growth rate of the PI strategy can be

approximated by the weighted average of the Floor and Cushion’s growth rates

with weights k and 1 − k respectively and that the growth rate of the Cushion,

γcushionm can also be written in terms of the assets’ drifts and covariances:

γcushionm = γ∗m +m(γS − γR) + γR (3.18)

γcushionm = γ∗m +m(µS − µR)− 1

2
m(σ2

S − σ2
R) + γR (3.19)

γcushionm = m(µS − µR) + µR −
1

2
(m− 1)2σ2

R −
1

2
m2σ2

S +m(m− 1)ρσSσR.

(3.20)

The term m(µS − µR) in Equation (3.19) illustrates the impact that the dif-

ferences in assets’ drifts (trends) have on the value of leveraged FM and portfolio

insurance strategies: the higher the expected outperformance of the Satellite with

respect to the Core asset, the higher the expected return of the portfolio (this effect

is also reversed with respect to the case of unleveraged FM strategies). Conversely,

the term −1
2
m(σ2

S−σ2
R) indicates that having a Satellite asset with a much higher

volatility than the Core asset is not desirable, everything else equal1.

From Equation (3.20) it is possible to infer the relative importance of the

different assets characteristics on the Cushion’s growth rate. In order of relative

importance per unit of each term, for m > 1 we have:

• Core and Satellite covariance: ρσSσR (coefficient: +m(m− 1))

1In fact, for a Core and a Satellite with the same volatility (i.e. σS = σR = σ), the growth
rate simplifies to:

γcushionm = m(µS − µR) + µR −
(
m(m− 1)(1− ρ) +

1

2

)
σ2.

The coefficient of σ2 is always negative for m > 1 and hence is a rebalancing drag of volatility
which is likely to be important unless there is a high correlation between the two assets.
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• Satellite’s variance: σ2
S (coefficient: − 1

2m
2)

• Core’s variance: σ2
R (coefficient: − 1

2 (m− 1)2)

• Expected overperformance: µS − µR (coefficient: +m)

• Core’s drift (trend): µR (coefficient: +1)

The order of importance presented above is indicative in particular of the

Cushion growth rate’s sensitivity to changes in the values of each of these assets’

characteristics. However, the relative importance of these characteristics in the

Cushion’ growth rate not only depends on their coefficient but also on the actual

values that the asset’s parameters may take.

In this section we uncovered the fact that the value of the portfolio insurance

strategy increases with the correlation between its assets. This implies that, a

potentially interesting alternative to construct a PI strategy is to use one single

asset or portfolio with “good” properties in terms of its growth rate parameters

as the Core and a leveraged investment in the same asset as the Satellite. In this

particular case, the rebalancing drag is minimized for a given level of volatility

because ρ = 1. We discuss this alternative in Appendix C.3.

We now turn to verify the relationship of the growth rate with the long term

value of the portfolio insurance strategy with real data and short-selling con-

straints.

3.3 Empirical Test of the Growth Rate

The theoretical characterization presented above draws a one-to-one relationship

between the value of the portfolio insurance Cushion’s growth rate for a given

Core or Reserve asset.
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The relationship of the growth rate and the portfolio’s value that should hold

for long enough horizons was derived under the assumptions of continuous re-

balancing, unlimited borrowing or short-selling (leverage) and a simple geometric

brownian motion model for the dynamics of the component assets. In this section

we test to what extend these relationships hold in applications with real data and

real world constraints.

We use monthly returns of the 13 EDHEC-Risk Alternative Investment indices1

over the period January 1997 to March 2011. In the tables of results, we use the

following acronyms for the strategy indices:

• (ConvArb) Convertible Arbitrage

• (CTAs) CTA Global

• (Distress) Distressed Securities

• (EM) Emerging Markets

• (MNeutral) Market Neutral

• (EventD) Event Driven

• (FixArb) Fixed-Income Arbitrage

• (GMacro) Global Macro

• (LSequity) Long-Short Equity

• (MergArb) Merger Arbitrage

• (RelVal) Relative Value

• (ShortS) Short Selling

• (FoF) Fund of Funds

The summary statistics of this set of assets are presented in Table F.2. These

indices constitute a diverse set in which correlations across indices range from

−76% to 93%, average returns between 2.4% and 10.4% and volatilities between

3% and 18.5%.

In order to verify if the theoretical relationship between growth rate and port-

folio’s value holds in real data with discrete rebalancing and allocation constraints,

we compare the ranking of candidate assets according to their growth rate and the

1The data and a complete description of it is available in EDHEC-Risk’s website, www.edhec-
risk.com.
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actual end of period value of the portfolio insurance strategy implemented with

monthly data and limits to the Satellite exposure of [0, 1] (i.e. short-selling and

leverage are not allowed).

We also consider the ranking of assets according to the “semi-theoretical” esti-

mation of the value of the portfolio insurance given by Equation (3.16), which uses

the actual end of period value of the assets considered. This formula assumes con-

tinuous rebalancing but it does not assume a geometric brownian motion for the

dynamics of the assets1. The estimation of (3.16) is denoted Vm while the actual

implementation with exposure limits and discrete rebalancing of the more Gen-

eral Portfolio Insurance strategy (or Dynamic Core-Satellite strategy) is denoted

DCSm.

One should notice that, if the relationship is verified, the growth rate implied

by parameters’ estimates for a set of candidate assets would constitute a selection

criteria to choose among candidate assets for the strategy. Of course, having good

estimates of this parameters would be crucial for this purpose.

3.3.1 Growth Rate ranking with a riskless Core

First consider the simple case with the riskless asset in the Core, for which there

is no correlation between the two components of the strategy. In order to verify if

the one-to-one relationship of the growth rate and the value of the portfolio holds,

we estimate the Cushion’s growth rate γcushionm for each of the the 13 indices and

compare it with their ranking according to the end of period value of the portfolio

as given by Vm and DCSm.

In this case with a single risky asset we also look at the raking implied by the

1The estimation of the excess growth rate, in this case called rebalancing drag, does not
need the assumption of a geometric brownian motion, but it uses a more general setting for
the dynamics of the component assets. In fact Bernstein and Wilkinson (1997) derives the same
expression in discrete time. See Fernholz (2002) for details on the derivation of the excess growth
rate.
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leveraged geometric average Gm provided in Equation (3.2). In order to have a

reference of the order of magnitude of the number of matches in the ranking among

these criteria, we also look at the ranking of assets as implied by their simple

geometric average return (without leverage) and the returns autocorrelation1.

We consider the theoretical value of the portfolio insurance strategy given by

Equation (3.16) because it does not depend on the brownian motion assumption.

Thus, it is not just a transformation of the formula with the growth rate (Equa-

tion (C.2)). The difference in the ranking between Vm and DCSm can help us

infer wether the differences observed in the ranking of the growth rate and the

value of actual implementation DCSm, come from the geometric brownian motion

assumption or from the unlimited leverage constraint.

In the case with a risky free asset (B) with constant rate r with dynamics

B(t) = B0e
rt (3.21)

and thus with σR = 0, Equation (3.16) simplifies to

V PI
m (t) = kV0e

rt + (1− k)V0

(
St
S0

)m
e(1−m)(r+ 1

2
mσ2

S)t. (3.22)

Assuming an interest rate of r = 3.5% and using the sample estimate of the

volatility of the risky asset we can get the theoretical value of the portfolio at the

end of the sample period. Equation (3.22) assumes continuous trading and no

short-selling limits. Hence, we also estimate the value of the DCS portfolio while

rebalancing after a δ/m move in the exposure to the Satellite2 with δ = 5% and

with short-selling constraints (Satellite exposure limits are 0 ≤e≤ 1). Table F.3

presents the raking of candidate assets according to the different criteria for three

1The autocorrelation is an alternative measure of “trendiness”. The autocorrelation coeffi-
cient is not affected by leverage (just as correlation between two series).

2This is equivalent to a δ move in the Index Ratio (see Black and Perold (1992)).
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different multiplier values: m = {2, 3, 5} and k = 90% (the latter does not affect

the raking among different methodologies).

As we can see from Table F.3, the percentage of assets that has exactly the

same ranking according to the Cushion’s growth rate and the end-of-period-value

of the actual implementation of the portfolio, is 100% (13 out of 13) for m = 2.

For m = 3 the percentage is 85% (11 out of 13) and of 46% (6 out of 13) for m = 5.

In this latter case, the deviations in the place of the assets are not dramatic (for

instance GMacro and LSequity simply swap their place).

The former numbers contrast with the percentage of matches of the DCSm

criterion with the ranking of the simple geometric return average and the auto-

correlation coefficient, which ranges from 0% to 53%, suggesting that these two

alternative measures of return and trendiness are not as good estimates of the

suitability of an asset to enter in the portfolio insurance strategy as the growth

rate.

Furthermore, the percentage of assets with the same ranking according to all:

the growth rate, the value Vm and the leveraged geometric mean is 100% in all

cases. This implies that the differences with the actual implementation of the DCS

is coming from the fact that the exposure limits were reached during a significant

part of the period and not from the model assumptions on the dynamics of the

assets used to derive the growth rate formula.

3.3.2 Ranking with stochastic Core and Satellite

In the previous example we chose to put in the Core the riskless asset. In general,

the Core might be an asset that varies in time stochastically, being for instance a

portfolio hedging a stream of future consumption needs or replicating a stochas-

tic benchmark. We now turn to verify the relationship between the Cushion’s
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growth rate and the end of period value of the portfolio using the same ranking

methodology but using the Fixed-Income Arbitrage index as the Core asset of the

portfolio.

Table F.4 presents the results of the ranking of the different Candidate Assets,

using the geometric return average, the Cushion growth rate, γcushionm , the value of

the CPPI using the estimated rebalancing drag and the actual value of the DCS

rebalanced after a δ/m move in the exposure to the Satellite with δ = 5% and

exposure limited to [0, 1], for m = {2, 3, 5}.

The percentage of indices with the same ranking according to the growth rate

and the actual end of period value of the portfolio with constraints and discrete

rebalancing are 100% (12 out of 12 indices), 83% (10 out of 12) and 58% (7 out

of 12) for m = {2, 3, 5} respectively.

Similar to the previous ranking exercise, the percentage of assets with the same

ranking according to the Cushion’s growth rate and with the theoretical value Vm is

100% in all cases. This implies that the differences with the actual implementation

of the DCS mostly comes from the portfolio’ allocation constraints and not from

the model assumptions used to derive the growth rate formula. The results also

imply that the exposure limits are more likely to be reached for higher values of

the multiplier.

The results of this raking exercise confirm that, in spite of the assumptions used

to derive the theoretical value of the growth rate, in the absence of parameter

estimation error, its one-to-one relationship with the portfolio’s value holds in

most cases. Hence, if one would have good estimates of the expected volatilities,

correlations and over-performance of the a set of candidate assets with respect to

the Core, one could rank the candidate assets to be chosen as the Satellite using

the cushions’ growth rate γcushionm .
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3.4 Introducing the Growth-Optimal Portfolio

Insurance

A strand of the literature on portfolio selection argues in favor of “growth optimal

portfolios” (GOP) (see for instance Markowitz (1976), Breiman (1961), Long et al.

(1990)). GOP portfolios maximize expected log-utility of terminal wealth, the

expected geometric return average and have the interesting theoretical property

of outperforming all other strictly positive portfolios in long enough horizons (see

Kelly (1956) and Platen and Heath (2006)).

Motivated by the absence of a risk dimension in the GOP, we propose instead

to maximize the growth rate of the portfolio subject to the constraint of preventing

its value to fall below a given fraction of the value of a benchmark (this fraction

is chosen either by the investor or imposed by regulatory constraints). This is

equivalent to maximizing the growth rate of the classic CPPI strategy.

Furthermore, in former sections we document the close relationship between

the long term value of portfolio insurance strategies and their growth rate. This

result suggests as well that a reasonable objective for a long term investor with

short-term constraints is to maximize the growth rate of the portfolio insurance

strategy. Given a pair of assets with its corresponding parameter values and the

fraction to be the guaranteed k, the multiplier should be chosen such that it max-

imizes the portfolio’s growth rate. Since the Floor process does not depend on the

multiplier, maximizing the portfolios’ growth rate with respect to the multiplier

is equivalent to maximize the growth rate of the Cushion (see Appendix C.2 for

details). Taking the partial derivative of the Cushion’s growth rate (in Equation

(3.18)) with respect to m equating to zero and solving for m yields the growth

optimal multiplier:
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m∗ =
γS − γR + γ∗

2γ∗
(3.23)

where γ∗ = 1
2
(σ2

S + σ2
R − 2ρσSσR). Replacing (3.23) in Equation (3.18) yields

the optimal Cushion’s growth rate value as a function of the component asset’s

parameters:

γcushion(m∗) =
(γS − γR + γ∗)2

2γ∗
− (γS − γR + γ∗)3

4(γ∗)2
+ γR.

In order to illustrate the importance of the choice of the multiplier value, Figure

F.2 plots the Cushion’s growth rate as given by Equation (3.18) for the following

parameter values: µS = 0.08, σS = 0.15, µR = 0.03, σR = 0.05, all possible values

for the correlation coefficient, i.e. ρ = [−1, 1] and different multiplier values, i.e.

m = [1, 10].

Figure F.2 illustrates how m∗ maximizes the Cushion’s growth rate due to its

concavity1 with respect to m. This figure also illustrates two interesting inter-

actions between the correlation and the multiplier: i) the gray surface indicates

that for uncorrelated or negatively correlated assets, the choice of the multiplier

becomes critical in determining the Cushion’s growth rate, ceteris paribus and ii)

the optimal multiplier (dark line) increases with the correlation between the two

assets, everything else being equal. Similarly, Figure F.3 illustrates that for highly

volatile Satellite assets, the choice of the multiplier becomes critical (gray surface)

and the growth-optimal multiplier decreases with the Satellite’s volatility (dark

line), everything else equal.

In previous sections the parameters determining the dynamics of the compo-

1The value of portfolio insurance strategies is convex with respect to the value of the “index
ratio” or the outperformance of the Satellite with respect to the Core asset, precisely because of
the leverage role of the multiplier. The concavity with respect to “m” in this case is of course
for a given level of performance of the component assets (ceteris paribus condition).
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nent assets where assumed to be known and constant. This assumption is mild if

the purpose is to perform an ex-post performance attribution exercise using the

values of the parameters estimated using the sample period in question. However,

it is well documented that expected returns, volatilities and correlations for most

assets present significant variations in time. If any of these values varies in time,

in order to maintain the optimality condition the multiplier should be adjusted

accordingly:

m∗t =
γS(t)− γR(t) + γ∗(t)

2γ∗(t)
. (3.24)

In the particular case with a riskless asset as the reserve asset with instanta-

neous risk-free rate µR = r, with σR = 0 Equation (3.24) yields

m∗t =
µS(t)− r
σ2
S(t)

. (3.25)

Using the standard utility maximization setting, Merton (1971), Grossman and

Vila (1992) and Basak (2002) find a remarkably similar solution for an optimal

multiplier in the case of a portfolio insurer investor with CRRA preferences1.

Merton (1971), Grossman and Vila (1992) and Basak (2002)’s optimal multiplier

is equal to (3.25) times the inverse of the investor’s risk aversion parameter. From

a practical standpoint, the problem with this approach is precisely to select the

risk aversion parameter value, for which there is not general consensus.

On the other hand, the growth-optimal multiplier does not need a risk aversion

parameter, hence there is no ambiguity about its optimal (unique) value. However,

it is possible to integrate the risk aversion parameter within the growth optimal

1In Basak (2002) solves in the presence of inter-temporal consumption and includes the floor
violation restriction embedded in the investor’s utility function. The investor’s marginal utility
smoothly converges towards infinity, as opposed to imposing an exogenous constraint in which
marginal utility jumps in a discrete way when wealth hits the floor.
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portfolio insurance approach by defining the objective of maintaining a target level

of growth rate. We discuss this alternative in Appendix C.4.

3.4.1 Maximum Multiplier

The multiplier, m is a key parameter that determines the behavior of the portfolio

insurance strategy. Perhaps the most common way to determine the multiplier of

the CPPI in practice is using the maximum value that would allow the Cushion

to remain positive even in the “worst case scenario”. In general, in order to

guarantee that the Cushion remains positive, the multiplier has to satisfy the

following condition:

Ct+1

Ct
= m

St+1

St
+ (1−m)

Rt+1

Rt

> 0⇔ St+1

St
>

(m− 1)

m

Rt+1

Rt

or equivalently

mrS(t, t+ 1) + (1−m)rR(t, t+ 1) ≥ −1 (3.26)

m(rS(t, t+ 1)− rR(t, t+ 1)) ≥ −(1 + rR(t, t+ 1)) (3.27)

For (rS(t, t+ 1)− rR(t, t+ 1)) < 0 the inequality (3.27) gets inverted,

m ≤ −(1 + rR(t, t+ 1))

rS(t, t+ 1)− rR(t, t+ 1)

where t and t+1 are any two portfolio rebalancing dates. Hence, the maximum

value for the multiplier that could guarantee in general the Cushion’s positivity

condition (3.27) is:

m =
−(1 +min(rR))

min(rS − rR)
. (3.28)
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In the particular case where the reserve asset is the riskless one, rR has a

minimum value equal to 0 (assuming positive interest rates) and its values are

usually small compared to the magnitude of the returns on stocks. For this reason,

condition (3.28) is very commonly approximated by:

m =
−1

min(rS)
.

Although this value of the multiplier would respect the insurance promise of

the portfolio strategy, complying with a feasibility condition is not necessarily the

optimal choice from an investor’s perspective. As we saw in previous sections,

the rebalancing drag increases with the multiplier at a rate of m(m − 1). In the

next section we compare the growth optimal portfolio insurance we introduced,

with the equivalent portfolio insurance strategy defined by the aforementioned

methodology to determine the multiplier.

3.4.2 Empirical test of the Growth-Optimal Portfolio In-

surance

In order to empirically evaluate the performance of the GOPI strategy we use

the standard set of assets of the CPPI. We use monthly data of the T-bill rates

as the reserve asset and the value-weighted CRSP broad market stock index as

the risky asset, available from Kenneth French website from January 1926 until

December 2010. We first perform two Backtest exercises over long periods of

time and compare the performance of the GOP or Kelly criterion1), the GOPI

and the CPPI strategy, the latter being the standard portfolio insurance strategy

1For the pair of assets in question the GOP formula yields a portfolio with leverage and
short selling constraints. In the GOP literature the portfolio has the properties mentioned in
the introduction only if all the weights happen to be positive. Thus in this case, what we call
the GOP corresponds more precisely to the Kelly criterion, according to the denomination in
the academic literature.
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that uses the multiplier as given by Equation (3.28). Both portfolio insurance

strategies have the constraint of preserving 90% of the value of the reserve asset.

The allocation of the GOP to the risky asset in the case with two assets, is equal

to the multiplier of the GOPI.

In the first Backtest we use the entire sample to estimate the parameters that

determine the optimal and the standard multipliers and the allocation of the GOP.

Figure F.4 presents the log of the cumulative performance of the three strategies

and of an investment in the reserve asset, i.e. cash. The portfolio with the highest

cumulative performance during the entire sample is, unsurprisingly the GOP (dark

blue line). On the other hand, the GOP does not respect the constraint that the

GOPI and CPPI strategies have and it presents a significantly riskier profile that

the other two strategies. In fact the GOP in this case is even more risky than

the stock index itself, as illustrated in Table F.1. The upper panel of Table F.1

shows that, the minimum value ever attained by the GOP is 17 dollars, for an

initial investment of 100, while the minimum value attained by the GOPI and

CPPI strategies are 99.2 and 97.5 respectively. This is not surprising because the

GOP or Kelly criterion in this case happens to be a leveraged investment in the

stock index. The maximum drawdown of the GOP over the sample is equal to

95.6% compared to a maximum drawdown of around 50% for the GOPI and CPPI

strategies.

Interestingly, we find that, although the GOPI multiplier is lower than the

standard multiplier of the CPPI, the value of the GOPI strategy is higher than

the value of the CPPI at the end of the sample and during most of the period, as

observed in Figure F.4. The growth optimal multiplier estimated with the entire

sample is equal to 1.6 while the standard multiplier of the CPPI is equal to 3.41.

1In this case we use monthly data and monthly rebalancing, hence the worst case scenario
is given by the worst stock return that happened in the 1930s of almost −30%.
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The CPPI strategy happens to lose almost all its risk budget at the beginning of

the sample an it stays very close to its floor value during the rest of the period.

On the other hand the GOPI strategy “survives” the periods of high volatility and

presents an important growth in the long run, with an average geometric return

of 7.9% compared to 3.6% for the standard CPPI.

As a second Backtest, we perform an out-of-sample exercise in which we split

the sample in two. We use the first half of the sample (i.e., 1926 : 01−1968 : 05) to

estimate the parameters of the strategies (multipliers and allocation of the GOP)

and the second half to implement the three strategies (i.e., 1968 : 06− 2010 : 12).

We use a very long period of time to estimate the parameters in order to avoid the

estimation sample bias mostly present in expected return estimates. The result of

this second Backtest is presented in the lower panel of Table F.1. The conclusions

are similar to the former Backtest. The GOP attains the highest value among

the three strategies but also a minimum value of around 39.2 dollars, compared

to minimum values of 100 and 99.5 dollars for the GOPI and CPPI strategies

respectively and 70.3 dollars for the stock index. Although the optimal multiplier

(1.7) is again lower than the standard multiplier (3.4) the growth optimal portfolio

insurance strategy attains a higher value than the standard CPPI and it remains

higher during most of the sample period, as illustrated in Figure F.5.

Portfolio insurance strategies are often perceived as dependent on the market

conditions at the inception of the strategy. However, one should notice that the

first Backtest, starting in 1926, begins in a bull market, while the second Backtest

starts with a bear market.

In order to make a more throughout comparison between the GOPI and the

standard CPPI, we now turn to an historical simulations exercise, where we per-

form N Backtest exercises for which the starting dates are selected randomly from

the available sample period and performed over 5, 10 and 20 years investment
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horizons. This methodology is equivalent to perform block-bootstrap simulations

using a block-size equal to the length of the investment horizon (i.e., either 5, 10

or 20 years).

The available sample for choosing the starting dates of the simulations excludes

the multiplier’s calibration sample, which is the taken as the first 10 years of

data, and the last 5, 10 or 20 years of available data, respectively (the latter

condition allows all Backtests to have the same length, either 5, 10 or 20 years).

We compare the end of period value of the portfolio insurance strategy using the

growth-optimal multiplier and the standard multiplier approach. We perform 100

random simulations for each of the three horizons considered.

We use three different methodologies to estimate the standard multiplier of

Equation (3.28): i) first we use the whole available time series following the first

10 years of calibration sample to determine the minimum values required by its

formula in (3.28), which we denote as mall, ii) we estimate the standard multiplier

that corresponds to the sample period over which each of the backtests simulations

will be performed (hence it is a forward looking estimate), denoted “Perfect”

mperiod and iii) we use all data available before the starting date of each of the

backtest scenarios to estimate the multiplier, which we denote as “Sample” m̂period.

In order to estimate the optimal multipliers, as given by Equation (3.24), we

also use three different approaches: i) we use sample estimates over the testing

period of each of the backtest scenarios (hence it is a forward looking estimate)

which we denote as “Perfect” m∗, ii) we estimate the optimal multiplier using the

latest 10 years of data available at the starting date of each simulated scenario,

denoted as “Sample” m̂∗ and iii) in order to estimate the “Dynamic” optimal

multiplier series, m̂∗t , we fit1 a Dynamic Conditional Correlation model (Engle

and Sheppard (2001)) to all available stock returns at the starting date of each

1We use Kevin Sheppard’s UCSD Multivariate Garch toolbox for estimating the DCC model.
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simulated scenario and use the estimated parameters and available “innovations”

at each point in time to infer the variance and covariance time series over the

testing period. We use a 10 year moving average to estimate expected stock

returns and take the latest available interest rate value as its next period forecast.

The standard multiplier estimated using the whole available time series after

the first 10 years of calibration sample is equal to mall = 4.2, which is higher than

the standard multiplier obtained using the “Sample” estimate m̂∗ = 3.4. This

latter presents always the same value (see Table F.5) because the “worst” scenario

in the available history occurred during the 1930s (within the first 10 years of

data). This contrast with the wide range of values for the “Perfect” foresight

standard multiplier mperiod, which falls between 4.2 and 20.4 depending on the

backtest scenario.

Table F.6 presents the range and median values of the three different estimates

of the growth-optimal multipliers. In order to have a better comparison between

these two types of multiplier, we compute the percentage of scenarios in which the

optimal multiplier is less or equal to the standard multipliers corresponding to the

same periods. Table F.7 presents the results for each pair of multipliers and each

horizon. In every pair, even for the perfect foresight multipliers, we find that the

optimal multiplier has a lower level in most scenarios. On average across pairs

and horizons the percentage of times for which the optimal multiplier is lower or

equal than the standard multiplier is around 70%.

Perhaps the most interesting comparison is the percentage of scenarios on

which the portfolio with the optimal multiplier obtains a higher value than the

portfolio using the standard multiplier approach, presented in Table F.8. When

comparing the “Perfect” foresight estimates of the optimal and standard multi-

pliers, we find that the percentage of scenarios favoring the optimal multiplier

portfolio is between 51% and 67% (for 20 and 5 years horizon respectively). This
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result is more dramatic when compared with the also forward-looking estimate of

the standard multiplier, mall, in which case the range of the percentage of scenarios

favoring the optimal multiplier portfolio is 66% to 85%. The average geometric re-

turn of the portfolios across scenarios is higher for the portfolios using the optimal

multiplier on the three horizons considered, as shown in Table F.9.

On the other hand the portfolios with the sample estimate of the optimal

multiplier outperforms the portfolio using the sample estimate of the standard

multiplier in around 40% of the scenarios. This is not surprising considering that

the variations in average returns and volatility from one period to the next can

be very dramatic in stock returns. These variations are expected to affect more

the optimal multiplier than the standard multiplier, because the latter is simply

a lower bound approximation of the return. However, using the “Dynamic” es-

timates of the parameter values composing the optimal multiplier favors again

the corresponding portfolio with respect to the one using the “Sample” standard

multiplier estimate m̂period. In this case the over performance probability for the

three horizons considered are 69%, 72% and 72%, for 5, 10 and 20 horizons re-

spectively. Furthermore, the portfolio insurance strategies constructed using the

dynamic estimates of the optimal multiplier outperformed the portfolio using the

forward looking standard multiplier estimate mall in 64%, 62%, 67% of the scenar-

ios, for 5, 10 and 20 horizons respectively. The superiority of the dynamic optimal

multiplier portfolios is also suggested by the higher average geometric return it

obtained for the three horizons considered (see Table F.9).

3.5 Conclusion

We derive the growth rate of the portfolio insurance strategy in the general case

with a stochastic reserve asset as a function of the underlying assets’ characteristics
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(i.e. expected returns, volatilities and correlation). The analytical characteriza-

tion of the growth rate of portfolio insurance strategies sheds light on the largely

disregarded role that the correlation between the underlying assets plays on the

value of this type of strategy.

Through different empirical exercises we find that the growth rate has a very

close relationship with the expected value of the portfolio insurance strategy even

when common short-selling and leverage constraints are imposed. We also illus-

trate how can the growth rate of the strategy be decomposed to nail down the

relative importance and effect of the characteristics of the underlying assets on

the performance of the strategy.

Finally, we introduce the growth optimal portfolio insurance strategy (GOPI),

which combines the pragmatic objective of maximizing the growth rate of the

portfolio and the common risk-management objective of preserving a given fraction

of the value of the portfolio typically indexed to a given benchmark. The growth

rate maximization is achieved by using the growth optimal multiplier, while the

investor chooses the benchmark and the fraction of its value to insure as in the

standard CPPI case.

Through empirical tests with real data and in the presence of short-selling

and leverage constraints, we find that the GOPI strategy tends to outperform a

CPPI using the standard multiplier selection methodology while keeping a more

conservative risk profile.
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Appendix A

Appendix Chapter 1

A.1 Proof of Proposition 1

Consider the factor model decomposition

r
(wt)
t =

Nt∑
i=1

witβitFt +
Nt∑
i=1

witεit

and

rit − r(wt)
t =

(
βit −

Nt∑
j=1

wjtβjt

)
Ft + εit −

Nt∑
j=1

wjtεjt

Under the homogeneous betas assumption, we have

rit − r(wt)
t = εit −

Nt∑
j=1

wjtεjt (A.1)

and therefore

[
rit − r(wt)

t

]2

= ε2
it +

(
Nt∑
j=1

wjtεjt

)2

− 2εit

Nt∑
j=1

wjtεjt

so that

CSV
(wt)
t =

Nt∑
i=1

wit

(
rit − r(wt)

t

)2

=
Nt∑
i=1

witε
2
it +

(
Nt∑
j=1

wjtεjt

)2

− 2
Nt∑
i=1

Nt∑
j=1

wjtwitεitεjt

Noting that (
Nt∑
j=1

wjtεjt

)2

=
Nt∑
i=1

Nt∑
j=1

wjtwitεitεjt

we finally have:

CSV
(wt)
t =

Nt∑
i=1

witε
2
it −

(
Nt∑
i=1

wjtεjt

)2

We now argue that the term
∑Nt

i=1 wjtεjt converges to 0 for increasingly large
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numbers of stocks. To show this, we need to use a recent result by Cuzick (1995)

regarding the Marcinkiewcz−Zygmund strong law of large numbers for weighted

sums of i.i.d. variables:

1

N

N∑
i=1

aNiXi −→ 0 almost surely (A.2)

when {X,XN , N ≥ 1} is a sequence of i.i.d. random variables with E (X) = 0,

E|X| < ∞ and {aNi, 1 ≤ i ≤ N,N ≥ 1} is an array of constants uniformly

bounded satisfying1

sup |aNit| <∞. (A.3)

Here we take aNit ≡ Ntwit and Xi ≡ εi. For the result (A.2) to hold aNit needs

to be uniformly bounded and to satisfy condition (A.3). We therefore restrict

our attention to non-trivial weighting schemes, ruling out the situation such that

the index is composed by a single stock. Please note that this condition together

with the fact that
∑

iwit = 1 implies Nt > 1 and also restrict the weights to be

(strictly) positive at every given point in time. Hence, a weighting scheme (wt), is

defined as a vector process which satisfies 0 < wit < 1 ∀ i, t. This condition seams

reasonable since our focus is to measure idiosyncratic risk in the market.

By definition, the weighting scheme wit and aNit is uniformly bounded by Nt

and the following condition holds,

0 < wit < 1 ∀ i, t (A.4)

Multiplying by Nt, we get

0 < Ntwit < Nt

0 < Ntwit <∞

0 < aNit <∞

|aNit| <∞ ∀ i, t

which implies that condition (A.3) holds. Thus, for a positive weighting scheme

from the strong law of large numbers for weighted sums of i.i.d. variables, it follows

1See Theorem 1.1, particular case of Cuzick (1995).
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that:
Nt∑
i=1

witεit −→
Nt→∞

0 a.s.,

Using similar arguments, and the homogeneous idiosyncratic second moment

assumption, E [ε2
it] ≡ σ2

ε (t), we obtain that for a strictly positive weighting scheme,

wt, and i.i.d. εi,
Nt∑
i=1

witε
2
it −→
Nt→∞

σ2
ε (t) almost surely

Using these results, we finally have that:

CSV
(wt)
t =

Nt∑
i=1

wit

(
rit − r(wt)

t

)2

−→
Nt→∞

σ2
ε (t) almost surely.

A.2 Properties of the CSV Estimator

A.2.1 Bias of the CSV Estimator

Under the factor model decomposition (1.1) and equation (1.2) and using the

homogeneous beta assumption, we have:

rit − r(wt)
t =

(
βit −

Nt∑
j=1

wjtβjt

)
Ft + εit −

Nt∑
j=1

wjtεjt = εit −
Nt∑
j=1

wjtεjt (A.5)

Replacing result (A.5) in equation (1.3) we have as before:

CSV
(wt)
t =

Nt∑
i=1

witε
2
it −

Nt∑
i=1

Nt∑
j=1

wjtwitεitεjt (A.6)

By definition of a strict factor model, E [εitεjt] = 0 for i 6= j, and E(ε2
it) = σ2

εi
.

Applying the expectation operator in equation (A.6) we get:

E
[
CSV

(wt)
t

]
=

Nt∑
i=1

witσ
2
εi

(t)−
Nt∑
i=1

w2
itσ

2
εi

(t) (A.7)

The second term in (A.7) implies that the CSV would tend to underestimate

the average idiosyncratic variance. Considering the equal-weighted scheme where
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wit = 1/Nt ∀i, (A.7) simplifies into

E
[
CSV EW

t

]
=

(
1− 1

Nt

)
1

Nt

Nt∑
i=1

σ2
εi

(t)

and we obtain:

E
[
CSV EW

t

]
−→
Nt→∞

1

Nt

Nt∑
i=1

σ2
εit
.

A.2.2 Variance of the CSV Estimator

Let wt and εt be column vectors of the weighting scheme and residuals respectively

and Ωt = wtw
′
t, Λt = diag (wt), Nt × Nt matrices, and denote Σε the variance

covariance matrix of the residuals, which is diagonal for a strict factor model.

For a finite number of stocks in the case where Ft 6= r(wt), we have from

equation (A.6):

CSV
(wt)
t =

Nt∑
i=1

witε
2
it −

Nt∑
i=1

Nt∑
j=1

wjtwitεitεjt

.

Letting Qt = Λt − Ωt, CSVt can be written in matrix form, as follows:

CSV
(wt)
t = ε′tQtεt. (A.8)

Using the quadratic structure of the CSV and assuming normal residuals, we have

(see for instance Kachman (1999))1:

V ar (ε′tQtεt) = 2tr (QtΣ
ε
tQtΣ

ε
t) (A.9)

Under the assumption of a strict factor model, i.e. ρεijt = 0 ∀i 6= j, equation

(A.9) simplifies to:

V ar
(
CSV

(wt)
t

)
= 2

Nt∑
i=1

σ4
εit
w2
it(1− wit)2 + 2

Nt∑
i=1

Nt∑
j 6=i

w2
itw

2
jtσ

2
εit
σ2
εjt

(A.10)

Assuming an upper bound for the individual idiosyncratic variances, denoted

1The operator tr stands for the trace of a matrix, which is the sum of the diagonal terms.
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as σ̂εt equation (A.10) yields to the following inequality (replacing each variance

for its upper bound)

V ar
(
CSV

(wt)
t

)
< 2σ̂4

εt

( Nt∑
i=1

w2
it

)2

+
Nt∑
i=1

w2
it − 2

Nt∑
i=1

w3
it

 . (A.11)

When wt = 1/Nt, equation (A.11) simplifies to

V ar
(
CSV

(wt)
t

)
< 2σ̂4

εt

(
Nt − 1

N2
t

)
< 2σ̂4

εt

(
1

Nt

)
. (A.12)

For a large number of stocks,

V ar
(
CSV

(wt)
t

)
< 2σ̂4

εt

(
1

Nt

)
−→ 0. (A.13)

A.2.3 Relaxing the Assumption of Homogenous Betas

The assumption that βit = βt for all i is obviously a simplistic one and is done

only for exposure purposes. Starting with the single factor decomposition on the

definition of the CSV we have:

CSV
(wt)
t =

Nt∑
i=1

wit

(
rit − r(wt)

t

)2

=
Nt∑
i=1

wit

[(
βit −

Nt∑
j=1

wjtβjt

)
Ft + εit −

Nt∑
i=1

wjtεjt

]2

= F 2
t

Nt∑
i=1

wit

(
βit −

Nt∑
j=1

wjtβjt

)2

+
Nt∑
i=1

wit

(
εit −

Nt∑
i=1

witεjt

)2

+

2Ft

Nt∑
i=1

wit

(
βi −

Nt∑
j=1

wjtβjt

)(
εit −

Nt∑
i=1

wjtεjt

)
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After simple rearrangement of terms we get:

CSV
(wt)
t = F 2

t

Nt∑
i=1

wit

(
βit −

Nt∑
j=1

wjtβjt

)2

+
Nt∑
i=1

witε
2
it −

Nt∑
i=1

Nt∑
j=1

wjtwitεitεjt

+ 2Ft

Nt∑
i=1

witεit(βit −
Nt∑
j=1

wjtβjt)

Applying the expectation operator and assuming a strict factor model, the last

expression simplifies so as to yield:

E
[
CSV

(wt)
t

]
= E

[
F 2
t CSV

β
t

]
+

Nt∑
i=1

witσ
2
εit
−

Nt∑
i=1

w2
itσ

2
εit

Under an equal-weighting scheme, we finally have:

E
[
CSV EW

t

]
= E

[
F 2
t CSV

β
t

]
+

(
1− 1

Nt

)
1

Nt

Nt∑
i=1

σ2
εit
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Appendix B

Appendix Chapter 2

B.1 Out of Sample Prediction using a Markov

Switching Model

Similar to the BH-BCP algorithm the Markov Switching model can yield a prob-

ability of being in a particular state at each point in time. Whereas the BH-BCP

algorithm produces a single posterior change-probability sequence, the Markov

Model estimation procedure can produce two different sets of probability sequences

- usually referred to as “filtered” (or “unsmoothed”) and also a “smoothed’ prob-

abilities sequence’. Given the estimated regime means in each state and the esti-

mated probabilities of being in each state at a point in time, we obtain an expected

value for the regime mean, analogous to the posterior mean produced by the BH-

BCP procedure.

In this appendix, we present results on predicting returns by using the adjusted

d-p ratio series as the predictor where the adjustment level is estimated by fit-

ting the observed series using a Markov Switching model instead of the BH-BCP

procedure.

At each point in time, we estimate a model based on all data available at

that time, making it a “true” out-of-sample experiment which could have been

performed by an investor at each point in time.

Additionally, following Lettau and van Nieuwerburgh (2008), we also perform a

“pseudo” out-of-sample experiment. Instead of relying only on data being available

at each point in time, we first generate the d-p adjustment by looking ahead over

the entire series in order to build the best possible estimates of the regimes and

the regime means. Of course, this could not have been performed by an investor

at each point in time, but it does serve to demonstrate what that investor would

have been able to do if she had a more reliable estimation methodology at her

disposal.

Finally, we repeat each of the true and pseudo out of sample experiments for

different calibration periods and sub periods, and then for two different market

series (CRSP Value Weighted Broad Market and the CRSP Equally Weighted

Broad Market indices).

We first present the results for annual data then for quarterly data. In each
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model, we report the Mincer-Zarnowitz R2, the Campbell R2
OOS as well as the

difference in utility as we did for BCP-based predictions.

B.1.1 Out of Sample Prediction using a Markov Switching

Model - Annual Data

Tables E.9 and E.10 present the summary results of running a returns prediction

based on a “true” out of sample experiment (denoted by “True OOS” in the

tables). We examine both the CRSP Value Weighted series (denoted by CRSPVW )

and the CRSP Equally Weighted Series (denoted by CRSPEW ). For each series

we examine the results both true and pseudo OOS results for different calibration

periods for the unadjusted dp ratio and then using smoothed and unsmoothed

probabilities by fitting a 2-state and a 3-state Markov Switching model.

We see that none of the out of sample predictions based on Markov Switching

models succeeds in beating the random walk model, either for CW or EW indices.

This is in contrast to the BCP procedure which produces economically meaningful

predictions that outperform the random walk model.

However, if we are permitted to “peek ahead” to construct an adjustment to

the d-p ratio by looking ahead in a Pseudo out of sample experiment, the Markov

Switching model does outperform the Random Walk model in several periods,

confirming the notion that better estimates of the regimes result in more accurate

predictions (results are in Tables E.11 and E.12).

B.1.2 Out of Sample Prediction using a Markov Switching

Model - Quarterly Data

Tables E.13 and E.14 present the results of using Quarterly Value Weighted data

instead of Annual data, using both 2 and 3 state Markov Switching models.

As in the case of Annual data, we see that Pseudo OOS results often outperform

the random walk model, but True OOS predictions using Markov Switching models

are unable to do so consistently.
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Appendix C

Appendix Chapter 3

C.1 Derivation of Portfolio Insurance Growth

Rate

Using a Black-Scholes model for the dynamics of the Reserve (R) and performance

seeking asset (S) and the fact that the CPPI can be decomposed in to a floor

process, Ft = kRt and a Fixed-Mix Portfolio, we now derive an approximation of

the growth rate of the CPPI, in the case with a stochastic reserve asset.

Using the interpretation of the Cushion as a Fixed-Mix portfolio with weights

m and 1−m and result (3.11) for two assets, the value of the Portfolio Insurance

strategy is given by

V PI
m (t) = kV0

(
Rt

R0

)
+ (1− k)V0

(
St
S0

)m(
Rt

R0

)1−m

eγ
∗
mt. (C.1)

The second term in equation (C.1) is equal to the value of a fixed mix portfolio,

thus it can be expressed in terms of its growth rate, as in equation (3.12),

Cm(t) = (1− k)V0e
(γ∗m+mγS+(1−m)γR)t+mσSWS(t)+(1−m)σRWR(t) (C.2)

= (1− k)V FM
m (t) (C.3)

Since C0 = (1− k)V0, by definition of the growth rate (eq. (3.4) or (3.5)), the

Cushion process’s growth rate is

γcushionm = γ∗m +m(γS − γR) + γR,

where γ∗m = m(1−m) (σ2
S + σ2

R − 2ρσSσS). Notice that the brownian motion terms

in equation (C.2) disappear after dividing by t as t→∞, because W (t) =
√
tz(t)

for z ∼ N(0, 1). Alternatively, replacing (C.2) in the other definition of the growth

rate, i.e. equation (3.5), leads to the same result because E[W (t)] = 0.

By definition of the growth rate (equation (3.5)) and using result (C.1), the

portfolio insurance’ growth rate can be written as

γPIm =
1

t
E

[
ln

(
kR(t) + (1− k)V FM

m (t)

V0

)]
. (C.4)
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From Jensen’s inequality and the concavity of the log it follows that

γPIm =
1

t
E

[
ln

(
kR(t) + (1− k)V FM

m (t)

V0

)]
≥ 1

t
E

[
k ln

(
R(t)

V0

)
+ (1− k) ln

(
V FM
m (t)

V0

)]
,

by definition of the growth rate we have

γPIm ≥ kγR + (1− k)γcushionm . (C.5)

Inequality (C.5) implies

γPIm = kγR + (1− k)γcushionm + φ, with φ ≥ 0. (C.6)

Since the growth rate of the Floor process is equal to the growth rate of the

Reserve asset, γR, equation (C.6) implies that the growth rate of the Portfolio

Insurance strategy is the weighted average of the growth rate of the Reserve asset

and the growth rate of the Cushion with weights equal to k and (1−k) respectively

plus a positive term φ. The latter term can be estimated using a Taylor expansion

of the log where all terms above the quadratic are omitted (see below), yielding

φ =
1

2
k(1− k)

(
γ2
R + (γcushionm )2 − 2γRγ

cushion
m

)
.

The log of a weighted average of exponentials can be approximated using the

following Taylor expansion where all terms above the quadratic are omitted:

ln(w′ exp(x)) ≈ x′w +
1

2
x′V x (C.7)

where Vi,j = −wiwj∀i 6= j and Vi,i = wi(1− wi), and w is a vector with the same

size of vector x, satisfying
∑

iwi = 1. Thus, the “weights” of the weighted average

of the exponentials are k and 1−k when applying approximation (C.7) in equation

(C.4).

C.2 Portfolio Insurance Growth Rate Maximiza-

tion

As shown above, the growth rate of the CPPI can be approximated as
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γPIm = kγR + (1− k)γcushionm + φ,

where

φ =
1

2
k(1− k)

(
γ2
R + (γcushionm )2 − 2γRγ

cushion
m

)
. (C.8)

In order to maximize γPIm we assume positive values of γR and γcushionm and

γcushionm ≥ γR. The latter assumption seems reasonable, as investing in a CPPI

strategy in which the expected long term return (growth rate) of the Cushion is

lower than the growth rate of the reserve asset would not make sense from an

economic standpoint (it would better to simply invest in the reserve asset). Under

these assumptions, φ, as given by equation (C.8) is a strictly increasing function

of γcushionm .

On the other hand, the growth rate of the Floor process is equal to γR, which is

independent from the multiplier. Hence, under the assumptions above, maximizing

the growth rate of the portfolio insurance strategy is equivalent to maximize the

growth rate of the cushion (Alternatively, one could notice that for k close to 1 and

typical parameter values, φ tends to be small compared to the weighted average

of the Cushion and Floor’s growth rate, thus: γPIm ≈ k γR + (1− k)γcushionm , which

implies to the same result).

As shown above, the Cushion process has a growth rate equal to

γcushionm = γ∗m +m(γS − γR) + γR, (C.9)

taking the partial derivative of equation (C.9) with respect to m, equating to zero

and solving for m yields the growth optimal multiplier:

m∗ =
γS − γR + γ∗

2γ∗
,

where, γ∗ = 1
2
(σ2

S + σ2
R − 2ρσSσR).

C.3 Leveraged investment in Satellite

One alternative to construct a DCS with an asset with “good” properties in terms

of risk and return, is to put the asset in the Core and a leveraged investment of

the same asset in the Satellite. Choosing a leveraged factor equal to the multiplier

131



of the portfolio insurance strategy, the formula of the growth rate of the Cushion

has a simpler expression. The parameters of the Satellite’s growth rate are in

consequence given by µS = mµR, σS = mσR and the rebalancing drag is minimized

for a given level of volatility since ρ = 1. Replacing these terms in Equation (3.18)

we get,

γl=mm = (m2 −m+ 1)µR +
1

2
m(m2 −m+ 1)σ2

R −
1

2
m(m2 − 1)σR (C.10)

For the growth rate of the cushion to be higher than the growth rate of the

asset, the following condition should be satisfied:

(m2 −m)
µR
σR

+
1

2
(m3 −m2 +m+ 1)σR >

1

2
(m3 −m). (C.11)

In particular, for m = 2, Equation (C.10) simplifies to,

γl=2
2 = 3µR + 3σ2

R − 3σR

γl=2
2 = 3 (µR − σR(1− σR))

Which is positive for an asset with a ratio of expected return to volatility

satisfying µ
σ
> 1 − σ. In this particular case, for the growth rate of the cushion

to be higher than the growth rate of the asset, the following condition should be

satisfied:

3 (µR − σR(1− σR)) > µR −
1

2
σ2
R ⇒ µ− σ > µ

3
− 7

6
σ2. (C.12)

For given values of µR andσR one may find the value of m that maximizes

γl=mm . Deriving Equation (C.10) with respect to m and equating to zero we have:

2mγR −
3

2
m2σR(1− σR) +

1

2
σR − γR = 0.

Which solution is given by the quadratic formula, yielding (Here the numer-

ator and denominator of the typical presentation of the quadratic formula was

multiplied by −1).

m∗ =
2γR ∓

√
4γ2

R + 6σR(1− σR)(1
2
σR − γR)

3σR(1− σR)
.
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C.4 Alternative Time-Varying Multiplier

In Section 3.4 we claimed that a reasonable objective for an investor is to maximize

the growth rate of the portfolio. An alternative and perhaps more general objective

for the investor could be to maintain a target level of growth rate in the portfolio.

The target level of the growth rate can be chosen, for instance, such that the

probability of breaching the floor in the presence of jumps in asset prices is held

constant and the level of this probability could be chosen according to the risk

aversion level, as done in Cont and Tankov (2009).

Hence, instead of letting the growth rate to change as dictated by the move-

ments in the component assets’ parameters, the investor may adjust the multiplier

in a way that compensates the movements in the asset’s parameters.

Let the target growth rate be denoted as Γ, which depends on the assets’

parameters and the multiplier as in Equation (3.18):

γcushionm (t) = mt(1−mt)γ
∗(t) +mt(γS(t)− γR(t)) + γR(t) = Γ. (C.13)

Hence we solve for mt, leaving Γ constant as follows,

Γ = mt(1−mt)γ
∗(t) +mt(γS(t)− γR(t)) + γR(t)

Γ− γR(t) = mt(γS(t)− γR(t) + γ∗(t))−m2
tγ
∗(t).

Which solution is given by the quadratic formula, yielding

mt =
b∓

√
b2 + 4γ∗(t)(γR(t)− Γ)

2γ∗(t)
when b = γS(t)− γR(t) + γ∗(t).(C.14)
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Appendix D

Tables and Figures of Chapter 1

Table D.1: Estimates of the biases due to the cross-sectional dispersion of betas
and weight concentration: This table contains a summary of the distribution of the
following time series: the cross-sectional dispersion of betas CSV βt , estimated with respect to
the CAPM at the end of every month using daily returns; the average idiosyncratic variance
σ2
εt with respect to the CAPM; the product of the average return of the market portfolio

squared, F 2
t , and the beta dispersion, CSV βt ; the proportion of the product F 2

t CSV
β
t to σ2

εt
and the proportion of

∑
w2
itσ

2
εit to σ2

εt . The upper panel corresponds to the equal-weight
scheme (CSV EW ) and the lower panel to the market-cap weighting (CSV CW ). All figures
are daily. The period is July 1963 to December 2006.

Equal-Weighted Q2.5 Q25 Q50 Q75 Q97.5

CSV β
t 0.282 0.970 1.563 3.022 11.437

σ2
εt(%) 0.043 0.065 0.103 0.241 0.485

F 2
t CSV

β
t (%) 6.57e-07 6.92e-05 3.84e-04 0.001 0.005

F 2
t CSV

β

σ2
εt

(%) 0.001 0.078 0.348 0.890 3.240∑
w2
itσ

2
εit

σ2
εt

(%) 0.014 0.020 0.030 0.054 0.154

Cap-Weighted Q2.5 Q25 Q50 Q75 Q97.5

CSV β
t 0.075 0.309 0.451 0.704 3.079

σ2
εt(%) 0.009 0.020 0.030 0.042 0.153

F 2
t CSV

β
t (%) 1.83e-07 2.30e-05 1.09e-04 2.77e-04 0.001

F 2
t CSV

β

σ2
εt

(%) 4.85e-04 0.080 0.351 0.930 3.472∑
w2
itσ

2
εit

σ2
εt

(%) 0.173 0.281 0.426 0.637 1.463
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Table D.2: Total bias associated with CSV: This table reports the output summary
of the regression CSV wt

t = bias + ψσ2
model (wt) + ζt, where σ2

model (wt) represents monthly
estimates of the weighted average idiosyncratic variance estimated using the corresponding
model (either CAPM or FF). The average and the CSV are computed with either the
cap-weighted scheme (CW) or the equal-weighted one (EW). The period is July 1963 to
December 2006.

CAPMEW FFEW CAPMCW FFCW

Bias 1.29e-05 2.23e-05 -2.09e-05 -3.74e-05
NW t-stat 1.986 2.382 -2.849 -4.767
Std. dev. 3.05e-06 5.86e-06 2.04e-06 3.50e-06

ψ 0.983 0.988 1.125 1.242
NW t-stat 153.819 100.162 39.259 39.226
Std. dev. 0.002 0.003 0.005 0.009

R
2
(%) 99.866 99.503 98.946 97.117
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Table D.4: Comparison of daily measures of idiosyncratic variance: The upper
panel of this table contains the annualized mean and standard deviation of the daily time
series for the CSV and the average idiosyncratic variance based on the Fama-French model
as in equations (1.4) and (1.11) using both weighting schemes. The lower panel presents the
cross-correlation matrix among these variables. The period is January 1964 to December
2006.

CSV EW FFEW CSV CW FFCW

Mean 0.384 0.383 0.085 0.078
Std.Dev. 0.021 0.019 0.005 0.004

Correlation CSV EW FFEW CSV CW FFCW

100.00 82.63 60.33 63.96
100.00 52.12 72.55

100.00 73.95
100.00
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Table D.5: Regime-Switching Parameters: This table contains the parameter esti-
mates of the Markov regime-switching model specified in equation 1.14 for the CSV and
the average idiosyncratic variance based on the FF model as in equations (1.4) and (1.11)
using both, equal-weighted and cap-weighted schemes. The upper panel corresponds to
monthly estimates and the lower panel to daily estimates. µi is the average level of the
variable on regime i, σi is the standard deviation level of the variable on regime i, φ is the
autocorrelation coefficient, p and q are the probabilities of remaining in regimes 1 and 2
correspondingly. The period is January 1964 to December 2006.

Monthly series CSV EW FFEW CSV CW FFCW

µ1 0.401 0.363 0.107 0.115
µ2 0.299 0.275 0.065 0.061
σ1 0.067 0.062 0.029 0.021
σ2 0.010 0.009 0.004 0.003
φ 0.980 0.981 0.839 0.839
p 0.839 0.823 0.857 0.906
q 0.963 0.951 0.980 0.990

Daily series CSV EW FFEW CSV CW FFCW

µ1 0.446 0.261 0.110 0.048
µ2 0.304 0.262 0.064 0.048
σ1 0.036 2.04e-04 0.009 4.89e-05
σ2 0.003 0.002 0.001 3.60e-04
φ 0.965 1.000 0.825 1.004
p 0.695 0.962 0.778 0.870
q 0.956 0.838 0.970 0.809
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Table D.6: Correlations between the monthly series of several measures of cross-
sectional variance and economic variables. The sample period is January 1990 to
December 2006.

CSV EW CSV CW CSV EW+ CSV EW−

Consumption-Vol 0.401 0.241 0.184 0.346
Credit-Spread 0.177 0.268 0.098 0.165
Term-Spread -0.086 -0.135 -0.107 -0.219
Inflation-Vol -0.367 0.019 -0.137 -0.097
T-bill Rate 0.302 -0.043 0.091 0.164
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Table D.8: Daily predictability Regression on CRSP broad market portfolio
with average idiosyncratic variance measures: The upper panel presents the results
of a one-day ahead predictive regression of the excess equal-weighted daily portfolio re-
turns, denoted by rEW , on the daily lagged equal-weighted cross-sectional variance de-
noted as CSV EW estimated as in equation (1.4) for three sample periods. The lower panel
presents the results of the predictive regression on the cap-weighted market portfolio using
the cap-weighted CSV. The intercept, the regression coefficient corresponding to the CSV,
the standard error of the regression coefficients denoted by std, the Newey-West corrected

t-stats (30 lags) and the adjusted coefficient of determination denoted by R
2

are reported.
The sample periods are 1963:07 to 1999:12, 1963:07 to 2001:12 and 1963:07 to 2006:12.

Daily series 63:07-99:12 63:07-01:12 63:07-06:12

Forecasting rEW CSV EW CSV EW CSV EW

Intercept -1.58e-04 -1.40e-04 -1.29e-05
NW t-stat -0.785 -0.714 -0.071

Std 1.09e-04 1.10e-04 1.04e-04
Coefficient 0.544 0.483 0.411
NW t-stat 4.711 4.515 4.000

Std 0.060 0.055 0.051

R
2
(%) 0.883 0.788 0.573

Forecasting rCW CSV CW CSV CW CSV CW

Intercept -0.001 -1.88e-04 -1.65e-04
NW t-stat -3.521 -0.791 -0.737

Std 1.41e-04 1.23e-04 1.19e-04
Coefficient 3.404 1.189 1.151
NW t-stat 5.919 1.948 1.966

Std 0.385 0.251 0.248

R
2
(%) 0.831 0.220 0.186
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Table D.13: Predictability Regression on CRSP broad market index with right
and left CSV measures: The upper panel presents the results of a one-day, one-month,
one quarter and one year ahead predictive regressions of the excess equal-weighted portfolio
returns, denoted by rEW , on the daily or monthly (correspondingly) lagged equal-weighted
cross-sectional variance of the returns to the right (higher than) of the cross-sectional dis-
tribution mean (which is actually rEWt ) denoted as CSV + and the cross-sectional variance
of the returns to the left (lower than) the mean of the cross-sectional distribution rEWt ,
denoted as CSV −. The lower panel presents the results of the predictive regressions on
the cap-weighted market index using the cap-weighted CSV measures as predictors. The
intercept, the regression coefficients corresponding to the CSV + and CSV −, the standard
error of the regression coefficients denoted by Std, the Newey-West corrected t-stats and

the adjusted coefficient of determination denoted by R
2

are reported. The sample period is
1963:07 to 2006:12.

Forecasting rEW DailyEW MonthlyEW QuarterlyEW AnnualEW

Intercept 0.001 0.003 0.014 0.050
NW t-stat 3.944 0.727 0.822 1.069

Std 1.10e-04 0.004 0.017 0.076
CSV + 0.488 0.375 -0.042 -0.288

NW t-stat 3.360 2.400 -0.282 -0.845
Std 0.038 0.161 0.190 0.403

CSV − -1.200 -0.486 0.824 1.701
NW t-stat -3.551 -1.129 0.842 1.346

Std 0.142 0.432 0.902 1.610

R
2
(%) 1.552 1.114 -0.595 -1.862

Forecasting rCW DailyCW MonthlyCW QuarterlyCW AnnualCW

Intercept -1.12e-04 0.008 0.020 0.107
NW t-stat -0.588 2.753 2.656 2.147

Std 1.16e-04 0.003 0.010 0.043
CSV + 4.942 0.071 -0.163 -2.354

NW t-stat 3.546 0.054 -0.254 -1.669
Std 0.528 1.983 0.914 1.824

CSV − -2.842 -1.302 -0.870 1.227
NW t-stat -2.736 -0.879 -0.672 0.869

Std 0.669 2.233 1.477 2.527

R
2
(%) 0.785 -0.069 -0.849 1.215
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Table D.14: Daily and Monthly predictability with skewness for rEW : This table
presents the results of one-day and one-month ahead predictive regressions of the excess
equal-weighted daily portfolio returns, denoted by rEW . The first explanatory variable is
lagged estimate of the equal-weighted CSV estimated as in equation (1.4); The second ex-
planatory variable is the robust estimate of skewness estimated as in equations (1.20). The
intercept, the corresponding regression coefficients together with their Newey-West auto-
correlation corrected t-stats (with 30 lags for daily and 12 lags for monthly) and standard

errors are reported. R
2

denotes adjusted coefficient of determination. The regression is
reported for the main sample period from 1963:07 to 2006:12.

Daily horizon Coeff. t-stat Std.Dev. R
2
(%)

Intercept -3.7e-005 -0.234 0.000 5.833
CSV EW 0.402 4.013 0.053
Skewness 0.004 20.190 0.000

Monthly horizon Coeff. t-stat Std.Dev. R
2
(%)

Intercept 0.000 0.107 0.004 4.587
CSV EW 0.250 2.518 0.102
Skewness 0.078 4.458 0.017
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Table D.15: CSV quintiles premium. The upper panel present the results for equal-
weighted quintile portfolios and the lower panel on cap-weighted quintile portfolios. The
first column presents the (arithmetic) average return annualized on quintiles formed at the
end of every month on CSV EW ’s coefficient estimated with one month of daily returns.
The second column presents the average return difference of the first quintile with every
other quintile. The third column presents the p-value of the test of the difference to be
significantly positive. The sample period is July 1963 to December 2006.

EW Quintiles Quintile Return Q1 −Qi p-value(%)

Q1 0.390 0.00e+00
Q2 0.083 0.307 0.00e+00
Q3 0.044 0.346 0.00e+00
Q4 0.050 0.340 0.00e+00
Q5 0.237 0.154 0.130

CW Quintiles Quintile Return Q1 −Qi p-value(%)

Q1 0.383 0.00e+00
Q2 0.087 0.296 0.00e+00
Q3 0.036 0.347 0.00e+00
Q4 0.047 0.335 0.00e+00
Q5 0.247 0.136 0.725
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Table D.16: Fama-MacBeth regression. This table displays the average values, stan-
dard errors and Newey-West corrected t-stats for the coefficients in the Fama-MacBeth
regression run every month in the sample, using the 3 Fama-French factors and CSV EW

on 100 and 25 size/book2market Fama-French equally-weighted (first two panels) and cap-
weighted (last two panels) portfolios. It also displays the average R2 across subsamples of
Fama-MacBeth regressions. The sample period is July 1963 to December 2006.

100-EW Portfolios Intercept XMKT SMB HML CSV EW R̄2(%)

γ 0.223 -0.067 0.029 0.048 0.005 24.657
SE 0.024 0.016 0.012 0.012 0.002

tstat 9.222 -4.173 2.320 3.916 2.847

25-EW Portfolios Intercept XMKT SMB HML CSV EW R̄2(%)

γ 0.278 -0.133 0.042 0.064 0.009 51.962
SE 0.028 0.021 0.017 0.016 0.003

tstat 9.969 -6.447 2.480 3.927 2.703

100-CW Portfolios Intercept XMKT SMB HML CSV EW R̄2(%)

γ 0.155 -0.007 0.004 0.037 0.003 24.262
SE 0.023 0.017 0.012 0.013 0.002

tstat 6.896 -0.421 0.323 2.762 1.909

25-CW Portfolios Intercept XMKT SMB HML CSV EW R̄2(%)

γ 0.175 -0.034 0.010 0.048 0.004 50.815
SE 0.024 0.021 0.016 0.016 0.003

tstat 7.417 -1.624 0.625 2.910 1.395
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Figure D.1: Cap-weighted idiosyncratic variances, daily estimation: The white
line is the time series of the cap-weighted idiosyncratic variance with respect to the FF
model estimated daily as in equation 1.11. The darker line shows the time series of the cap-
weighted version of CSV estimated daily as in equation 1.5. The sample period is January
1964 to December 2006.
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Figure D.2: Equally-weighted idiosyncratic variances, daily estimation: The
white line is the time series of the equal-weighted average idiosyncratic variance with respect
to the FF model estimated daily similar to equation 1.11. The darker line shows the time
series of the CSV EW estimated daily as in equation 1.4. The sample period is January 1964
to December 2006.
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Figure D.3: Regime Switching filtered probabilities and cap-weighted CSV ,
monthly estimation: The red line plots the filtered probability of the CSV CW being
in the high-mean high-variance regime of a Markov regime-switching model specified in
equation 1.14. The blue line shows the monthly time series of the CSV CW estimated at
the end of each month as the average of the daily estimations (as in equation 1.4) during
the month. The shaded areas are the NBER recessions. The sample period is July 1963 to
December 2006.
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Figure D.4: Regime Switching filtered probabilities and equal-weighted CSV
monthly estimation: The red line plots the filtered probability of the CSV EW being
in the high-mean high-variance regime of a Markov regime-switching model specified in
equation 1.14. The blue line shows the monthly time series of the CSV EW estimated at
the end of each month as the average of the daily estimations (as in equation 1.4) during
the month. The shaded areas are the NBER recessions. The sample period is July 1963 to
December 2006.
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Figure D.5: CSV EW and Consumption Volatility:Monthly time series of CSV EW on
the right-hand axis and Consumption Volatility on the left-hand axis. The sample period
is January 1990 to December 2006.
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Figure D.6: CSV EW and Inflation Volatility: Monthly time series of CSV EW on the
right-hand axis and Inflation Volatility on the left-hand axis. The sample period is January
1990 to December 2006.

155



Appendix E

Tables and Figures of Chapter 2

Table E.1: Persistence Properties of Adjusted Dividend-Price Ratio, Broad Market CRSP
VW index. This table displays the autocorrelation coefficients of first and second order
and the augmented Dickey-Fuller test of a unit root with the respective p-values and stan-
dard errors for the unadjusted d-p series, the adjusted d-p series using the Lettau and van
Nieuwerburgh (2008) adjustment with one and two breaks and the d-p series adjusted using
the BCP posterior mean. The last line of each panel present the same statistics for the BCP
posterior mean of the d-p ratio. The upper panel present the figures for the annual series
and the lower panel for the quarterly series. The sample period is 1927 to 2010.

Annual data AC(1) AC(2) ADF test p-value Std.dev.
dp unadjusted 0.925 0.848 -1.508 0.123 0.429

d̃p, 1 break 0.775 0.555 -3.209 0.002 0.256

d̃p, 2 break 0.657 0.300 -4.044 0.001 0.204

d̃p BCP-adjusted 0.019 -0.187 -8.973 0.001 0.069
Posterior Mean 0.958 0.898 0.587 0.841 0.407

Quarterly data AC(1) AC(2) ADF test p-value Std.dev.
dp unadjusted 0.888 0.886 -4.275 0.001 0.437

d̃p, 1 break 0.729 0.726 -7.214 0.001 0.283

d̃p, 2 break 0.627 0.620 -8.702 0.001 0.241

d̃p BCP-adjusted -0.135 0.097 -20.840 0.001 0.111
Posterior Mean 0.975 0.960 0.280 0.754 0.410
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Table E.2: Predictability Regression with adjusted log d-p, Broad Market CRSP VW
index. This table present the summary statistics of the predictive regression using the
unadjusted d-p series and the adjusted series using 1 and two breaks for the mean of the
predictor, as in Lettau and van Nieuwerburgh (2008) and using the BCP adjustment.The
upper panel present the figures using the annual series and the lower panel using the quar-
terly series to predict the return of the market one period ahead. The sample period is 1927
to 2010.

Annual data α t-stat β t-stat R2(%)
dp unadjusted 0.089 4.295 0.095 2.281 4.033

d̃p, 1 break 0.090 4.321 0.241 4.489 9.473

d̃p, 2 break 0.090 4.653 0.387 4.579 15.270

d̃p BCP-adjusted 0.089 4.651 1.284 7.770 19.178
Posterior Mean 0.317 2.116 0.068 1.545 1.891

Quarterly data α t-stat β t-stat R2(%)
dp unadjusted 0.023 3.777 0.021 1.332 0.726

d̃p, 1 break 0.023 3.746 0.047 1.926 1.510

d̃p, 2 break 0.023 3.758 0.071 2.665 2.577

d̃p BCP-adjusted 0.023 3.753 0.226 3.843 5.432
Posterior Mean 0.057 0.693 0.007 0.427 0.077
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Table E.3: Out-of-Sample return prediction, Annual data, Broad Market CRSP VW
index. The first column presents the R2

MZ , the second column the OOS R2 and the third
column the difference in utility gains of using the return forecast minus the utility of using
the prevailing historical average for a mean-variance investor with risk aversion parameter
γ = 3 and stock index allocation limits of [0%, 150%]. The prevailing historical average’
coefficient of the MZ regressions were negative, hence the R2

MZ for the historical average
are meaningless.

OOS CRSPVW Calibration: 1927-1965
OS period: 1966-2010

R2
MZ R2

OS ∆
dp unadjusted 5.54 -3.04 -0.10

dp with Shrinkage 2.97 -1.21 -0.15

d̃p BCP-adjusted 7.47 8.12*** 0.81

OOS CRSPVW Calibration: 1927-1976
OS period: 1977-2010

R2
MZ R2

OS ∆
dp unadjusted 1.32 -13.42 -0.51

dp with Shrinkage 0.24 -9.46 -0.58

d̃p BCP-adjusted 3.18 2.31* 0.25

OOS CRSPVW Calibration: 1927-1947
OS period: 1948-2010

R2
MZ R2

OS ∆
dp unadjusted 5.80 -8.47 0.07

dp with Shrinkage 4.04 -3.96 -0.08

d̃p BCP-adjusted 4.30 4.63** 0.36
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Table E.4: Pseudo-Out-of-Sample return prediction, Annual data, Broad Market CRSP
VW index. The first column presents the R2

MZ , the second column the OOS R2 and the
third column the difference in utility gains of using the return forecast minus the utility
of using the prevailing historical average for a mean-variance investor with risk aversion
parameter γ = 3 and stock index allocation limits of [0%, 150%]. The prevailing historical
average’ coefficient of the MZ regressions were negative, hence the R2

MZ for the historical
average are meaningless.

Pseudo-OOS Calibration: 1927-1965
OS period: 1966-2010

R2
MZ R2

OS ∆

d̃p, 1 break 14.04 12.9*** 1.16

d̃p, 2 breaks 15.44 14.9*** 1.91

d̃p BCP-adjusted 19.61 20*** 3.03

Pseudo-OOS Calibration: 1927-1976
OS period: 1977-2010

R2
MZ R2

OS ∆

d̃p, 1 break 9.66 9.87*** 1.19

d̃p, 2 breaks 8.15 1.99 1.26

d̃p BCP-adjusted 18.36 18.3*** 2.87

Pseudo-OOS Calibration: 1927-1947
OS period: 1948-2010

R2
MZ R2

OS ∆

d̃p, 1 break 8.74 3.85** 0.97

d̃p, 2 breaks 14.27 15.5*** 1.93

d̃p BCP-adjusted 22.07 22.8*** 2.89

159



Table E.5: Pseudo-Out-of-Sample return prediction, Quarterly data, Broad Market CRSP
VW index. The first column presents the R2

MZ , the second column the OOS R2 and the
third column the difference in utility gains of using the return forecast minus the utility
of using the prevailing historical average for a mean-variance investor with risk aversion
parameter γ = 3 and stock index allocation limits of [0%, 150%]. The prevailing historical
average’ coefficient of the MZ regressions were negative, hence the R2

MZ for the historical
average are meaningless.

Pseudo-OOS Calibration: 1927:3-1965:3
OS period: 1965:6-2010:12

R2
MZ R2

OS ∆

d̃p, 1 break 3.70 3.24*** 0.89

d̃p, 2 breaks 4.89 4.99*** 1.52

d̃p BCP-adjusted 8.98 8.4*** 2.37

Pseudo-OOS Calibration: 1927:3-1976:3
OS period: 1976:6-2010:12

R2
MZ R2

OS ∆

d̃p, 1 break 3.00 3*** 0.90

d̃p, 2 breaks 4.01 4.57*** 1.37

d̃p BCP-adjusted 6.70 6.83*** 1.82

Pseudo-OOS Calibration: 1927:3-1947:3
OS period: 1947:6-2010:12

R2
MZ R2

OS ∆

d̃p, 1 break 2.35 2.46*** 0.56

d̃p, 2 breaks 4.37 4.96*** 1.37

d̃p BCP-adjusted 5.42 6.01*** 2.09
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Table E.6: Out-of-Sample return prediction, Annual data, S&P 500 index and equal-
weighted CRSP broad market index. The first column presents the R2

MZ , the second column
the OOS R2 and the third column the difference in utility gains of using the return forecast
minus the utility of using the prevailing historical average for a mean-variance investor with
risk aversion parameter γ = 3 and stock index allocation limits of [0%, 150%]. The prevailing
historical average’ coefficient of the MZ regressions were negative, hence the R2

MZ for the
historical average are meaningless.

OOS SP500 Calibration: 1927-1965
OS period: 1966-2010

R2
MZ R2

OS ∆
dp unadjusted 5.19 -2.91 -0.13

dp with Shrinkage 3.12 -0.92 -0.10

d̃p BCP-adjusted 4.16 5.21** 0.66

OOS CRSPEW Calibration: 1927-1965
OS period: 1966-2010

R2
MZ R2

OS ∆
dp unadjusted 4.05 -0.57 -0.30

dp with Shrinkage 0.19 -0.21 -0.25

d̃p BCP-adjusted 2.60 3.79** 0.20
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Table E.7: Out-of-Sample return prediction, Annual data, on Fama-French Size Portfolios.
The top panel presents the R2

MZ , the middle panel the OOS R2 and the bottom panel the
difference in utility gains of using the return forecast minus the utility of using the prevailing
historical average for a mean-variance investor with risk aversion parameter γ = 3 and stock
index allocation limits of [0%, 150%]. The prevailing historical average’ coefficient of the
MZ regressions were negative, hence the R2

MZ for the historical average are meaningless.

R2
MZ Calibration: 1927-1965

OS period: 1966-2010
Small Medium Big

dp unadjusted 2.58 5.14 25.44
dp with Shrinkage 1.91 6.21 23.73

d̃p BCP-adjusted 9.75 15.13 23.14

R2
OS Calibration: 1927-1965

OS period: 1966-2010
Small Medium Big

dp unadjusted 0.40 -1.79 -6.00
dp with Shrinkage 0.16 -0.72 -3.36

d̃p BCP-adjusted -4.15 -2.73 2.01*

∆ Calibration: 1927-1965
OS period: 1966-2010

Small Medium Big
dp unadjusted -0.21 -0.13 -0.39

dp with Shrinkage -0.28 -0.31 -0.44

d̃p BCP-adjusted -0.72 -0.33 0.67
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Table E.8: Out-of-Sample return prediction, Annual data, on Fama-French Book-to-
Market Portfolios. The top panel presents the R2

MZ , the middle panel the OOS R2 and the
bottom panel the difference in utility gains of using the return forecast minus the utility
of using the prevailing historical average for a mean-variance investor with risk aversion
parameter γ = 3 and stock index allocation limits of [0%, 150%]. The prevailing historical
average’ coefficient of the MZ regressions were negative, hence the R2

MZ for the historical
average are meaningless.

R2
MZ Calibration: 1927-1965

OS period: 1966-2010
Low Medium High

dp unadjusted 2.59 9.49 5.48
dp with Shrinkage 7.82 6.88 4.84

d̃p BCP-adjusted 12.69 7.74 14.07

R2
OS Calibration: 1927-1965

OS period: 1966-2010
Low Medium High

dp unadjusted -4.66 -1.42 0.11
dp with Shrinkage -2.69 -0.88 -0.61

d̃p BCP-adjusted 4.46** -2.60 2.94*

∆ Calibration: 1927-1965
OS period: 1966-2010

Low Medium High
dp unadjusted 0.04 0.18 -0.15

dp with Shrinkage -0.06 -0.17 -0.10

d̃p BCP-adjusted 0.89 -0.58 -0.12
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Table E.9: Out-of-Sample return prediction of CRSP VW Index, Annual Data, using
Markov Switching model with two and three regimes. The first column presents the R2

MZ ,
the second column the OOS R2 and the third column the difference in utility gains of using
the return forecast minus the utility of using the prevailing historical average for a mean-
variance investor with risk aversion parameter γ = 3 and stock index allocation limits of
[0%, 150%].

True OOS CRSPVW Calibration: 1927-1965
OS period: 1966-2010

R2
MZ R2

OS ∆
Unadjusted dp 5.54 -3.04 -0.10

Two States, smoothed 16.87 -6.51 -0.92
Three states, smoothed 0.00 -2.69 -0.45

Two States, unsmoothed 2.29 -5.73 -0.59
Three states, unsmoothed 0.58 -7.77 -0.63

True OOS CRSPVW Calibration: 1927-1976
OS period: 1977-2010

R2
MZ R2

OS ∆
Unadjusted dp 1.32 -13.42 -0.51

Two States, smoothed 17.23 -6.82 -1.12
Three states, smoothed 3.72 -8.92 -0.97

Two States, unsmoothed 6.45 -6.05 -0.91
Three states, unsmoothed 5.62 -12.23 -1.26

True OOS CRSPVW Calibration: 1927-1947
OS period: 1948-2010

R2
MZ R2

OS ∆
Unadjusted dp 5.80 -8.47 0.07

Two States, smoothed 0.89 -5.45 -0.39
Three states, smoothed 0.09 -8.13 -0.28

Two States, unsmoothed 0.33 -15.55 0.20
Three states, unsmoothed 0.05 -29.65 -0.34
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Table E.10: Out-of-Sample return prediction of CRSP EW Index, Annual Data, using
Markov Switching model with two and three regimes. The first column presents the R2

MZ ,
the second column the OOS R2 and the third column the difference in utility gains of using
the return forecast minus the utility of using the prevailing historical average for a mean-
variance investor with risk aversion parameter γ = 3 and stock index allocation limits of
[0%, 150%].

True OOS CRSPEW Calibration: 1927-1965
OS period: 1966-2010

R2
MZ R2

OS ∆
Unadjusted dp 4.05 -0.57 -0.30

Two States, smoothed 6.50 -4.02 -0.30
Three states, smoothed 2.43 -1.46 -0.25

Two States, unsmoothed 2.37 -6.91 -0.25
Three states, unsmoothed 1.27 -4.62 -0.48

True OOS CRSPEW Calibration: 1927-1976
OS period: 1977-2010

R2
MZ R2

OS ∆
Unadjusted dp 1.08 -8.30 -0.92

Two States, smoothed 13.38 -4.23 -0.22
Three states, smoothed 5.79 -4.10 -0.45

Two States, unsmoothed 7.84 -8.08 -0.46
Three states, unsmoothed 0.38 -6.65 -0.85

True OOS CRSPEW Calibration: 1927-1947
OS period: 1948-2010

R2
MZ R2

OS ∆
Unadjusted dp 1.96 -0.51 -0.18

Two States, smoothed 1.23 -4.59 -0.07
Three states, smoothed 2.85 -3.47 -0.44

Two States, unsmoothed 0.46 -11.22 0.12
Three states, unsmoothed 0.05 -5.70 -0.21
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Table E.11: Pseudo-OOS prediction test of CRSP VW Index, Annual Data, using Markov
Switching model with two and three regimes. The first column presents the R2

MZ , the
second column the OOS R2 and the third column the difference in utility gains of using
the return forecast minus the utility of using the prevailing historical average for a mean-
variance investor with risk aversion parameter γ = 3 and stock index allocation limits of
[0%, 150%].

Pseudo OOS CRSPVW Calibration: 1927-1965
OS period: 1966-2010

R2
MZ R2

OS ∆
Unadjusted dp 5.54 -3.04 -0.10

Two States, smoothed 16.33 14.00 1.08
Three states, smoothed 14.37 14.05 0.86

Two States, unsmoothed 9.67 6.22 0.44
Three states, unsmoothed 4.89 2.99 1.06

Pseudo OOS CRSPVW Calibration: 1927-1976
OS period: 1977-2010

R2
MZ R2

OS ∆
Unadjusted dp 1.32 -13.42 -0.51

Two States, smoothed 12.30 11.53 1.08
Three states, smoothed 13.03 10.46 0.48

Two States, unsmoothed 4.05 0.44 0.23
Three states, unsmoothed 0.79 -11.32 0.07

Pseudo OOS CRSPVW Calibration: 1927-1947
OS period: 1948-2010

R2
MZ R2

OS ∆
Unadjusted dp 5.80 -8.47 0.07

Two States, smoothed 9.52 4.73 0.91
Three states, smoothed 15.53 15.81 1.23

Two States, unsmoothed 6.60 -4.01 0.45
Three states, unsmoothed 5.87 1.98 0.95
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Table E.12: Pseudo-OOS prediction test of CRSP EW Index, Annual Data, using Markov
Switching model with two and three regimes. The first column presents the R2

MZ , the
second column the OOS R2 and the third column the difference in utility gains of using
the return forecast minus the utility of using the prevailing historical average for a mean-
variance investor with risk aversion parameter γ = 3 and stock index allocation limits of
[0%, 150%].

Pseudo OOS CRSPEW Calibration: 1927-1965
OS period: 1966-2010

R2
MZ R2

OS ∆
Unadjusted dp 4.05 -0.57 -0.30

Two States, smoothed 9.59 5.51 1.58
Three states, smoothed 13.81 14.59 0.86

Two States, unsmoothed 6.99 7.01 0.64
Three states, unsmoothed 0.50 2.21 0.08

Pseudo OOS CRSPEW Calibration: 1927-1976
OS period: 1977-2010

R2
MZ R2

OS ∆
Unadjusted dp 1.08 -8.30 -0.92

Two States, smoothed 7.26 -11.82 0.41
Three states, smoothed 3.73 3.68 -0.57

Two States, unsmoothed 6.49 1.08 -0.13
Three states, unsmoothed 1.69 2.78 0.01

Pseudo OOS CRSPEW Calibration: 1927-1947
OS period: 1948-2010

R2
MZ R2

OS ∆
Unadjusted dp 1.96 -0.51 -0.18

Two States, smoothed 7.72 0.47 1.83
Three states, smoothed 11.05 12.60 0.74

Two States, unsmoothed 6.98 6.94 0.51
Three states, unsmoothed 0.19 0.03 -0.12
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Table E.13: Out-of-Sample return prediction of CRSP VW Index, Quarterly Data, using
Markov Switching model with two and three regimes. The first column presents the R2

MZ ,
the second column the OOS R2 and the third column the difference in utility gains of using
the return forecast minus the utility of using the prevailing historical average for a mean-
variance investor with risk aversion parameter γ = 3 and stock index allocation limits of
[0%, 150%].

True OOS CRSPVW Calibration: 1927:3-1965:3
OS period: 1965:6-2010:12

R2
MZ R2

OS ∆
Unadjusted dp 1.29 0.47 -0.03

Two States, smoothed 4.01 -0.78 -0.21
Three states, smoothed 1.37 -1.11 -0.32

Two States, unsmoothed 0.02 -0.30 -0.16
Three states, unsmoothed 1.17 0.69 -0.02

True OOS CRSPVW Calibration: 1927:3-1976:3
OS period: 1976:6-2010:12

R2
MZ R2

OS ∆
Unadjusted dp 0.77 -0.98 -0.31

Two States, smoothed 3.73 -0.68 -0.19
Three states, smoothed 1.31 -1.11 -0.36

Two States, unsmoothed 0.02 -0.99 -0.20
Three states, unsmoothed 0.70 -0.18 -0.17

True OOS CRSPVW Calibration: 1927:3-1947:3
OS period: 1947:6-2010:12

R2
MZ R2

OS ∆
Unadjusted dp 1.23 0.16 -0.09

Two States, smoothed 1.07 -1.58 -0.24
Three states, smoothed 1.63 -1.77 -0.34

Two States, unsmoothed 0.19 -0.30 0.05
Three states, unsmoothed 0.85 0.24 0.11
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Table E.14: Pseudo-OOS prediction test of CRSP VW Index, Quarterly Data, using
Markov Switching model with two and three regimes. The first column presents the R2

MZ ,
the second column the OOS R2 and the third column the difference in utility gains of using
the return forecast minus the utility of using the prevailing historical average for a mean-
variance investor with risk aversion parameter γ = 3 and stock index allocation limits of
[0%, 150%].

Pseudo OOS CRSPVW Calibration: 1927:3-1965:3
OS period: 1965:6-2010:12

R2
MZ R2

OS ∆
Unadjusted dp 1.29 0.47 -0.03

Two States, smoothed 3.65 3.03 0.71
Three states, smoothed 4.16 4.25 0.95

Two States, unsmoothed 3.61 2.85 0.55
Three states, unsmoothed 0.63 0.97 0.24

Pseudo OOS CRSPVW Calibration: 1927:3-1976:3
OS period: 1976:6-2010:12

R2
MZ R2

OS ∆
Unadjusted dp 0.77 -0.98 -0.31

Two States, smoothed 2.82 2.70 0.66
Three states, smoothed 3.14 2.91 0.54

Two States, unsmoothed 2.87 2.52 0.45
Three states, unsmoothed 0.50 0.82 0.16

Pseudo OOS CRSPVW Calibration: 1927:3-1947:3
OS period: 1947:6-2010:12

R2
MZ R2

OS ∆
Unadjusted dp 1.23 0.16 -0.09

Two States, smoothed 2.26 2.28 0.43
Three states, smoothed 3.01 2.92 0.79

Two States, unsmoothed 2.31 2.12 0.31
Three states, unsmoothed 0.10 0.68 0.14
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Figure E.1: Dividend-Price ratio, posterior mean and posterior change point
probability series. The upper panel of the figure plots the dividend price ratio (dots) and
the estimated posterior mean (straight line) using the Bayesian Change Point algorithm of
Barry and Hartigan (1993). The sample period is 1927 to 2010. The persistence of the
“regime” mean provide further evidence of strucutural changes in the ratio’s mean.
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Figure E.2: Predictive regression on market return using a growing window of data with
information available up to time t. The initial calibration sample is 1927 until 1965. Annual
data, Broad Market CRSP index.
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Figure E.3: Predictive regression on market return using a growing window of data with
information available up to time t. The initial calibration sample is 1927 until 1965. Quar-
terly data, Broad Market CRSP index.
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Figure E.4: Cumulative squared prediction errors of the prevailing mean minus the cumu-
lative squared prediction error of the predictive variable from the linear historical regressions.
The parameters are estimated using a growing window of data with information available
up to time t to predict the market return at time t+1. The initial calibration sample has
40 data points, making the first prediction from 1965 to 1966. Annual data, Broad Market
CRSP index.
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Figure E.5: Pseudo Out-of-sample test. Cumulative squared prediction errors of the
prevailing mean minus the cumulative squared prediction error of the predictive variable
from the linear historical regressions. Regression parameters are estimated each period
using a growing window of data. However, the posterior mean of the dp ratio is estimated
using the entire sample. The initial calibration sample has 40 data points, making the first
prediction from 1965 to 1966. Annual data, Broad Market CRSP index.
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Appendix F

Tables and Figures of Chapter 3

Table F.1: Backtests for the Growth Optimal Portfolio (GOP), the Growth Optimal
Portfolio Insurance strategy (GOPI), the CPPI and the underlying assets (Cash and Stocks).
The upper panel of the table presents the results for which the optimal multiplier and the
allocation of the GOP were estimated as in Equation (3.23) using the sample estimate over
the entire period and equal 1.6. The multiplier of the CPPI is given by Equation (3.28) and
estimated using the entire sample, and equal to 3.4. The lower panel presents the results
of an out-of-sample test in which the optimal multiplier and the allocation of the GOP
were estimated as in Equation (3.23) using the first half of the sample (1926:01-1968:05)
and the strategies performed over the second half of the available sample period (1968:06-
2010:12). The optimal multiplier in this case is equal to 1.7. The multiplier of the CPPI is
given by Equation (3.28) and estimated using the first half of the sample and equal to 3.4.
Return stands for the annualized geometric return average, Min represents the minimum
value ever attained by the portfolio for an initial value of 100 dollars of each strategy, Vol
is the annualized standard deviation of returns and MDD stands for Maximum draw-down.
All performance figures are presented in percentage terms.

Period: 01/1926-12/2010 GOP GOPI CPPI Cash Stocks
Return 11.27 7.88 3.58 3.71 9.62

Vol 29.50 12.73 4.60 0.88 18.86
MDD 95.56 51.45 48.46 0.00 83.72
Min 17.00 99.23 97.49 100.00 41.27

Period: 06/1968-12/2010 GOP GOPI CPPI Cash Stocks
Return 10.41 6.76 5.63 5.66 9.49

Vol 27.03 6.63 6.01 0.87 16.16
MDD 72.20 34.73 29.26 0.00 51.45
Min 39.17 100.00 99.53 100.00 70.28
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Table F.5: This table presents the distribution summary of the standard multiplier (equa-
tion (3.28)) from 100 Backtest exercises for which the starting dates are selected randomly
and performed over 5, 10 and 20 years horizons. The upper panel presents the result of
estimating the multiplier using the same sample period of each historical scenario (perfect
foresight). The lower panel presents the multiplier estimation using all data available before
the starting date of each of the backtest scenarios to estimate the multiplier (sample).

Perfect Max Multiplier Range
Min Median Max

5y 4.17 9.20 20.37
10y 4.17 7.48 16.36
20y 4.17 6.13 11.40

Sample Max Multiplier Range
Min Median Max

5y 3.41 3.41 3.41
10y 3.41 3.41 3.41
20y 3.41 3.41 3.41

179



Table F.6: This table presents the distribution summary of the standard multiplier (equa-
tion (3.23)) from 100 Backtest exercises for which the starting dates are selected randomly
and performed over 5, 10 and 20 years horizons. The upper panel presents the result of
estimating the multiplier using the same sample period of each historical scenario (perfect
foresight). The middle panel presents the multiplier estimation using the latest 10 years
of data available at the starting date of each backtest scenario. The lower panel present
the result corresponding to the dynamic estimate of the optimal multiplier. The dynamic
multiplier uses all available stock returns at the starting date of each simulated scenario
to fit a Dynamic Conditional Correlation model and forecast the conditional variance and
covariance parameters. The expected stock returns are estimated with a 10 year moving
average of past returns.

Perfect Optimal Multiplier Range
Min Median Max

5y 1.00 2.55 17.08
10y 1.00 2.84 12.68
20y 1.00 2.83 9.21

Sample Optimal Multiplier Range
Min Median Max

5y 1.00 2.68 10.34
10y 1.00 3.07 13.50
20y 1.00 1.97 13.00

Dynamic Optimal Multiplier Range
Min Median Max

5y 1.00 3.04 12.14
10y 1.00 3.10 12.41
20y 1.00 2.90 12.01
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Table F.7: Percentage of times that the Optimal Multiplier is lower or equal than the
Standard multiplier. This table displays the percentage of times that the Optimal Mul-
tiplier is lower or equal than the Standard multiplier for each of the different estimation
methodologies over 100 randomly selected Backtest exercises performed over 5, 10 and 20
years horizons. The upper panel compares the optimal multiplier estimated using the same
sample period of each historical scenario (perfect foresight). The first column compares the
optimal multiplier with the standard multiplier estimated using the entire sample period (de-
noted mall) while the second column with the standard multiplier estimated using the same
sample period of each historical scenario (perfect foresight). The middle panel compares the
optimal multiplier estimated using the latest 10 years of data available at the starting date
of each backtest scenario with the standard multiplier estimated using the whole sample
period (first column) and with the standard multiplier estimated using all available sample
before the starting date of each Backtest (second column), denoted m̂period. The lower
panel compares the optimal dynamic multiplier estimated using all available stock returns
at the starting date of each simulated scenario with mall (first column) and m̂period (second
column).

Perfect Percentage of Lower Multiplier
m∗ <= mall m∗ <= mperiod

5y 0.58 0.95
10y 0.66 0.99
20y 0.71 0.96

Sample Percentage of Lower Multiplier
m̂∗ <= mall m̂∗ <= m̂period

5y 0.70 0.64
10y 0.68 0.61
20y 0.69 0.68

Dynamic Percentage of Lower Multiplier
m̂∗t <= mall m̂∗t <= m̂period

5y 0.71 0.57
10y 0.66 0.55
20y 0.70 0.59
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Table F.8: Optimal Multiplier’s portfolio over-performance probability with Perfect Fore-
sight on parameter values and with Sample estimates. This table displays the over-
performance probability of the strategy defined by the optimal multiplier over the CPPI
strategy using the standard multiplier over 100 randomly selected Backtest exercises in the
available sample period and performed over 5, 10 and 20 years horizons. The upper panel
compares the optimal multiplier estimated using the same sample period of each historical
scenario (perfect foresight). The first column compares the optimal multiplier with the
standard multiplier estimated using the entire sample period (denoted mall) while the sec-
ond column with the standard multiplier estimated using the same sample period of each
historical scenario (perfect foresight). The middle panel compares the optimal multiplier
estimated using the latest 10 years of data available at the starting date of each backtest sce-
nario with the standard multiplier estimated using the whole sample period (first column)
and with the standard multiplier estimated using all available sample before the starting
date of each Backtest (second column), denoted m̂period. The lower panel compares the
optimal dynamic multiplier estimated using all available stock returns at the starting date
of each simulated scenario with mall (first column) and m̂period (second column).

Perfect Over Performance - Probability
mall =4.22 mperiod

5y 0.850 0.670
10y 0.680 0.540
20y 0.660 0.510

Sample Over Performance - Probability
mall =4.22 m̂period

5y 0.480 0.470
10y 0.430 0.420
20y 0.360 0.310

Dynamic Over-performance - Probability
mall =4.22 m̂period

5y 0.640 0.690
10y 0.620 0.720
20y 0.670 0.720

182



Table F.9: This table displays the average return of the strategies defined by the standard
and optimal multipliers over 100 randomly selected Backtest exercises in the available sample
period and performed over 5, 10 and 20 years horizons. The first column presents the results
corresponding to the optimal multiplier (either static or dynamic). The second column
presents the results corresponding to the standard multiplier estimated using the entire
sample period (denoted mall) while the third column presents the results corresponding to
the standard multiplier estimated using the same sample period of each historical scenario
(perfect foresight) or the data available at the starting date of each historical scenario
(sample estimate).

Perfect Average Return
m∗ mall =4.22 mperiod

5y 0.093 0.080 0.081
10y 0.091 0.089 0.090
20y 0.091 0.090 0.090

Sample Average Return
m̂∗ mall =4.22 m̂period

5y 0.070 0.080 0.075
10y 0.077 0.089 0.085
20y 0.076 0.090 0.093

Dynamic Average Return
m̂∗t mall =4.22 m̂period

5y 0.080 0.080 0.075
10y 0.091 0.089 0.085
20y 0.096 0.090 0.093
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Figure F.1: Impact of assets’ correlation in Portfolio’s value after 5 years with σS = 0.15,
σR = 0.05. The black surface draws the end of period value of a CPPI strategy with m = 4
and k = 0.9 as given by Equation (3.16). The red surface draws the end of period value of
a Fixed-Mix Strategy as given by Equation (3.15) with the same initial allocation: π = 0.4.
The upper panels of the figure correspond to negative and null correlation, i.e. ρ = {−0.5, 0}
and the lower panels to positive correlations, i.e. ρ = {0.5, 0.75}.
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Figure F.2: Cushion Growth Rate, Correlation and Optimal Multiplier. The dark line
represents the value of the Cushion’s growth rate for the optimal multiplier values cor-
responding to the different levels of the correlation coefficient ρ. The optimal multiplier
is given by Equation (3.4) and the following parameter values: µS = 0.08, σS = 0.15,
µR = 0.03, σR = 0.05 and ρ = [−1, 1]. The surface represents the Cushion’s growth rate for
different multiplier values, i.e. m = [1, 10] and correlations. This figure illustrates that for
uncorrelated assets, the choice of the multiplier becomes critical (surface) and the optimal
multiplier increases with correlation (dark line), everything else equal.
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Figure F.3: Cushion Growth Rate, Volatility and Optimal Multiplier. The dark line
represents the value of the Cushion’s growth rate for the optimal multiplier values corre-
sponding to the different levels of the Satellite’s volatility σS . The optimal multiplier is
given by Equation (3.4) and the following parameter values: µS = 0.08, σS = [0.05, 0.2],
µR = 0.03, σR = 0.05 and ρ = −0.025. The surface represents the Cushion’s growth rate for
different multiplier values, i.e. m = [1, 10] and volatilities. This figure illustrates that for
highly volatile assets, the choice of the multiplier becomes critical (surface) and the optimal
multiplier decreases with the volatility (dark line), everything else equal.
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Figure F.4: The green line represents the log of the cumulative returns of the Growth
Optimal Portfolio Insurance strategy (GOPI), the red line is the log of the cumulative
returns of the CPPI, the dark blue line corresponds to the Growth Optimal Portfolio (GOP)
and the light blue corresponds to Cash. The optimal multiplier and the allocation of the
GOP were estimated as in Equation (3.23) using the sample estimates of the entire sample
period. The multiplier of the CPPI is given by Equation (3.28) and estimated using the
entire sample (1925-2010).
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Figure F.5: The green line represents the log of the cumulative returns of the Growth
Optimal Portfolio Insurance strategy (GOPI), the red line is the log of the cumulative
returns of the CPPI, the dark blue line corresponds to the Growth Optimal Portfolio (GOP)
and the light blue corresponds to Cash. This is an out-of-sample test in which the optimal
multiplier and the allocation of the GOP were estimated as in Equation (3.23) using the
first half of the sample (1926:01-1968:05) and the strategies performed over the second half
of the available sample period (1968:06-2010:12). The multiplier of the CPPI is given by
Equation (3.28) and estimated using the first half of the sample.
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