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Abstract

The first paper provides formal arguments and empirical evidence that justi-
fies the use of the cross-sectional variance as a measure of average idiosyncratic
volatility. The observability at any frequency of this measure allows new results
on the relation of idiosyncratic risk and future returns. The paper shows that the
cross-sectional variance predicts the return of the equally-weighted market port-
folio over short horizons and that the predictability power of idiosyncratic risk is
further increased when adding a measure of cross-sectional skewness to the cross-
sectional variance factor in the predictive regressions. Finally, it provides evidence
that average idiosyncratic volatility is a positively rewarded risk factor.

The second paper proposes a method to estimate the structural breaks in
the mean of the dividend-price ratio. This bayesian technique incorporates the
uncertainty about the location and magnitude of the breaks and yields the current-
regime mean of this classic stock return’s predictor. Adjusting the dividend-price
ratio by its current regime mean, improves the explanatory power of the dividend-
price ratio of future returns in-sample, as well as its out-of-sample forecasting
ability to a very significant extent.

The third paper decomposes the growth rate of the standard portfolio insurance
strategy and unveils the (perhaps) surprising role that the correlation between the
underlying assets plays on the performance of this type of investment strategy.
The paper also introduces the growth optimal portfolio insurance strategy, which
combines the growth-rate maximization objective with the constraint of insuring a
fixed proportion of the portfolio, expressed in terms of the value of a given stochas-
tic benchmark. The results suggest that the growth optimal strategy outperforms

the equivalent standard parametrization of the strategy over long horizons.
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CHAPTER 1

Idiosyncratic Risk and the

Cross-Section of Stock Returns

René Garcia, Daniel Mantilla-Garcia and Lionel Martellini*

Idiosyncratic volatility has received considerable attention in the recent fi-
nancial literature. Whether average idiosyncratic volatility has recently
risen, whether it is a good predictor for aggregate market returns and
whether it has a positive relationship with expected returns in the cross-
section are still matters of active debate. We revisit these questions from
a novel perspective, by taking the cross-sectional variance of stock returns
as a measure of average idiosyncratic variance. Two key advantages of this
measure are its model-free nature and its observability at any frequency,
which allows us to present new results on the properties of daily idiosyn-
cratic volatility series. Through central limit arguments, we formally show
that the cross-sectional dispersion of stock returns can be regarded as a
consistent and asymptotically efficient estimator for idiosyncratic volatility.
We empirically confirm that the cross-sectional measure provides a very
good proxy for average idiosyncratic risk as implied by standard asset pric-
ing models and that it predicts well aggregate returns, especially at the
daily frequency. The predictability power of idiosyncratic risk is further
increased when adding a measure of cross-sectional skewness to the cross-
sectional variance factor. We finally provide evidence that idiosyncratic risk

is a positively rewarded risk factor.

Keywords: Idiosyncratic Risk, Cross-sectional Variance, Asset Pricing.
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Chapter 1

1.1 Introduction

The recent financial literature has paid considerable attention to idiosyncratic
volatility. Campbell et al. (2001) and Malkiel and Xu (2002) document that id-
iosyncratic volatility increased over time, while Brandt et al. (2009) show that
this trend completely reversed itself by 2007, falling below pre-1990s levels and
suggest that the increase in idiosyncratic volatility through the 1990s was not a
time trend but rather an “episodic phenomenon”. Bekaert et al. (2008) confirm
that there is no trend both for the United States and other developed countries.
A second fact about idiosyncratic volatility is also a source of contention. Goyal
and Santa-Clara (2003) put forward that idiosyncratic volatility has forecasting
power for future excess returns, while Bali et al. (2005) and Wei and Zhang (2005)
find that the positive relationship is not robust to the sample chosen. Finally,
while some economic theories suggest that idiosyncratic volatility should be pos-
itively related to expected returns, Ang et al. (2006) find that stocks with high
idiosyncratic volatility have low average returns.

An underlying issue in all these studies is the measurement of idiosyncratic
volatility. Campbell et al. (2001) use a value-weighted sum of individual firm id-
iosyncratic variances, computed as the variances of residuals of differences between
individual firm returns and the return of an industry portfolio to which the firm
belongs.! In addition to this measure, Bekaert et al. (2008) use also the individual
firm residuals of a standard Fama and French three-factor model to compute a
value-weighted aggregate idiosyncratic volatility.?

We revisit the issues regarding the dynamics and forecasting power of idiosyn-
cratic variance by using instead the cross-sectional dispersion of stock returns.

Through central limit arguments, we provide the formal conditions under which

IThis amounts to imposing unit beta restrictions in an industry-market model.
2This is also the approach followed in Ang et al. (2006).



Chapter 1

the cross-sectional variance (CSV) of stock returns asymptotically converges to-
wards the average idiosyncratic variance.! One key advantage of this measure is
obviously its observability at any frequency, while the previous approaches have
used monthly measures based on time series of daily returns. A second important
feature is that this measure is model-free, since we do not need to obtain residuals
from a particular model to compute it.

We confirm empirically that the cross-sectional variance is an excellent proxy
for the idiosyncratic variance obtained from the CAPM or the Fama-French mod-
els, as done in the previous literature. Correlations between the CSV measure
and the model-based measures estimated monthly, are always above 99%, whether
we consider equally-weighted or capitalization-weighted measures of idiosyncratic
variance. We also estimate a regime-switching model for CSV time series at both
daily and monthly frequencies and find remarkably coherent results in terms of pa-
rameter estimates. If we were to build a daily series of model-based idiosyncratic
variance, we will roll a window of one-month of daily data, which will result in a
very persistent time series. We construct such a daily series but could not find
any regimes. This reinforces the usefulness of the CSV to capture idiosyncratic
volatility at high frequency.

The regime-switching model indicates clearly that the CSV is counter-cyclical,
the dispersion of returns being high and quite variable when economic growth
subsides. We analyze further the relation between CSV and economic and financial
variables. In particular, we find that there exists a substantial correlation between
the equal-weighted CSV and consumption growth volatility. This is consistent

with Tédongap (2010) who provides strong evidence that consumption volatility

1Goyal and Santa-Clara (2003) argue informally that their measure can be interpreted as a
measure of cross-sectional dispersion of stock returns, but do not establish a formal link between
the two. In the practitioners’ literature (see DiBartolomeo (2006)), cross-sectional dispersion of
returns is called variety and is used in risk management and performance analysis.
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risk explains a high percentage of the cross-sectional dispersion in average stock
returns for the usual set of size and book-to-market portfolios that have been used
in tests of asset pricing models. In intertemporal asset pricing models of Bansal
and Yaron (2004), Bollerslev et al. (2009) and Bollerslev et al. (2009), consumption
growth volatility is a measure of economic uncertainty, which is a priced risk factor
that affects returns, therefore providing a rationale for the observed correlation
between CSV and consumption growth volatility.

On the debate about predictability of aggregate returns by the idiosyncratic
variance, we first verify empirically that the CSV measure leads to the same con-
clusions that other studies (in particular Goyal and Santa-Clara (2003) and Bali
et al. (2005)) have reported at the monthly frequency. Then, we report new re-
sults at the daily frequency. Specifically, we show that the predictive power of
idiosyncratic volatility is much stronger both quantitatively and statistically at
the daily frequency than at the monthly frequency. This relationship is robust to
the inclusion of return variance and option-implied variance as additional variables
in the predictive regressions.

We find that the relation is much stronger and stable across periods between
the equally-weighted measure of aggregate idiosyncratic volatility and the returns
on the equally-weighted index than for the market-cap weighted equivalents. Eco-
nomic sources of heterogeneity between firms, as diverse as they can be, are better
reflected in an equally weighted measure, all other things being equal. This argu-
ment is consistent with previous findings in Bali et al. (2005), who argue that the
relationship between equal-weighted average idiosyncratic risk and the market-cap
weighted index on the sample ending in 1999:12 is mostly driven by small stocks
traded in the NASDAQ. Of course, when the bubble burst, the market capitaliza-
tion of dot.com small firms was relatively more affected causing the relationship to

break down in 2000 and 2001. This effect is not prevalent in an equally-weighted
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index, for which the relationship remains strong.

However, the frequency at which predictive regressions are run has an impor-
tant impact on the results, since at lower frequencies we find little evidence of
predictability for the equally-weighted measure of CSV. At quarterly and annual
frequencies, we find that the capitalization-weighted measure of CSV is a very
strong predictor of the aggregate value-weighted returns. When using C'SV¢W
alone as a predictor we obtain remarkable R?s of 4% and 26% at quarterly and
annual frequencies, respectively. Adding the implied variance brings the R?s to al-
most 19% and 29%. In all these predictability regressions, the sign of the C'SVEW
variable is negative. We relate these results to potential explanations in terms of
missing factors, Guo and Savickas (2008), or dispersion of investors’ opinions, Cao
et al. (2005).

Finally, we unveil an asymmetry in the relationship between idiosyncratic vari-
ance and returns and show that the predictive power of specific risk is substantially
increased when a cross-sectional measure for idiosyncratic skewness is added as
explanatory variable. In fact, this is yet another key advantage of our measure
that it lends itself to straightforward extensions to higher-order moments.

The statistical significance of the moments of the cross-sectional distribution in
these predictive regressions of future returns is not the same as the cross-sectional
pricing of stocks or portfolios. However, as emphasized in Goyal and Santa-Clara
(2003), the two pieces of evidence are related. Using a Fama-MacBeth proce-
dure with several sets of portfolios, we find support for a positive and significant
price of risk for the exposure to the idiosyncratic variance risk. Theoretical ratio-
nalizations of a positive relation between idiosyncratic risk and expected returns
can be found in the asset pricing literature. Levy (1978), Merton (1987) and
Malkiel and Xu (2002) pricing models relate stock returns to their beta with the

market and their beta to market-wide measures of idiosyncratic risk. In these
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models, an important portion of investors’ portfolios may differ from the market.
Their holdings may be affected by corporate compensation policies, borrowing con-
straints, heterogeneous beliefs and include non-traded assets that add background
risk to their traded portfolio decisions (e.g. human capital and private businesses).
These theoretical predictions are also in line with Campbell et al. (2001)’s argu-
ment that investors holding a limited number of stocks hoping to approximate a
well-diversified portfolio would end up being affected by changes in idiosyncratic
volatility just as much as by changes in market volatility. More recently, Guo and
Savickas (2008) argue that changes in average idiosyncratic volatility provide a
proxy for changes in the investment opportunity set and that this proxy is closely
related to the book-to-market factor!.

Ang et al. (2006) and Ang et al. (2009) find results that are opposite to our
findings and to these theories since stocks with high idiosyncratic volatility have
low average returns but cannot fully rationalize this result. However, Huang et al.
(2009) find that the negative sign in the relationship between idiosyncratic variance
and expected returns at the stock level becomes positive after controlling for return
reversals. Similarly, Fu (2009) documents that high idiosyncratic volatilities of
individual stocks are contemporaneous with high returns, which tend to reverse
in the following month.

The rest of the paper is organized as follows. In Section 1.2, we provide a formal
argument for choosing the cross-sectional variance of returns as a measure of aver-
age idiosyncratic volatility, explore its asymptotic and finite-distance properties,
as well as the assumptions behind its use, and compare it to other measures for-

merly selected in the literature. Section 1.3 provides an empirical implementation

I Alternative explanations of the relation between idiosyncratic risk and return are the firm’s
assets’ call-option interpretation by Merton (1974) where equity is a function of total volatility
as in Black and Scholes (1973) as well as Barberis et al. (2001) prospect theory asset pricing
model with loss aversion over (owned) individual stock’s variance.



Chapter 1

of the concept, again in comparison with other measures, by studying its time-
series behavior, outlining the presence of regimes and a counter-cyclical property.
In Section 1.4, we provide new results on the predictability of returns by idiosyn-
cratic volatility, and we also extend the analysis to idiosyncratic skewness. Section
1.5 focuses on the analysis of the cross-sectional relationship between idiosyncratic
risk and expected returns. Section 1.6 concludes and a technical appendix collects

proofs and more formal derivations.

1.2 The Cross-sectional Variance as a Measure
of Idiosyncratic Variance

Let N; be the total number of stocks in a given universe at day ¢, and assume with
no loss of generality a conditional single factor model for excess stock returns.!
That is, we assume that for all © = 1, ..., IV, the return on stock i in excess of the

risk-free rate can be written as:
Tit = Bk + €ir. (1.1)

where F; is the factor excess return at time t, 3;; is the beta of stock ¢ at time ¢,
and g; is the residual, with F(e;) = 0 and cov (Fy, ;) = 0. We assume that the
factor model under consideration is a strict factor model, that is cov (€;,€j;) = 0

for i # j.

! Assuming a single factor structure is done for simplicity of exposure only and the results
below can easily be extended to a multi-factor setting.

2This assumption is made in the single index or diagonal model of Sharpe (1963) and in
the derivation of the APT in Ross (1976). It implies that all commonalities are explained by
the factor model in place. One should notice that the very definition of idiosyncratic risk relies
precisely on the assumption of orthogonal residuals: assuming that the model is the “true” factor
model implies that the“true” idiosyncratic risk is the one measured with respect to that model,
which in turn implies that no commonalities should be left after controlling for the common
factor exposure.
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Given T observations of the stock returns and the factor return, one can use
the residuals of the regression to obtain a measure of the idiosyncratic variance
of asset i by: o? = %Zle €. An average measure of idiosyncratic variance
over the T observations (say a month) can be obtained by averaging across assets
such individual idiosyncratic variance estimates. This is the approach that has
been followed by most related papers with observations of the returns at a daily
frequency to compute monthly idiosyncratic variances.

We propose instead to measure at each time ¢ the cross-sectional variance of
observed stock returns. Using formal central-limit arguments, we show that, under
mild simplifying assumptions, this cross-sectional measure provides a very good
approximation for average idiosyncratic variance. In contrast with most previous
measures of average idiosyncratic variance, the CSV offers two main advantages:
it can be computed directly from observed returns, with no need to estimate other

parameters such as betas, and it is readily available at any frequency and for any

universe of stocks.

1.2.1 Measuring the cross-sectional variance

To see this, first let (w:),5, be a given weight vector process. The return on the

Y and given

portfolio defined by the weight vector process (w;) is denoted by rt(w
by:

Ny
) = sz‘tm- (1.2)
i=1

We restrict our attention to non-trivial weighting schemes, ruling out situations
such that the portfolio is composed by a single stock. We also restrict the weights
to be positive at every given point in time. Hence, a weighting scheme (w,) is a
vector process which satisfies 0 < wy < 1V i, t.

The cross-sectional variance measure is defined as follows.
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Definition (CSV): The cross-sectional variance measure under the weight-

ing scheme (w;), denoted by CS ngt), is given by

Ny 9
OS‘/t(wt) = Z Wit (Tit — Tlgwt)) . (13)
i=1

A particular case of interest is the equally-weighted CSV (or EW CSV),

denoted by C'SV," and corresponding to the weighting scheme w;; = 1/N, V 1, t:
t

Nt
1 2
EW _ L . EW

CSVT = N, ; (rae =), (1.4)

where rEW is the return on the equally-weighted portfolio.
Another weighting scheme of interest is the cap weighting scheme. If we de-
note by c¢; be the market capitalization of stock ¢ at the beginning of the month
corresponding to day t, C}y = '5\21 c; the total market capitalization and &% the

return on the market capitalization-weighted portfolio, the cap-weighted (CW)
(or CW CSV) is defined as:

Ny
CSVEW = ngw (rit — TtCW)Q, (1.5)
i=1

where wGW = SN o

For any given weighting scheme (in particular EW or CW), the correspond-
ing cross-sectional measure is readily computable at any frequency from observed
returns. This stands in contrast with the previous approaches that have used
monthly measures based on time series regressions on daily returns. The second

important feature of the CSV is its model-free nature, since we do not need to

specify a particular factor model to compute it.!

"While Goyal and Santa-Clara (2003) and Wei and Zhang (2005)consider the equally-
weighted CSV in conjunction with other measures, they do not provide a thorough discussion
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1.2.2 A Formal Relationship between CSV and Idiosyn-

cratic Variance

The following proposition establishes a formal link between CSV and idiosyncratic
variance. It is an asymptotic result (N; — oo) obtained under the assumptions
of homogeneous betas and residual variances across stocks, i.e. §;; = 3, =1V 1,

E(g%) = 02 (t) Vi. These assumptions will be relaxed below.

Proposition 1 (CSV as a proxy for idiosyncratic variance - asymp-
totic results):

Assume By = By = 1V i (homogeneous beta assumption) and E(g2) = o2 (t) Vi
(homogeneous residual variance assumption), then for any strictly positive weight-

ing scheme, we have that:

NtA)OO

N )
C’SVtwt) = Z Wit (Tz’t — Tﬁwt)> — o2 (t) almost surely. (1.6)
i=1

Proof See Appendix A.1.

This result is important because it draws a formal relationship between the
dynamics of the cross-sectional dispersion of realized returns and the dynamics
of idiosyncratic variance. Note that this asymptotic result CSV,"Y —» 52 (t)
holds for any weighting scheme that satisfies 0 < w;; < 1V ¢,t. Of course,
at finite distance, different weighting schemes will generate different proxies for
idiosyncratic variance. In the empirical analysis that follows, we shall focus on
the equally-weighted scheme, while also considering the cap-weighted scheme for

comparison purposes. Formal justification for our focus on the equally-weighted

scheme is provided in the next section, where we show that the EW CSV is the

about the conditions under which it can be interpreted as a proxy for idiosyncratic variance nor
their empirical validity in the data, as we provide in this paper.

10
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best estimator for idiosyncratic variance within the class of CSV obtained under

a strictly positive weighting scheme.

1.2.3 Properties of CSV as an Estimator for Idiosyncratic

Variance

First, we derive in Proposition 2 the bias and the variance of the CSV as an
estimator of idiosyncratic variance. Then we study their asymptotic limits as the
number of firms grows large and conclude that the equally-weighted CSV is the

best among all-positively-weighted estimators.

Proposition 2 (Bias and variance of CSV):
Maintaining the homogenous beta assumption (By = 5y = 1V i,t) and the homo-
geneous residual variance assumption (E(e%) = o2 (t) Vi), for any strictly positive

weighting scheme, we have that:

E [csvf““)} = o (t) (1 - ﬁ: w§t> (1.7)

To analyze the variance of the CSV estimator, we further make the assumption
of multi-variate normal residuals € ~ N(0,%°), where 3¢ denotes the variance

covariance matrix of the residuals. Under this additional assumption, we obtain:

Ny 2 Ny N
Var [CSVI‘/(W)} =202 (1) (ZZI w?t> + ZZI w2 — 2 ZZI w}, (1.8)

Proof See Appendix A.2 for a proof in the slightly more general case when the

homogeneous specific variance assumption has been relaxed.

Hence the CSV is a biased estimator for idiosyncratic variance, with a bias

given by the multiplicative factor (1 — Z,N:tl wl-2t>, which can be easily corrected

11
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for since it is available in explicit form. In the end, the bias and variance of the
CSV appear to be minimum for the EW scheme, which corresponds to taking
wy = 1/Ny at each date t. It is easy to see, that this bias disappears and the
variance tends to zero for the equally-weighted scheme when the number of stocks

grows large, as explained in the following proposition.

Proposition 3 (Properties of the equally-weighted CSV)
The bias and variance of the EW CSV as an estimator for specific variance
disappear in the limit of an increasingly large number of stocks:

E[CSVY] — a2 (t).

Ni¢—ro0

Var (C’SVtEW) — 0.

Ni¢—ro0

Proof See Appendix A.2 for a proof in the slightly more general case when the

homogeneous specific variance assumption has been relaxed..

The equally-weighted C'SV thus appears to be a consistent and asymptotically
efficient estimator for idiosyncratic variance. As such, it is the best estimator in
the class of CSV estimators defined under any positive weighting scheme, and it
dominates in particular the cap-weighted CSV as an estimator for idiosyncratic
variance. If we relax the homogeneous residual variance assumption, we obtain

that:
EW
E [CS‘/t Nt—)oo Nt Z O-E”

Hence, the assumption of homogenous residual variances comes with no loss of
generality. In the general case with non-homogenous variances, the CSV simply

appears to be an asymptotically unbiased estimator for the average idiosyncratic

12
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variance of the stocks in the universe. We also have:

t Ny—o00

Var (CSVPY) < 262 () <i) — 0.

where the quantity 52 (¢) is an upper bound for the individual idiosyncratic vari-
ances (see Appendix A.2).
We now discuss the impact on these results of relaxing the homogeneous beta

assumption.

1.2.4 Relaxing the Homogeneity Assumption for Factor
Loadings

Relaxing the homogenous beta assumption involves a bias that remains strictly
positive even for an infinite number of stocks and an equal-weighting scheme. We
characterize this bias in the next proposition in order to gauge its magnitude for

given models of returns.

Proposition 4 Bias of CSV as an estimator for average idiosyncratic
variance in the presence of heterogenous betas: Relaxing the assumptions
Bir = By = 1V i, t (homogeneous beta assumption) we have, for any strictly positive

weighting scheme:
Nt Nt
ECSV™| =Y wiod (1) = Y wiol (1) + E[FCSVE|, (19)
i=1 i=1

where C’SVtﬂ denotes the cross-sectional variance of stock betas:

Nt Nt 2
C’SVtﬁ = sz‘t (5115 - Z wjtﬁjt) .
i=1

i=1

Proof See Appendix A.2.3.

13
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The first term S0 wyo? (t) in equation (1.9) represents the average idiosyn-
cratic variance of stocks within the universe under consideration. The second term
- w0? (t) is the negative bias that was also present even in the presence ho-

mogenous beta assumptions. If we focus on the equally-weighted scheme, the sum

of these two terms is equal to N% >

o o (t) (1 — N%) so that the bias disappears

in the limit of an increasingly large number of stocks. The third term E [FtQC S Vtﬁ }
in equation (1.9) represents, on the other hand, an additional (positive) bias for
the CSV as an estimator of average idiosyncratic variance, which is introduced by
the cross-sectional dispersion in betas, and which does not disappear in the limit
of a large number of stocks.

Using the explicit expression provided here, in section 1.3.1 we directly measure
this beta dispersion bias using the CAPM and the Fama and French three-factor
model as benchmark factor models. As we will see, although the cross-sectional
dispersion of betas has a non-negligible magnitude, once it is multiplied by the
square of the return of the market portfolio its relative size with respect to the
level of idiosyncratic risk becomes very small. An extensive analysis of the CSV
in the empirical section suggests that the homogeneous beta assumption does not
represent a material problem for the CSV as an estimator of idiosyncratic variance

as implied by standard asset pricing models (i.e. CAPM and Fama-French).

1.2.5 Competing Measures of Idiosyncratic Risk

In this section, we describe measures that have been used in the literature, and
which will be used for comparison purposes in subsequent sections of the paper.

The standard approach consists of considering idiosyncratic variance either relative

to the CAPM and or to the Fama-French (FF) model (Fama and French (1993)):

Tit = boit + b X M KT, 4 byyy SM By + bsyy HM L, + £5F (1.10)

14
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where r;; denotes the excess return at time ¢ of stock 7, X M KT is the excess return
on the market portfolio, SM B is the size factor and H M L is the value factor. The
idiosyncratic variance for asset ¢ is the variance of the residuals of the regression,
that is, 02(e4). To obtain an estimate for average idiosyncratic variance, Bekaert

et al. (2008) and Wei and Zhang (2006) use a market capitalization weighting:
Nt
FFEOY =Y wyo’(eh"). (1.11)
i=1

For comparison purposes we also look at the equally-weighted average of FF id-
iosyncratic variance in what follows. An alternative approach to average (mostly)
idiosyncratic risk estimation has been suggested by Goyal and Santa-Clara (2003),

with a measure given by:

Ny Dy Dy

GStEW: Nitz erd—i—QZ?“idTid—l ) (1.12)

i=1 Ld=1 d=2

where 1,4 is the return on stock 7 in day d and D; is the number of trading days
in month ¢.!

Campbell et al. (2001) propose yet an alternative measure of average idiosyn-
cratic variance, under a very particular setting that allows one to avoid running
regressions each period.? However, their measure is not instantaneous since a
window of data is still needed to estimate individual variances. In what follows,
we do not repeat the analysis with this measure because Bekaert et al. (2008)
have shown that it is very closely related to the measure obtained from standard
asset pricing models. In particular, Bekaert et al. (2008) find that the measure of

Campbell et al. (2001) and the FF-based one have a correlation of 98% and share

1As in Goyal and Santa-Clara (2003), when the second term makes the estimate negative, it
is ignored. This measure has been originally used in French et al. (1987).

2They assume that all betas are equal to one and substract industry returns in addition to
market returns to control for risk.

15



Chapter 1

most of the same structural breaks.

1.3 Empirical Implementation

In order to perform an empirical analysis of our measure for idiosyncratic risk,
we collect daily US stock returns (common equity shares only) and their market
capitalization from CRSP data base. Our longest sample runs from July 1963
to December 2006. We also extract the FF factors and the one-month Treasury
bill from Kenneth French web-site data library for the same sample period. Each
month, we drop stocks with missing returns and with non-positive market cap-
italization at the beginning of the month. The number of firms varies between
377 and 7293, and remains greater than one thousand 75% of the time. The max-
imum number of stocks is reached during the .com bubble. Then, we estimate
every month the cap-weighted idiosyncratic variance as in equation (1.11), as well
as the equal-weighted version.! Similarly, we estimate the cap-weighted and equal
weighted average idiosyncratic variance relative to the CAPM. We also estimate
the GS average variance measure as in equation (1.12) and its cap-weighted ver-
sion. Finally, we estimate on a daily basis the equal and cap-weighted versions
of the C'SV as in equations (1.4) and (1.5). In order to construct the monthly
series for our cross-sectional measures, we estimate the average of the daily series
at the end of each month. For comparison purposes we also estimate the FF-based
average idiosyncratic variance (EW and CW) on a daily basis using a rolling win-
dow sample of one month. We annualize all figures in order to compare daily
and monthly measures. Following Bekaert et al. (2008), we fit a regime-switching
model to the monthly and daily series in order to further compare the different

measures. Last, we look at the relation between the CSV measures of idiosyncratic

"'We use previous period market capitalization and assume it is constant within the month.
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variance and selected economic and financial variables.

1.3.1 Measuring the CSV bias

Some of the previous research on idiosyncratic volatility has been conducted under
the assumption of homogeneous betas across stocks (see Campbell et al. (2001) and
Goyal and Santa-Clara (2003) in particular). As illustrated in Proposition 4 and
discussed in Appendix A.2.3, the presence of non-homogeneous betas introduces a
positive bias on the CSV as an estimator for average idiosyncratic variance, which
is given by the first term in equation (1.9). We now measure the impact of this
bias with respect to the CAPM as a benchmark model.

First, we compute the bias F [FEC’S VtB ] for every month in the sample using
beta estimates for each stock with both the equal-weighted and the cap-weighted
market returns. To gauge its importance, we divide it by the average idiosyncratic
variance, also measured with respect to the CAPM.!

Table D.1 presents a summary of the distribution of the time series of cross-
sectional dispersion of betas, its product with the squared return of the market
portfolio (hence the bias itself) and the proportion of this bias with respect to
the average idiosyncratic variance at the end of every month. Although the cross-
sectional dispersion of betas is sizable, once it is multiplied by the squared return

of the market portfolio, the size of the bias remains relatively small. The median of

F2oSV/

2
O'Et

the distribution of , 1s 0.348% for the equal-weighted scheme and 0.351%
for the cap-weighted measure, computed over the whole sample (July 1963 to
December 2006). The 97.5 quantiles are 3.24 and 3.47 respectively.

On the other hand, the formal discussion about the properties of the CSV

as a measure of idiosyncratic variance on section 1.2.4 also uncovered the fact

IThis is measured as in equation (1.11) with just the market returns with both weighting
schemes.
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that another bias (but negative in sign) coming from the CSV weighting scheme
concentration is also introduced. Proposition 2 predicts two properties about this
weighting bias: first, it should be negative and minimal for an equally-weighted
scheme. Second, it should be very small for a high number of stocks. The beta-bias
then is more likely to dominate the concentration-bias when using an equal-weight
scheme.

Using the explicit expression for this bias provided in Proposition 4 we estimate
the proportion of the size of this weights-concentration bias with respect to the
average idiosyncratic variances implied by the CAPM.! In the last line of the upper
and lower panels of Table D.1 we report quantiles of the distribution of this bias
for both weighting schemes. The corresponding medians are 0.030% and 0.426%
for the EW and CW schemes respectively. Since the bias is of opposite sign to the
beta cross-sectional dispersion bias, we need to assess the resulting overall bias.

We measure the total bias as the intercept of a regression of the CSV on the
average idiosyncratic variance estimated with respect to the CAPM or the Fama-

French three-factor model:

CSV™ = bias + o2, 5 (wi) + G, (1.13)

where w; refers to the weighting scheme (equal-weight or market-cap) and model
stands for either the CAPM or the Fama-French three-factor model.

Table D.2 reports summary statistics for regression (1.13). The bias of the CSV
measured with respect to standard asset pricing models is small in magnitude for
both weighting schemes (in the order of 107°). While it remains statistically

significant, we can safely consider that the impact of the bias remains immaterial

L As noted earlier, it would be straightforward to remove the impact of this bias by dividing
the CSV measure by the factor (1 — Zi\il w?t>, equal to (1 — N%) in the EW case.
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for any practical purposes. Another interesting finding is the sign of the bias. For
the equal-weighted quantities, the sign of the bias is positive, while it is negative
for the cap-weighted ones. Therefore, the beta bias dominates the weighting bias
for equal-weighted averages in both models. This is consistent with the prediction
made by the theoretical analysis regarding the relative impact of the weighting-
bias for different weighting schemes. Regarding the model, the bias is larger when
the idiosyncratic variance is measured with respect to the Fama-French model
instead of the CAPM for both weighting schemes, as expected, but its magnitude

remains negligible.

1.3.2 Comparison with Other Measures

In this section we compare the CSV measure to the afore-mentioned, more conven-
tional, measures of idiosyncratic risk (i.e., FF-based, CAPM-based and GS). To
obtain these other measures, we need to re-estimate the relevant factor model us-
ing a rolling window of one-month worth of daily data to allow for time-variation
in beta estimates (or total-variance variation for the GS). In Table D.3, we re-
port summary statistics for the monthly time series of annualized idiosyncratic
variances based on 516 observations from January 1964 to December 2006."

On the monthly series, the annualized means of the equally-weighted CSV, FF-
based and CAPM-based measures are 38.4%, 38.3% and 38.7%, respectively, while
the EW GS variance is 34.2%. The standard deviations are 8.5%, 8.6%, 8.7% for
the CSV, FF-based and CAPM-based measures and 7.0% for the GS measure. For
the cap-weighted version, the CSV, FF and CAPM idiosyncratic variance measures
have an annualized mean of 8.5%, 7.6%, 8.0%, respectively and the GS measure

mean is 11.2%. The standard deviations are also closer for the CSV, FF and

'In this section of the paper, we start the sample period in January 1964 to allow for direct
comparison with Bekaert et al. (2008). In the predictability section, we instead start the sample
in July 1963.
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CAPM measures than for GS. Although GS argue that their measure fundamen-
tally constitutes a measure of idiosyncratic risk, with the idiosyncratic component
accounting for about 85% of the total EW average measure, it is strictly speaking
an average of total stock variance. Our CSV measure is very close to idiosyncratic
variance measures derived from traditional asset pricing models, confirming that
the assumption about beta homogeneity is not a major problem.

The cross-correlation matrix reported in Table D.3 provides further evidence
on the closeness of the CSV to the other model-based measures. Correlations are
very high between CSVEW and CAPMEW (99.93%) and FFEW (99.75%, as well
as between CSVEY and CAPMW (99.48%) and CSVEW and FFCW (98.56%).
The high correlations between the CAPM and the FF measures (99.88% and
99.18% for EW and CW respectively) also indicate that adding factors does not
drastically affect the estimation of idiosyncratic variance. Correlations between
the GS measures and the other measures are always smaller but remain close
to 90% when considering the same weighting scheme. Correlations between mea-
sures for different weighting schemes are much lower, irrespective of the estimation
method, indicating that the choice over the weighting scheme is fundamentally im-
portant for estimating idiosyncratic variance, as stressed in our theoretical analysis
in section 1.2.

Table D.4 provides mean and standard-deviation estimates for the daily aver-
age idiosyncratic variance measures. The mean of the EW CSV is 38.4%, prac-
tically equal to the mean of EW idiosyncratic variance based on the FF model.
For the cap-weighted measures, the CSV has a slightly higher mean than the FF-
based one. For the CSV daily series, the standard deviation is higher than for the
FF-based measure for both weighting schemes. This is due to the different na-
ture of the two series. The CSV only includes information from the cross-section

of realized returns, while the FF idiosyncratic variance is a persistent, overlap-

20



Chapter 1

ping, rolling-window estimate. Each daily estimate of idiosyncratic variance for
the FF model differs from the previous one by only two observations out of the
approximately 21 trading days included in a month (the first and last days).

The smoothness of the idiosyncratic variance estimates obtained with the
rolling-window methodology is illustrated in Figures D.1 and D.2, which plot daily
CSV and FF idiosyncratic variances for each weighting scheme respectively. It
should also be noted that the estimation of the FF-measure is computationally
much more expensive than for the CSV measure, which is based on observable
quantities.

The lower panel of Table D.4 presents cross-correlations for the daily series
of idiosyncratic variance measures. Although the coefficients are smaller than for
the monthly series, the relationship remains strong provided the comparison is
done for the same weighting scheme: 82.6% and 73.9% for EW and CW measures
respectively. The difference with the monthly series correlations may again be
explained by the presence of the smoothed estimation procedure inherent to the
FF-based measure. Overall, it appears that the CSV measure is extremely close to
CAPM or FF-based measures at the monthly frequency, when the latter measures
suffer from no particular bias, and that the CSV measure appears to be a good
and instantaneous proxy for idiosyncratic variance at the daily frequency, when

the standard measures are subject to artificial smoothing due to overlapping data.

1.3.3 Extracting Regimes in Idiosyncratic Risk

Bekaert et al. (2008) fit a Markov regime-switching model with a first-order auto-
correlation structure (see Hamilton (1989b)) for the monthly series of idiosyncratic
variance based on the FF model. In this section, we want to estimate this model

with our CSV measure both at the monthly and daily frequencies. While we ex-
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pect that the fit will be close to Bekaert et al. (2008) for the monthly series given
our previous results on the similarity of the series, we want to verify whether such
a model provides a similar fit for the daily series.

In this model, two regimes are indexed by a discrete state variable, s;, which
follows a Markov-chain process with constant transition probabilities. Let the
current regime be indexed by ¢ and the past regime by j and x; be the original

idiosyncratic variance. In this parsimonious model, z; follows an AR(1) model:

2o — i = Gaer — 1) + oen, 0,5 € {1,2} (1.14)

The transition probabilities are denoted by p = P[s; = 1|s;—; = 1] and ¢ =
P[s; = 2|s;—1 = 2]). The model involves a total of 7 parameters, {u1, 2, 01, 02, ¢, p, q}.

We first verify that the CSV and the FF-based measures give the same re-
sults for the monthly series. The estimation results for the monthly series of the
FFCW CSVEW FFEW and CSVEW are reported in the upper panel of Table
D.5. For corresponding weighting schemes, the parameters in both regimes are
similar between the two measures. For both measures the low-mean, low-variance
regime presents a higher probability of remaining in the same state.

We then fit the same model to the daily time series and present the parameter
estimates in the lower panel of Table D.5. It should be stressed that for our CSV
measure, the parameter values of the average level of idiosyncratic variance p in
both regimes are found to be quite close to the values obtained with the monthly
series. This result suggests that the process observed at the daily frequency is not
just a noisy series, but actually captures the same underlying process observed at
the monthly frequency. This stands in sharp contrast with the FF-based measure,
for which the maximum-likelihood estimation procedure could not recognize two

regimes when daily data is used, as evidenced by the fact that the parameter
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values for the mean level of idiosyncratic variance are basically the same for the
two regimes. This problem, combined with an autocorrelation parameter very
close to one, is likely caused by the overlapping data problem present in the daily
FF measure, which corresponds to the smoothing effect mentioned in the previous
section.

In Figures D.3 and D.4 we plot the filtered probabilities (conditional on infor-
mation up to time ¢) of remaining in state 1 (high-mean and high variance regime),
as well as the monthly CSV and FF average idiosyncratic variance time series for
the CW and EW weighting schemes, respectively.! At the monthly frequency, our
measure and the FF-based measure appear to be remarkably close for both the
equal-weighted and cap-weighted schemes. Also, we find that the dates of regime
changes, marked by the filtered probabilities, are the same most of the times for
the cap-weighted and the equal-weighted measures.? We also find that periods in
the higher-mean and higher-variance regime are more persistent for the equally-
weighted measure compared to the cap-weighted measure (except during the tech
bubble period). Overall, our filtered probability series resembles closely the one
presented in Bekaert et al. (2008) for the cap-weighted FF and Campbell et al.
(2001) measures.”

The shaded areas in Figures D.3 and D.4, which time stamp the NBER re-
cession periods, indicate that the peaks in the probability of remaining in the
high-mean high-variance regime coincide most of the times with the contraction

periods. Therefore, the CSV measure is counter-cyclical, the dispersion of returns

IThese are estimates of the transition probabilities conditional to information up to time ¢
given all sample data.

20ne notable exception is the regime change of 1980 : 05, which is present for the cap-
weighted measure and absent for the equally-weighted one.

3The small difference might come from the fact that Bekaert et al. (2008) fit a model with
two different autocorrelation coefficients (one for each regime) as opposed to one. However, they
find the two coeflicients to be fundamentally equal in both regimes, which supports using a more
parsimonious model.
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being high and quite variable when economic growth subsides. In the next section,
we want to analyze further the relation between the CSV and other economic and

financial variables.

1.3.4 CSV Relation with Economic and Financial Vari-

ables

To put this analysis in the proper context, we should go back to the very na-
ture of idiosyncratic risk. In an asset pricing model, it represents the risk that
belongs specifically to an individual firm, after accounting for the sources of risk
that are common to all firms. In the previous sections, we have shown that the
cross-sectional variance of returns provides a very good measure of this idiosyn-
cratic risk, even if it ignores the risk exposures to the usual common risk factors
such as the market return or the Fama-French factors. Yet we concluded our
time series analysis of CSV by stressing its strong counter-cyclical behavior. To
pursue this analysis further we need therefore to rely on equilibrium models that
link returns to economic fundamentals. Recently, Bansal and Yaron (2004) have
revived consumption-based asset pricing models by showing that two sources of
long-run risk — expected consumption growth and consumption volatility as a
measure of economic uncertainty — determine asset returns. Further, Tédongap
(2010) provides strong evidence that consumption volatility risk explains a high
percentage of the cross-sectional dispersion in average stock returns for the usual
set of size and book-to-market portfolios that have been used in tests of asset
pricing models. Another strand of literature based on the intertemporal CAPM
or the conditional CAPM has linked the cross-section of expected returns to other
economic or financial variables such as the term spread, default spread, implied

or realized measures of aggregate returns variance, and many others.
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While our CSV measure is based on the cross-sectional dispersion of realized
returns over the whole universe of traded stocks, as opposed to the cross-sectional
dispersion of average returns of a limited number of size and book-to-market port-
folios, the same theoretical implications should prevail. Therefore, we present be-
low a simple correlation and graphical analysis of the relation between the CSV and
some of these key variables. For the economic variables, we chose consumption-
growth volatility as a measure of economic uncertainty. Following Bansal and
Yaron (2004) and Tédongap (2010), we filter consumption-growth volatility with
a GARCH model. For consumption, we used FRED’s personal consumption ex-
penditures of non-durables and services monthly series, divided by the consumer
price index and the population values to obtain a per-capita real consumption
series. We then compute its growth rate from July 1963 to 2006." The second
economic variable we consider is inflation volatility, which we filter also with a
GARCH process.? For the financial variables we use Welch and Goyal (2008)’s
data for corporate bond yields on BAA and AAA-rated bonds, long-term govern-
ment bond yield and 3-months T-bill rate to estimate the credit spread and term
spread (as the difference between the first and the second rate in both cases).”
In Table D.6 we report the correlations between the equally-weighted and cap-
weighted measures of cross-sectional variance and the five economic and financial
variables during the 1990-2006 period. We also explore some potential asymme-

tries by computing the CSVEW for the positive and negative returns.

!The series IDs at the FRED’s webpage are, PCEND and PCES for “Personal Consumption
Expenditures: Nondurable Goods” and “Personal Consumption Expenditures: Services”, CPI-
AUCNS for “Consumer Price Index for All Urban Consumers: All Items” and POP for “Total
Population: All Ages including Armed Forces Overseas”. Bansal and Yaron (2004) used the
Bureau of Economic Analysis data available at www.bea.gov/national /consumer_spending.htm
on real per-capita annual consumption growth of nondurables and services for the period 1929
to 1998. The series is longer but is available only at annual and quarterly frequencies.

2For space considerations, we do mnot report parameter estimates for the two AR(1)-
Garch(1,1) we estimate. They are available upon request from the authors.

3Data available at Amit Goyal’s webpage: http://www.bus.emory.edu/AGoyal/Research.html
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The highest correlation (0.401) is obtained between consumption growth volatil-
ity and the equally-weighted measure CSVFW. In Figure D.5 we plot the two
series for the period 1990 to 2006. While the CSV series is much noisier than
consumption-growth volatility, the coincident movements between the two series
are quite remarkable. After a high volatile period just before 2000, both series
show a marked downward trend after the turn of the century. A reasonable ex-
planation for this strong correlation is to think about a common factor (aggregate
economic uncertainty) affecting the idiosyncratic variance of each security. Aggre-
gating over all securities will make the CSV a function of economic uncertainty.
In intertemporal asset pricing models of Bansal and Yaron (2004), Bollerslev et al.
(2009) and Bollerslev et al. (2009), economic uncertainty is a priced risk factor
that affects returns, therefore providing a fundamental rationale for the observed
correlation between CSV and consumption growth volatility. This suggests that
CSV should appear to be priced when a Fama-MacBeth procedure is applied to
a set of portfolios. We explore this issue in Section 1.5. The correlation of the
cap-weighted CSV with consumption growth volatility is not as high (0.241) since
it puts more weight on large cap securities, which are in general less affected by
economic uncertainty. Looking at the split between CSVFEW+ and CSVEWV - we
see that the correlation is higher for the CSV when conditioning on the negative
returns (0.346). This suggests that return dispersion in bear periods is relatively
more affected by economic uncertainty.

The next most highly negatively correlated variable is inflation volatility (-
0.367). Since 1998, inflation volatility seems to have been on an upward trend,
while the cross-sectional variance of returns has been sharply declining. This
is clearly apparent in Figure D.6. In presence of higher inflation uncertainty,
investors will move towards allocating more to stocks relative to bonds in their

portfolios, generating a general increase in stock returns that reduces their cross-
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sectional variance. The T-bill rate is also relatively highly correlated with C' SV W
(0.302). In the type of equilibrium models we have referred to, the risk-free rate,
proxied here by the T-bill, will be a function of consumption growth volatility,
hence its positive relation with the cross-sectional variance.

For the financial variables (credit spread and term spread), it is interesting to
note that the higher correlations are with the cap-weighted measures of the cross-
sectional variance. The signs are intuitive. Credit risk affects differently individual
firm returns and therefore tends to increase CSV, while a pervasive term spread
risk will reduce dispersion by being common to many securities due to a move of
investors away from bonds into the stock market.

Given that the cross-sectional variance is significantly linked with economic and
financial factors that have been shown to predict returns, we explore in the next
section the predictive power of CSV for aggregate returns at various frequencies,
especially at daily frequencies, since our measure of idiosyncratic variance allows
us to measure CSV at any frequency without any artificial smoothing effect. This

is a main advantage over other methods of recovering this idiosyncratic variance.

1.4 New Evidence on the Predictability of the

Market Return

There is an ongoing debate on the predictive power of average idiosyncratic vari-
ance for average (or aggregate) stock market returns. Goyal and Santa-Clara
(2003) find a significantly positive relationship between the equal-weighted av-
erage idiosyncratic stock variance and the cap-weighted portfolio returns for the
period 1963:07 to 1999:12. They find that their measure of average idiosyncratic

(in fact total) variance has a significant relationship with next month return on
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the cap-weighted portfolio. The regression in GS is as follows:

rig = a+ B +e, (1.15)

W corresponds to GSFW. In a subsequent analysis, Bali et al. (2005) ar-

where vf
gue that this relationship disappeared for the extended sample 1963:07 to 2001:12,
and attribute the relationship observed in GS to high-tech-bubble-type stocks (i.e.,
stocks traded on the NASDAQ) and a liquidity premium. In a similar way, Wei
and Zhang (2005) find that the significance of the relationship found by GS dis-
appeared for their sample 1963:07 to 2002:12 and argue that the presumably tem-
porary result of GS was driven mainly by the data in the 1990s. Wei and Zhang
(2005) criticize the fact that GS looked at the relationship between an equally-
weighted average stock variance and the return on a cap-weighted average stock
return, as opposed to an equally-weighted portfolio return. Moreover, both Bali
et al. (2005) and Wei and Zhang (2005) find no significant relationship between the

cap-weighted measures and the cap-weighted portfolio return in all three sample

periods (ending in 1999, 2001 and 2002, respectively).

1.4.1 Monthly Evidence

In this section we confirm existing results and extend them in a number of di-
mensions, including a longer sample period. The first panel in Table D.7 presents
the predictability regression of equally-weighted variance measures on the cap-
weighted return as in Goyal and Santa-Clara (2003) and Bali et al. (2005) for
their sample periods, as well as the extended sample up to 2006:12. The re-
gression is as in equation 1.15, where vF" corresponds to the EW CAPM-based

measure and the CSV.! For comparison purposes we start the sample period in

! As explained before, the monthly CSV is the average of its daily values during the month.
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this section in 1963:07, as in Goyal and Santa-Clara (2003), Bali et al. (2005) and
Wei and Zhang (2005).

For the monthly series, we confirm that there is a significant positive relation-
ship in the first sample, and also that it weakens for the subsequent extended
samples.” The Newey and West (1987) autocorrelation corrected t-stat for 12 lags
of the [ coefficient of both CSV and the CAPM-based measures goes from 3.5
for the first sample period down to 0.9 for the largest sample. Consequently, the
adjusted R? goes from 1.3% down to 0.04%. This result confirms the findings of
Bali et al. (2005) and Wei and Zhang (2005) for the further extended sample. In
section 1.4.4 we propose a possible explanation for this puzzling result.

In the second panel of Table D.7 we present the results of the regression between
the equally-weighted average return with the lagged equally-weighted idiosyncratic

variance measure, as given by:

riy = a+ B e (1.16)

where vPW is taken as the CAPM-based average idiosyncratic variance or as the

CSV measure. In contrast with the former regression, the relationship is found to
be significantly positive for the three sample periods for both measures.?

In the third panel of Table D.7 we present the results for the three sample

periods of the one-month-ahead predictive regression of the cap-weighted market

'We found a similar result using the GS measure of equally-weighed average variance. We
do not present these regression results for the sake of brevity given that they generate a similar
picture, which has also been confirmed in Bali et al. (2005) and Wei and Zhang (2005).

2Wei and Zhang (2005) find a significantly positive relation between the equal-weighted GS
measure and the equal-weighted market return for the initial sample. They also test the robust-
ness of the relation by using an equally-weighted cross-sectional variance of monthly returns.
They found a significantly positive coefficient for predicting the equal-weighted portfolio return
mainly for the long samples starting in 1928 but not for the sample going from 1963 to 2002.
Note that our cross-sectional measures differ. Ours is an average of the daily cross-sectional
variances over the month. Theirs is the cross-sectional variance of the returns computed over
the month.
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portfolio using the cap-weighted idiosyncratic variance return as a predictor. In
this case, the beta of the idiosyncratic variance is not significant for all three
sample periods. This result confirms the findings of Bali et al. (2005) and Wei

and Zhang (2005) for the extended sample.

1.4.2 New Predictability Evidence at Daily Frequency

Prevailing measures used in the literature require a sample of past data to estimate
additional parameters, constraining existing evidence to the monthly estimations.
Fu (2009) finds that high idiosyncratic volatilities of individual stocks are contem-
poraneous with high returns, which tend to reverse in the following month. Huang
et al. (2009) find that the negative relationship between idiosyncratic variance and
expected returns at the stock level uncovered in Ang et al. (2006) and Ang et al.
(2009) becomes positive after controlling for the return reversals. This provides ad-
ditional motivation for looking at the predictability relation at a higher frequency
than the monthly basis. Using the CSV as a proxy for aggregate idiosyncratic
variance allows us to check this relationship at the aggregate (market) level in a
more direct way (without having to control for reversals). Taking advantage of the
instantaneous nature of the CSV, we run the same predictability regression (1.16)
on the one-day-ahead portfolio return using the average idiosyncratic variance.

The upper panel of Table D.8 shows that at a daily basis, this relationship is
much stronger, with (Newey-West corrected) t-stats of coefficients for the average
idiosyncratic variance across the three samples ranging between 4 and 4.7.

In the lower panel of Table D.8 we report the results for the one-day-ahead pre-
dictive regression on the cap-weighted pairs (CSV and market return) for which we
find the relation also to be positive and significant, but with a much more obvious

deterioration of the t-stat of the cap-weighted idiosyncratic variance coefficient,
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going from about 5.91 in the first sample down to 1.97 for the longest sample. For
this reason and for brevity, we now focus on the relationship between aggregate

idiosyncratic risk and the equal weighted market return.’

1.4.3 Interpretation of Predictability results

Given this evidence on the predictability of average aggregate returns by idiosyn-
cratic risk, a natural question to ask would be: why does the relationship between
the equal-weighted measure and the cap-weighted differ across different sample
periods?

Wei and Zhang (2005), Bali et al. (2005) argue that the relationship between id-
iosyncratic risk and the market index first found by Goyal and Santa-Clara (2003)
on the sample ending in 1999:12 was driven by small stocks traded in the NASDAQ
and the data coming from the dot-com bubble period. Although we confirm their
empirical findings for our sample period, we disagree with their conclusion that the
relationship between average idiosyncratic risk and expected returns disappeared
since the end of the dot-com bubble. Even though it appears clear that NASDAQ
companies played an important role in the relationship of the equal-weighted aver-
age idiosyncratic variance with the average market-capitalization expected return
during the end of the 1990s, which (obviously) weakened after the burst of the
bubble, we find that the relationship between average idiosyncratic risk and future
average market returns is robust to choices of the sample period, provided that
adequate weighting schemes and horizons are chosen to test this inter-temporal
relationship.

The transitory relationship between the equal-weighted average idiosyncratic

variance and the cap-weighted market index observed up to the end of the 1990,

IThe corresponding results using a market cap-weighted scheme can be obtained from the
authors upon request.
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can be explained by the heterogeneous and transitory nature of the omitted sources
of risk captured by idiosyncratic risk and its relation with the inflated valuation
of several NASDAQ companies during that period .

Some intuition behind the far more robust relationship between the equally-
weighted average idiosyncratic variance and the equally-weighted portfolio comes
precisely from the logic of standard asset pricing theory. As discussed in the
introduction, there are multiple reasons for which average idiosyncratic risk should
be related to average returns, due to the heterogeneous sources that may compose
idiosyncratic risk. According to CAPM, only systematic risk should explain future
returns. However, if during a certain period of time there exists anomalies of
any kind (priced omitted risk factors) that, presumably, are not proportionally
reflected in the current market capitalization of the companies carrying these
factors, then the omitted sources of risk are more likely to explain the returns of
a portfolio where all kinds of firms are represented in a similar manner, such as
the EW as opposed to a portfolio where big companies are proportionally better
represented than smaller ones.

Along these lines, Pontiff (2006) argues that idiosyncratic risk is the largest
holding cost borne by rational arbitrageurs in their pursuit of mispricing oppor-
tunities. This theory implies that the current level of idiosyncratic risk should
predict returns since it should measure the amount of current mispricing oppor-
tunities present in the market. Assuming that the same mispricing opportunities

disappear in the long run, it appears more likely to observe this relationship be-

!The strongest omitted factors in that period (call it the irrational.com factor), partially
captured by the equally weighted idiosyncratic variance, started to be increasingly represented in
the market-cap index, due to the suddenly-higher market capitalization of precisely the group of
companies carrying this temporarily strong omitted factor. The posterior reversal of the situation
(i.e., the burst of the bubble) subsequently explains the sharp fade in the relationship between
the average idiosyncratic variance and the market-cap portfolio, precisely due to the posterior
sudden deterioration of the market capitalization of most stocks carrying this irrational.com
factor, and hence notably reducing their representation in the market-capitalization index.
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tween idiosyncratic variance and returns over very short horizons. Moreover, all
things being equal, large-cap stocks are less likely to present misspricing and hence
the predictability implied by this theory would be more likely to be present on
the equal-weighted index return rather than the cap-weighted index return, as we
observed in predictive regressions at daily and monthly horizons.! The sign of the
relationship is not predicted by Pontiff’s theory in general, because it depends on
whether the average (equal or cap-weighted) portfolio is over- or under-priced (it
predicts a positive sign for underpriced stocks and a negative sign for overpriced

stocks).

1.4.4 Robustness Checks

In this section, we test further explore the relationship documented in the former
section in several dimensions. We first want to place the return predictability by
idiosyncratic variance in the context of the literature of the risk-return trade-off.
Most of the literature on this topic is based on a linear regression between return
and volatility. We want to see if including the return variance in the regression
changes the predictability results. Second, we test the robustness of the relation-
ship in the presence of an option implied volatility measure. Third, we further
test the predictability relationship at quarterly and annual horizons. Finally, we
look for the potential asymmetry in the relationship between idiosyncratic vari-
ance and future average returns, when the cross-sectional variance is split in two
and is computed for returns above or below the mean. Such an asymmetry often
exists for positive and negative returns in the volatility modeling of financial time

series. The reported presence of asymmetries will provide us with a motivation for

Tt is well known that large cap stocks are more liquid than small-cap stocks, which implies a
higher number of people trading them and usually a higher number of analysts looking at them.
Together with less constraints to short-selling, we expect a higher price efficiency for large cap
stocks.

33



Chapter 1

extending the cross-sectional dispersion measure to the third moment and find this
measure is related with average idiosyncratic skewness and has strong predictive

power of the average market return.

1.4.4.1 Inclusion of Return Variance

In order to check wether the relationship between the market portfolio expected
return and the aggregate level of idiosyncratic variance (which we document at
the monthly and daily frequency) is robust to the inclusion of the variance of the

market portfolio, we run the following joint regression:
rﬂ”l/ =a+ pCSV,+War (rfW) + €141 (1.17)
We also run the univariate regression:
re = a+9Var (rf") + e (1.18)

For the monthly estimations of Var (rF") we use the realized sample variance
over the month (from daily returns). For daily estimations we fitted an AR(1)-
EGARCH(1,1) model on the overall sample.! In the first two panels of Table D.9,
we report regression results at the monthly and daily frequency of both (1.17) and
(1.18). In the latter univariate regression, the variance of the equally-weighted
portfolio returns does not appear to be significant in explaining the average future
returns at the monthly and daily frequencies.

In the regression from equation (1.17), the coefficient of Var (rfw), 9, is neg-

ative and non-significant at the monthly frequency. At the daily frequency, the

1Using the overall sample to estimate the parameters would only give the portfolio variance
an advantage to predict future returns. However, from the results we see that even when using
such forward-looking estimates for Var (rtE W)7 the significance of the CSV remains strong.
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coefficient ¥ was still found to be negative and (marginally) significant. The sig-
nificance of the C'SV coefficient remains valid for both monthly and daily frequen-
cies, and if anything improves slightly after the inclusion of the equally-weighted
portfolio variance.

The latter two panels of Table D.9 present the regression results at the monthly
and daily frequency of both (1.17) and (1.18) but using the cap-weighted index and
CSV equivalents. The relationship at the daily horizon becomes non significant
after the inclusion of the realized variance of the market cap-weighted index. At
the monthly horizon the relationship remains non significant.

In Table D.10, where we report the quarterly and annual predictability with
and without the market variance, we confirm that the equally-weighted cross-
sectional variance does not forecast future average returns at low frequencies.
However, for the cap-weighted measure of CSV, we observe predictability over
the period 1963 to 2006 when it is joined with market variance. The sign is
negative while the market variance enters with a positive sign as predicted by the
benchmark risk-return trade-off!

One fair remark on the results of the predictability regressions is that the rela-
tionship using equal-weighted measures only holds at shorter horizons (i.e. daily
and monthly). However, this result is in line with Pontiff (2006)’s interpretation
of idiosyncratic risk as a barrier for arbitrageurs and with the evidence presented
by Fu (2009) at the stock level, who finds that high idiosyncratic volatilities of
individual stocks are contemporaneous with high returns, which tend to reverse

in the following month.

1See also Guo and Savickas (2008) for similar results.
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1.4.4.2 Inclusion of Market Realized Variance and Implied Variance

Other measures of variance have been used in trying to link market returns to a
measure of market risk. Implied variance (VIX?) has been used as a forward-
looking measure of market variance in addition to realized variance (the sum of
squared returns at higher frequency than the targeted frequency for the measure of
variance)'. We use these measures in Table D.11 along with both CSV measures
for daily and monthly predictability. We repeat the exercise in Table D.12 for
quarterly and annual frequencies. For these regressions we start the sample in
1990 for data availability for the implied volatility.

Results are similar to the ones in the previous section with market variance.
For CSVEW  we observe predictability at high-frequency but not at low frequency,
while it is the opposite for CSVW. For the daily estimates with CSVEW | we
find a R? of almost 5% when we include all three measures of variance, and all
coefficients are significant. But the remarkable result, undocumented until now to
our knowledge, is the very high R? obtained at quarterly and annual frequencies
for the CSVE" measure. When using CSVEW alone as a predictor we obtain
R2s of 4% and 26% at quarterly and annual frequencies, respectively. Adding the
implied variance brings the R?s to almost 19% and 29%. If instead one uses the
realized variance instead of implied variance the R?s are close to 11% and 34%.

VEW variable is negative.

In all these predictability regressions, the sign of the C'S
Guo and Savickas (2008) argue that average idiosyncratic volatility is neg-
atively related to future stock market returns possibly because of its negative

correlation with the aggregate book-to-market ratio.? If idiosyncratic volatility is

'For example, for the monthly variance, one will sum the daily squared returns, while for
the daily variance, it is customary to use five-minute or one-minute squared returns.

2The argument starts by considering average idiosyncratic volatility as a proxy for changes
in the opportunity set related related to technological shocks. They argue that technological
innovations have two effects on the firm’s stock price: they tend to increase the level of the
firm’s stock price because of growth options and they also tend to increase the volatility of the
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measured from a CAPM model then it will capture the missing book-to-market fac-
tor. This explanation runs counter to our previous findings regarding the very high
correlation between the measures of idiosyncratic volatility based on the CAPM
and the Fama-French models. The two series were almost identical. A more ap-
pealing explanation may be to think of cross-sectional variance as a measure of
dispersion of returns reflecting the dispersion of opinions among market partici-
pants. The negative sign of this relationship at quarterly and annual horizons in
the presence of market variance as the second predictor (and also at monthly hori-
zons in the presence of implied variance as the second predictor) is consistent with
the model of Cao et al. (2005), in which dispersion of opinions among investors is
positively related to stock market volatility but negatively related to conditional
excess stock market returns. Furthermore, one may argue that differences of opin-
ions forge themselves over a period of time and hence this effect is more likely to
be present at horizons longer than a day.

More generally, we may interpret the CSV as measuring the hedging terms in an
intertemporal CAPM model. In this regard, it is interesting to see that the positive
risk-return trade-off at the aggregate level, i.e., the relationship between market
volatility and expected returns, becomes significant only when taking into account
the presence of the omitted factors as captured by the CSV. It is also interesting
to note that the interactions of the CSV with the realized variance of the market
take place at longer horizons (quarterly and annual), while its interactions with

implied variance (VIX?) tend to be more important at shorter horizons.

firm’s stock price because of the uncertainty about which firms will benefit from the new oppor-
tunities. The final argument is to say that the book-to-market ratio captures these investment
opportunities
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1.4.4.3 Asymmetry in the Cross-Sectional Distribution of Returns

We now explore for a potential asymmetry in the relationship between idiosyn-
cratic variance and future average returns, when the cross-sectional variance is
split in two and is computed for returns above or below the mean.

This asymmetry may be the result of the leverage effect put forward by Black
(1976) since we are considering individual firms in the cross section. We also
mentioned in an earlier section that consumption volatility risk affects differently
small and large firms or value and growth firms. Therefore, we explore i) whether
the predictability power is the same for the CSV of returns to the left and right of
the center of the returns’ distribution, #i) whether the relationship is driven by one
of the sides and iii) whether the relationship with both sides would have the same
sign on their coefficient. In order to do this, we define the C'SV," as the cross-
sectional variance of the returns to the right of the cross-sectional distribution (i.e.,
meaning the cross-section distribution that includes all stocks such that r; > rPV)
and conversely define the C'SV,™ as the cross-sectional variance of the returns to the

left of the cross-sectional distribution (i.e., meaning the cross-section distribution

that includes all stocks such that r;; < rZ%). Then we run the following regression:

ri = a+ BTCSVE + B CSV] + €41 (1.19)

Table D.13 presents the results of regression (1.19) for daily, monthly, quarterly
and annual estimates, and shows a couple of interesting findings. First, splitting
the CSV into right and left sides of the cross-sectional distribution made the
adjusted R? of the predictive regression jump from 0.8% to 1.17% on monthly
data and from 0.6% to 1.36% on daily data. Second, there is an asymmetric
relationship between the CSV of the returns to the right and left of the cross-

sectional distribution and the expected market return: the coefficient of the C'SV,*
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is positive while the one of C'SV,™ is negative in both daily and monthly regressions.
However, the coefficients (of both right and left CSVs) are significant only on the
daily regression. The summary statistics of the predictive regression on the cap-
weighted index using the equivalent cap-weighted CSV measures, displayed in the
lower panel of Table D.13, are qualitatively similar to the results on the equal-
weighted measures.

These findings suggest that a measure of asymmetry of the cross-sectional dis-
tribution would be relevant in the context of exploring the relationship between
market expected returns and aggregate idiosyncratic risk. Another key advantage
of the CSV measure is that it can be easily extended to higher-order moments.
We consider below the skewness of the cross-sectional distribution of returns and
assess its predictive power for future returns. To the best of our knowledge, this
additional factor, which appears as a natural extension of the CSV for measur-
ing idiosyncratic risk', is entirely new in this context.” We follow Kim and White
(2004) and use a quantile-based estimate (see Bowley (1920)), generalized by Hink-
ley (1975), as a robust measure of the skewness of the cross-sectional distribution

of returns:®

F_1<]. — Oél) + F_l(Oél) — 2@2

RCS = F-1(1—oy)+ F~(al)

(1.20)

for any a; between 0 and 0.5 and Q; = F~!(0.5). The Bowley coefficient of
skewness is a special case of Hinkley’s coefficient when oy = 0.25 and satisfies the

Groeneveld and Meeden (1984)’s properties for reasonable skewness coefficients.

'We show formally in an appendix available upon request from the authors that there is
a link between idiosyncratic skewness and the skewness of the cross-sectional distribution of
returns.

2At the stock level, Kapadia (2009) uses cross-sectional skewness to explain the puzzling
finding in Ang et al. (2006) that stocks with high idiosyncratic volatility have low subsequent
returns.

3The usual non-robust skewness measure of the cross-section of returns is highly noisy com-
pared to the proposed robust measure, especially at the daily frequency.
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It has upper and lower bounds {—1,1}.

In Table D.14, we report the results of predictive regressions at the daily and
monthly frequencies where we add the robust measure of the cross-sectional skew-
ness to the equally-weighted CSV. The first observation is that the CSV coefficients
are very close to the values estimated with the CSV as the only regressor (0.4 for
the daily frequency and 0.25 for the monthly one). The t-stats are also almost
identical to the ones found in the CSV regressions. However, skewness appears
to be a major contributor to the predictability of returns since the R? increases
significantly compared to the regressions with CSV alone. At the daily frequency,
the adjusted R? increases to a value of 5.8%. At the monthly frequency, it is still
4.6%. This large increase in predictability when adding skewness suggests that
macroeconomic or aggregate financial shocks affect asymmetrically the distribu-

tion of returns.

1.5 Is Average Idiosyncratic Risk Priced?

According to Merton’s ICAPM, a factor that predicts stock returns in the cross
section should also predict aggregate market returns (see Campbell (1993)). By
the reverse argument, motivated by the predictability power of (equal-weighted)
cross-sectional variance on the average return in the market, we explore in this sec-
tion whether the CSVEW interpreted as a risk factor, is rewarded and commands

a premium in the cross-section.

1.5.1 CSV Quintiles’ Premium

Using daily excess returns every month we run the following regression for each

stock i:!

"'We use stocks with non missing values during the current month.
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Tit = a + Bi e CSVEW. (1.21)

At the end of every month in the sample, we sort stocks using the CSVFW
factor loading, B.s,, and form equally-weighted and cap-weighted quintile portfo-
lios. We calculate the average return during the overall period for each quintile
and the average return difference (i.e., premium) between the first quintile and
each of the other four quintiles.

The results for the equally-weighted quintile portfolios are displayed in the
upper panel of Table D.15 and in the lower panel for the cap-weighted quintiles.
As we can see from this table, all premia are significantly different from zero
and economically meaningful. The difference between the first quintile (the one
with higher sensitivity) and the second, third and fourth quintile, is around an
annualized 30%, while the difference with the fifth quintile is around 15%. This
result suggests that the relationship of the CSV and stock returns might not be
best described in the simple linear form, which is in line with the asymmetric

effect found in section 1.4.4, with the quantities CSV* and CSV ™.

1.5.2 Fama-MacBeth Procedure

In order to use the standard set of assets in the asset pricing literature, we extract
daily returns data from Kenneth French data library on their 100 (10x10) and 25
(5x5) size/book-to-market portfolios for the period July 1963 to December 2006.

Then we run every calendar month the following regression for each portfolio:!

Ty = a+ 5z,xmktXMKirt + ﬁi,smbSMBt + 5i,hmlHMLt + Bi,cstS%EW- (122)

L As before, XMKT stands for excess market return, SMB and HML are the size and book
to market Fama-French factors, also directly extracted from Kenneth French data library.
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Using the recorded factor loading, § (monthly) time series, we run the following
cross-sectional regression every month on the next month’s excess returns and

record the 7 coefficients:

Tg:_l =" + f}/a:mktﬁi,xmkt(t) + P)/smbﬁi,smb(t) + ’Yhmlﬁi,hml(t) + P)/csvﬁi,csv (t) (123)

We finally test whether the average ~ coefficients are statistically different from
zero. In order to take into account possible serial correlation in the coefficients,
we compute the t-statistic using Newey and West (1987) standard errors with 4
lags (same number of lags as in Ang et al. (2009)).

We use four sets of assets: 100 (10x10) size/book-to-market equally-weighted
portfolios and cap-weighted weighted portfolios, and 25 (5x5) size/book-to-market
equally-weighted and cap-weighted portfolios. For each of them, we use the
CSVEW as the fourth risk factor. The first two panels of Table D.16 present
the corresponding Fama-MacBeth regression results. The table displays the annu-
alized coefficients and standard errors (multiplied by 12 from the original monthly
values), as well as their corresponding autocorrelation-corrected t-stat and the
average R%. We find the 7 coefficient for C.SVEW to be positive and significant
when we use the 100 and 25 size/book-to-market Fama-French equally-weighted
portfolios. However, it is not significant when we use the 25 market cap-weighted
portfolios and marginally significant for the 100 market cap-weighted portfolios
(although positive in both cases). This later result, again, is not entirely surpris-
ing considering that the cross-sectional variation in returns is reduced through the

market-capitalization adjustment.
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1.6 Conclusion

In this paper we formally introduce an instantaneous cross-sectional dispersion
measure as a proxy for aggregate idiosyncratic risk that has the distinct advan-
tage of being readily computable at any frequency, with no need to estimate other
parameters. It is therefore a model-free measure of idiosyncratic risk. We ex-
tensively show how this measure is related to previous proxies of idiosyncratic
variance, such as the Goyal and Santa-Clara (2003) measure and measures rela-
tive to the classic Fama and French (1993) and CAPM models, which have been
previously shown to be very close to the Campbell et al. (2001) proxy as well. We
confirm previous findings of Goyal and Santa-Clara (2003), Bali et al. (2005) and
Wei and Zhang (2005) on the monthly predictability regressions for the extended
sample period using our cross-sectional measure and more standard measures of
idiosyncratic variance. We find that the results are robust across these measures.
Thanks to the instantaneous nature of our measure, we are able to extend to
daily data the evidence on the predictability power of idiosyncratic variance on
the future market portfolio return. We provide a statistical argument to support
the choice of an equally-weighted measure of average idiosyncratic variance as
opposed to a market-cap weighted and explain why both empirically and theo-
retically such a measure should forecast better the equal-weighted market return.
We also showed that this cross-sectional measure displays a sizable correlation
with economic uncertainty, as measured by consumption growth volatility, and
with several economic and financial variables. One additional advantage of our
measure is that it generalizes in a straightforward manner to higher moments and
we showed that the asymmetry of the cross-sectional distribution is a very good
predictor for future returns. We leave for further research an exhaustive analysis

of the properties of the skewness of cross-sectional return distribution as a measure
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of average idiosyncratic skewness. We also leave for further research an empirical

analysis of the CSV measure using international data.
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CHAPTER 2

Predicting Stock Returns in the
presence of Uncertain Structural

Changes and Sample Noise

Daniel Mantilla-Garcia and Vijay Vaidyanathan*

The power of the dividend price ratio to predict future stock returns has
been the subject of intense scrutiny. Most studies on return predictability
assume that predictor variables follow stationary processes with constant
long run means. In view of recent evidence of the role of structural breaks
in the dividend-price ratio mean, we propose an estimation method that
explicitly incorporates the uncertainty about the location and magnitude
of structural breaks in the predictor in order to extract the regime mean
component of the dividend-price ratio. We find that adjusting for structural
changes in the ratio’s mean and estimation error improves the predictive
explanatory power of the dividend-price ratio in-sample, as well as its out-

of-sample forecasting ability to a very significant extent.
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2.1 Introduction

Although the voluminous literature related to the predictability of returns has a
long history (e.g. see Spiegel (2008)), the issue remains the subject of controversy
and a very active field of research. The subject of debate in the empirical literature
encompasses its very existence and nature, the type of predictors as well as the
models and methods used to forecast returns. Perhaps the only uncontroverted
fact about return predictability is that it is a central question in financial economics
from both theoretical and applied standpoints.

A variety of financial variables have been proposed as predictors, including
the dividend price ratio, dividend growth ratio, price earnings ratio, dividend
payout ratio, stock variance, book value, book to price ratio etc. (see Goyal and
Welch (2008) for a comprehensive list). Of these, the dividend price ratio is seen
as particularly promising, in part because of the Campbell and Shiller (1988)
linearization of the definition of a return. This identity discussed in Cochrane
(2008) states that either the dividend price ratio or dividend growth must predict
returns. Goyal and Welch (2003) take a contrarian view. While acknowledging
the identity they argue that it need not hold in short horizons, where, in effect,
the current dividend price ratio predicts little more than the following period’s
dividend price ratio.

An overview of this vast literature suggests that the evidence of predictability
has failed to be conclusive. Supporting evidence has come in two flavors: one
arguing that predictability must exist (e.g. Cochrane (1992), Cochrane (2008)),
and the other showing some positive results that are not strong enough to be
considered as sufficient proof by its detractors (e.g. Goyal and Welch (2003), Goyal
and Welch (2008)). The sources of skepticism include the scarce out-of-sample

prediction results, the marginal statistical significance of regression coefficients,
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the instability of regression coefficients, and the sample sensitivity of the evidence
(e.g. Timmermann (2008)).

The branch of the literature that supports the existence of predictability rejects
the classical random-walk paradigm of unpredictable and approximately constant
expected returns, and posits one that admits the possibility that expected returns
contain a time-varying component, either related to economic-cycles (e.g. Lettau
and Ludvigson (2005)) or the existence of other regimes that imply predictability
of future returns. In this view, the poor out-of-sample R? is not necessarily viewed
as invalidating the null hypothesis of predictable returns. For instance, Cochrane
(2008) states: (p. 1566) “One can simultaneously hold the view that returns are
predictable, ... , and believe that such forecasts are not very useful for out-of-
sample forecasting and portfolio advice, given uncertainties about the coefficients
m our data sets”. Indeed, there is even some question about whether the poor
performance of out-of-sample tests implies that in-sample results are spurious
(Inoue and Kilian (2004)).

Although out-of-sample predictability has been alleged by some to be weak,
a few recent methodological proposals for return forecasting finally appear to be
successful. Campbell and Thompson (2008) demonstrate that the performance of
the out-of-sample tests can be shown to be significant, for instance, by imposing
weak and theoretically sound restrictions on the signs of the model parameters.
Arguing model uncertainty and instability, Rapach et al. (2009) find that using
combinations of individual forecasts (e.g. average forecast from univariate pre-
dictive regressions) produce economically significant out-of-sample predictability
evidence of the equity premium for quarterly data.

In another vein, Ferreira and Santa-Clara (2010) propose an entirely new
methodology to forecast returns out-of-sample, which seems to be very successful

in producing stock returns’ forecasts, at both annual and monthly horizons. This
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so called “sum-of-the-parts method” consists of decomposing returns into dividend
yield, earnings growth, and price-earnings ratio growth and separately forecasting
the three components to obtain stock market returns forecasts. Interestingly, there
is no in-sample test for this approach as there is within the predictive regression
framework. One potential extension of their method would be to use the model
we propose here for the dividend yield mean to better forecast the dividend yield
(instead of returns).

Assuming an AR(1) process with a constant trend for expected returns and
starting from the Campbell-Shiller identity, Lacerda and Santa-Clara (2010) derive
a predictor composed by the dividend-price ratio series adjusted with a forecast
of the dividend growth and the mean of dividend-price ratio itself that seem to
be very successful for predicting at annual horizons, out-of-sample. Their adjust-
ment is quite different from ours because the resulting adjusted predictor series
seems to be even less stationary than the original dividend-price ratio series. How-
ever, since Lacerda and Santa-Clara (2010)’s adjustment uses an estimation of the
dividend-price ratio mean, it might be possible to further improve return forecast-
ing accuracy by combining the estimation method we propose to estimate the d-p
mean, with their adjustment.

Although the Campbell-Shiller identity would imply a linear relationship be-
tween the dividend-price ratio and expected returns, McMillan (2009) uses a
framework significantly different from the linear predictive regression called the
exponential smooth transition model (ESTR). This non-linear model assumes
that the parameters describing the relationship between returns and the d-p ra-
tio change over time, taking different values corresponding to a fixed number of
regimes. They propose a model that implies 4 different regimes over which the
model parameters migrate over time in a smooth fashion. They find that their

model out-performs the random walk model in terms of root mean square predic-
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tion error, for monthly data in 3 out of 8 markets over the 1980-2007 period.

In a similar spirit, Dangl and Halling (2009) propose to use predictive re-
gressions with time-varying coefficients to predict the risk premium at monthly
horizons and find significant improvements in terms of mean square prediction er-
ror with respect to the random walk when combining univariate predictive models.
Similar to Rapach et al. (2009), they report that their predictions are significantly
better during recession periods. Dangl and Halling (2009) document that uncer-
tainty about the level of time-variation in coefficients and uncertainty about the
choice of predictive variables are equally important sources of predictive variance.
A priori, structural breaks in the predictors and time varying coefficients may co-
exist. Hence, models such as Dangl and Halling (2009) or McMillan (2009), and
ours can be seen as potentially complementary for return forecasting purposes.

Thus, regardless of the point of view on predictability, there is agreement
that the uncertainty about the regression coefficients contributes to weakening the
predictive power, both in-sample and out-of-sample. Indeed, there is overwhelming
evidence (e.g. Ang and Bekaert (2002), Pastor and Stambaugh (2001)) of the
presence of such structural breaks. The existence and importance of such breaks
have been emphasized by Paye and Timmermann (2003), Pastor and Stambaugh
(2001) and Pettenuzzo and Timmermann (2005).

Recently, Lettau and van Nieuwerburgh (2008) shows that adjusting the d-
p ratio for structural breaks in its mean, leads to a significant increase in the
significance and magnitude of the (in-sample) predictor’s coefficient and the re-
gression R?. However, using their model in combination with a regime switching
model (Hamilton (1989a)), they produce out-of-sample forecasts that do not out-
perform the return’s historical average in terms of mean square error. Lettau
and van Nieuwerburgh (2008)’s adjustments derive the location of the break by

using the Bai-Perron algorithm (Bai and Perron (2003), Bai and Perron (1998)),
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which estimates the most likely (using a specified criterion) number and location
of break points, and subsequently assumes that the timing of the breaks is certain
to estimate the d-p ratio regime mean. Unfortunately, the information on the true
location of the break is itself uncertain, and therefore introduces uncertainty in
the estimate of the parameters.

In this paper, we propose an alternative mechanism to adjust for structural
breaks in the d-p ratio’s mean by incorporating the uncertainty about the timing
of the structural breaks. In contrast to the Bai-Perron algorithm, we suggest a
Bayesian approach for detecting the change points. Instead of using likelihood
measures to estimate the breaks, the Bayesian approach we use produces a prob-
ability for each observation to be a change point. Thus, we are able to use all
observed data to characterize the distribution of change points, and generate a
posterior mean for the predictor. We show that incorporating the uncertainty
related to the locations of the structural changes in this manner produces an
adjusted predictor series that is better behaved (stationary) and significantly im-
proves the level and significance of the regression coefficient and the regression
R? with respect to Lettau and van Nieuwerburgh (2008)’s adjustment. We also
show that these improvements are robust to choices of the sample period as well
as alternative indices of the stock market portfolio. In order to estimate the prob-
ability of a change point and the posterior mean, we use the BH-BCP algorithm
of Barry and Hartigan (1993), Erdman and Emerson (2007). Finally, exploiting
a measure of uncertainty produced by the bayesian algorithm, we propose a sam-
ple noise shrinking methodology that, in combination with the structural changes
adjustment, provides sound evidence of out-of-sample return predictability that

could have been exploited in real time.

20



Chapter 2

2.2 Dividend-Price Ratio Predictability Power
and Structural Changes

The theoretical motivation to use the dividend price ratio to forecast returns comes
from Campbell and Shiller (1988)’s log linearization of the ratio, for which the dp’s

stochastic component is related to expected returns as follows:
dpy=dp+E» o7 [(res = 7) = (Adyyy — d)] | (2.1)
j=1

where p = (1 + emp(d_p))f1 is a constant, establishing an inter-temporal rela-
tion between future returns and dividends. Cochrane (2008) argues this identity
implies that the dividend-price ratio must predict either future returns or dividend
growth. Given the lack of predictability power of dividend growth by the dividend
price ratio that he and other authors documented “if both returns and dividend
growth are unforecastable, then the price/dividend ratio is constant, which it ob-
viously is not”. However, Cochrane (2008)’s argument stands in contrast to the
evidence presented by Goyal and Welch (2008), which find that the predictive
power of the dividend price ratio (and a battery of other commonly used predic-
tors) have vanished after the oil crisis in the mid 70’s.

One should note that the framework in equation (2.1) implies that the steady-
state of the economy is constant over time, meaning that the long-run growth
dividend rate d, the long run dividend price ratio level, dp as well as the average
long-run return of equity, 7 are fixed. Although this assumption seems to hold
reasonably in the data for the dividend growth and returns, the dividend price
ratio displays structural changes in its mean, making this assumption unrealistic.

However, Lettau and van Nieuwerburgh (2008) extended the Campbell-Shiller

framework to allow variations (and even permanent changes) in the steady-state of
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the economy. Under mild assumptions' about the dividend-price ratio steady state
level dynamics, they show that, similar to the case with constant steady-state, the
log dividend-price ratio is the sum of the steady-state dividend-price ratio and the
discounted sum of expected returns minus expected dividend growth in excess of

steady-state growth and returns,

dp, = dp; + E; Z ot [(rey = 7) = (Adyyy — d)] (2.2)

j=1

where p, = (1+ ewp(d_pt))_l. The difference between (2.2) and (2.1) is that
the mean of the log dividend-price ratio not only varies over time but it could also
be non-stationary.

On the other hand, a standard specification of forecasting variables used by
Stambaugh (1986), Stambaugh (1999), Nelson and Kim (1993), Lewellen (1999),
Péstor and Stambaugh (2009) and others, is to assume predictors z; to be a

stationary processes with constant mean,

where the mean of the predictor variable, i is constant and the stochastic com-
ponent, u,; is assumed to be stationary. It is also standard to assume a linear
relationship? between the predictor and expected returns, conditional to available

information, F at time t,

Lettau and van Nieuwerburgh (2008) assume the steady-state log dividend-price ratio to
be (approximately) a martingale, E;dp, 5= dp;. They note that although steady-state growth,
expected return and mean dividend-price ratio must be constant in expectations, the steady-state
might shift unexpectedly.

2For a predictive framework where this assumption is relaxed see Pédstor and Stambaugh
(2009). However, their predictive system also assumes stationary processes for the predictors,
making our model also relevant for their more general setting.

o2



Chapter 2

E (re,1|Fe) =7+ bz — ). (2.4)

The presence of structural changes in the steady-state mean of the dividend-
price ratio documented by Lettau and van Nieuwerburgh (2008) implies a non-
stationary series, which would not be a well-suited predictor variable in this set-
ting'. However, the decomposition of the dividend-price ratio into a stationary
stochastic term and a non-stationary time-varying steady state mean in (2.2), im-
plies that a stationary predictor variable could be obtained from the difference
between the current level of dp, and its non-stationary component dp,. Using this

idea, and replacing y; = dp, and z, = dp, equations (2.3) and (2.4) turn into:

Ty = Uyt =+ Uy (25)

FE (Tt—&-l’?t) =7+ b[ﬂft — /,Lt] =a++ bft (26)

Hence, the adjusted series x;, which should be a stationary one, could be
obtained if the timing and magnitudes of shifts in the steady state mean dp can be
adequately estimated. Lettau and van Nieuwerburgh (2008) used the structural
breaks methodology developed by Bai and Perron (1998) to identify the most
probable dates when a break happened in the dividend price ratio series. Lettau
and van Nieuwerburgh (2008) then treated the blocks (i.e. regimes or sub-periods)
implied by the break dates as independent sets of information, from which they
estimate the conditional mean of the underlying process by simply calculating
the sample average for each block which is assumed to be constant within the
sub-period. This methodology to estimate dp, does not take into account the

uncertainty intrinsic to the estimation of the regime changes and the parameter

'Put here references on problems with persistent predictors
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estimation error, and is ill-adapted for out-of-sample return forecasting'.

Instead, we propose estimating the time-varying mean of the dividend-price
ratio by using an algorithm that explicitly incorporates the uncertainty about the
time when the regime changes happen. This algorithm, originally developed by
Barry and Hartigan (1993), called Bayesian Change Point analysis (BCP), allows
us to decompose the dividend price ratio into its persistent current-regime mean
and its stationary components. This decomposition, induces significant improve-
ment for return predictability evidence in both in-sample and out-of-sample tests,
as we show in the following sections.

In the rest of this section we explain in more detail how the BCP algorithm in-
corporates the uncertainty about the structural changes in the steady-state mean
level of the dividend price ratio, then we discuss how this model compares with
other models of time series structural breaks and then we introduce a comple-
mentary methodology to adjust for parameter estimation error for out-of-sample

return forecasting in this context.

2.2.1 Modeling Structural Change Uncertainty with BCP

Consider a sequence of numbers X, consisting of T" observations X1, Xo, ..., X7. We
define a partition of X, denoted by p, as a sequence of T indices Uy, Us, ..., Ur = 1,
where each U; is 1 if the i¢th element of X is the end of a block and is 0 otherwise.
A block, in this context, is a sub-sequence of X consisting of contiguous elements
from X. Thus a partition splits X into a series of non-overlapping contiguous
sub-sequences, or blocks. We denote a block by an index pair of the preceding

block ending and the block’s ending indices (4, 7). Thus, each block (i, j) consists

f one would use Lettau and van Nieuwerburgh (2008)’s methodology to forecast return
out-of-sample, just after a break date is declared all past observations are dropped, leaving just
one data point with which to estimate the current steady-state level of dp, which is a priori, not
a very reliable estimate.
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of observations X1, Xjio,...Xj.

For example, consider the sequence of length 6, X = 2,4,3,6,8,7. One possible
partition of X is p = 001001. This partitions X into two blocks, the first is block
(0,3) comprising of the sub-sequence 2,4, 3 and the second block is (3,6) which
is the sub-sequence 6,8,7. Another possible partition of X is p = 101001 which
splits X into 3 blocks - the singleton (i.e. of length 1) block (0, 1), and the blocks
(1,3) and (3,6). Note that we use the index 0 to denote the first index of the first
block.

In the context where X is a time series, each block therefore corresponds to
a contiguous period in time, and represents a temporal “regime” that serves to
group all observations during that regime into a block. Any partition p is a T
dimensional vector, where the Tth component must be 1, but each of the other
T — 1 values can either be a 0 or a 1.

The algorithm works by considering the space of all possible partitions P of the
sequence X. Since X is of length T, and each data point (except the last, which
must be an end-of-block) represents a possible end-of-block (i.e a change point),

2T—1

there are possible partitions of X. However, it is possible to compute an

exact solution in polynomial time rather than exponential time, because many of

N+1)

the blocks across the different partitions are identical. Since there are are ( )

possible blocks, the exact solution is O(n?), making it computationally taxing.
Furthermore, it is possible to use Gibbs sampling methods to obtain an MCMC
approximation in linear time.

To see how sampling from P can yield the parameters of interest, recall that
any partition p € P can be represented by p = Uy, Us, ..., Ur where U; is zero if
7 is not the end of a block, and Uj; is 1 if ¢ is the end of a block. Uy is fixed at
1. If one knew the distribution of p, then E(U;) (under the prior) would yield the

probability that the ith observation represented a change point.
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The key insight of the BH-BCP algorithm is that given a partition and distri-
bution parameter, we can obtain the likelihood of that combination of partition,
parameters and data.

Thus, instead of enumerating all possible partitions, the algorithm samples
from the space of all possible partitions, given the observed data. If we draw as
a sample a partition p = Uy, U, ...,Ur = 1, each U; has a value of 1 at a change
point and 0 otherwise. Hence, the mean of the U; across all the samples yields
the posterior probability that 7 is a change point. In a similar manner, we can
estimate the means for each block in the sample partition, and combine block
mean estimates from all sampled partitions to estimate the posterior block mean

for the series as well as the posterior variance of the block means.

2.2.2 The BH-BCP Gibbs Sampling Algorithm

The algorithm starts with the following assumptions. The ¢th block is assumed to
have a block mean of u; and all data points in X are assumed to be drawn from
N(pi, 02). The probability of any point 7 being a change point is assumed to be p,
independently for each 7. BH-BCP then imposes a prior distribution on u; to be
N(po, 02/1) where [; is the length of block 7. This has the effect of giving a “higher
probability to small departures from g in large blocks than it does in small blocks;
we can expect to identify small departures if they persist for a long time” (Barry
and Hartigan (1993)). An estimate of the block mean p; is fi; = (1 — w)B; + wyg
where B; is the sample mean of the block B;, i is the sample mean of X and w is
the ratio 02 /(02 + 02). Of course, w also needs to be estimated from the data as
do p;, for which BH-BCP provides a fully bayesian solution with reasonable priors
for g, 0, p,w.

In order to sample from P, the sampler exploits the fact that the conditional
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distribution p; = f(U;|S,U,;Vi # j) is easily computed, allowing us to sample
a value of U; from this conditional distribution. The sampler begins with P =
0,0,0,...,1. For each step of the markov chain, we sample from f(U;|S,U;Vi #
j). As Erdman and Emerson (2008) have pointed out, the expressions given in
Barry and Hartigan (1993) are numerically unstable, and we use their alternate

formulation provided in Erdman and Emerson (2008), given by:

. . 0 i w0 wb/2
pi  PU =1|S,U¥i#j) fop p°(1 —p)b=Lldp o —(W1+Blw)<n_1)/2dw

= — 7\ po W0
L—pi  PU=0[S,U¥i#j) [P p-1(1—p)tdp | %dw

where b is the number of blocks, Wy, By, W1, By are the within and between
the blocks sum of squares when U; takes the values of 0 and 1 respectively. The
integrals are incomplete beta functions which are easily computed, using numerical
procedures dating back to Newton (e.g. DiDonato and Morris Jr (1992)). p0 and
w0 are tuning hyper-parameters that can be set to values of less than 1 in order
to impose ad-hoc heuristics to limit possible values of p; and w;. However, our
implementation makes no ad-hoc impositions, and we consider the full distribution
by keeping them both at 1. Carefully choosing ad-hoc limiting values through these
parameters marginally improve our results, but we opt to avoid these limits and
fix them at the full value of 1.

Given a value for p;, we can now sample a value for U; from the Uniform
distribution, and then proceed to the next step of the chain. At the end of T'— 1
steps, we would have a sample P from P which can be repeated for as many
MCMC iterations as needed. The jth MCMC iteration yields a sample partition
P; from P, from which we derive an estimate for w; and therefore for p;; for
i € {1..T}. Averaging over all the MCMC iterations, we compute the posterior

mean w; for i € {1...T'} as the sample average of each p;; over the j MCMC
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partitions. Similarly, we also compute the posterior variance v; € {1...T} from
the sample. Although the primary object of interest at this stage is the posterior
mean, we shall show that the posterior variance plays a key role in allowing us
to estimate the precision of the posterior mean, which we exploit in obtaining an

optimal shrinkage estimator for out-of-sample forecasting.

2.2.3 Relation with alternative structural change models

The Bai-Perron method uses a dynamic programming algorithm to pick the most
likely partition P* in P. The choice of P* is made on the basis of user supplied
constraints on the number of blocks, and picking amongst feasible solutions using
an information criterion such as BIC, AIC or log likelihood. Specifically, the
algorithm does not provide guidance on constraints on the number of blocks, and
is unable to provide an estimate of posterior means or the variance of the posterior
means.

However, the Bai-Perron method yields results that are usually consistent with
BH-BCP in the sense that the break points identified by Bai-Perron tend to corre-
spond with points that BH-BCP ascribe high probabilities of being change points.
In that sense, the BH-BCP algorithm may be thought of as providing results that
are consistent with Bai-Perron while providing additional information on the dis-
tribution of other possible partitions, and the implications of that distribution on
the posterior means and variances of data points in X.

Another approach to identifying discontinuities in X that has been deployed
in the literature is to use a state-space approach that models each block as a state.
Similar to the BH-BCP algorithm, Markov Switching models have the appealing
ability to yield a sequence of filtered and smoothed probabilities that any point

represents a transition to a new state. However, Markov Switching models tend
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to be difficult to estimate in practice because of the relatively large number of
parameters that need to be estimated (as a function of the number of states).
Since we do not wish to impose either a fixed number of states, nor do we have any
particular motivation in estimating a state transition probability matrix, a Markov
State Switching model is not necessarily the most natural choice. However, in our
analysis of out-of-sample predictions, we include the results of using a Markov
Switching model to predict the current regime mean in Appendix B.1.

However, BH-BCP may be thought as a variation of a Markov Switching model
where the number of states is unconstrained and the likelihoods are computed
under the distribution implied by the imposed priors. Since the number of states is
unconstrained, there are no constraints on the transition probability matrix either.
The transition probability matrix reduces to a transition probability sequence
representing the probability that any particular data point in the input sequence
represents a transition to a new state.

In our approach to return predictability with dividend-price ratio, regression
coefficients are determined conditional upon structural breaks on the predictor
variable. In this sense, one could see predictive regressions with time-varying co-
efficients (see Dangl and Halling (2009) for instance) as an alternative approach to
adjust for structural changes, where the breaks are captured by allowing variations
or structural instability in the coefficients instead of in the predictor’s mean. In
the time-varying coefficient approach, the size and uncertainty of structural breaks
are captured through a presumed variation of (estimated) parameters, which are
unobservable.

On the other hand our approach admits the existence of structural breaks on
the observed dividend-price ratio’s historical data. Furthermore, it is interesting
to see that equation (2.6) can also be interpreted as a model with a time varying

intercept (given by 7 — bE,;) as opposed to a time varying slope coefficient.
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2.3 Shrinking Noisy Parameter Estimates

The R? of the predictive regression reflects the correlation of realized returns with
the estimation of expected returns (forecasts) obtained with parameters fitted to
the same sample used to assess predictability accuracy. While expected returns
are not observable, realized returns, which are a combination of expected and
unexpected returns, are arguably the best approximation we have to assess the
forecasting performance of a model for expected returns'. On the other hand,
if there is “noise” in model parameters estimates (such as adjusted predictors or
regression coefficients) for small samples the predictive regression may over fit the
parameters to the observed “noisy” sample, producing inaccurate out-of-sample
forecasts. If this is the case, then the out-of-sample predictions would not be as
robust as implied by the regression statistics. One way to mitigate the over-fitting
problem inherent in predictive regressions is parameter shrinkage. In this sec-
tion we propose a minimum variance shrinkage for the estimated BCP-adjusted
dividend price ratio and describe the (mean-squared error) optimal shrinkage for
the estimated regression coefficients proposed by Ashley (2006), which we subse-

quently use for out-of-sample predictability tests.

2.3.1 BCP adjusted dividend price ratio and minimum

variance shrinkage
Although the BH-BCP algorithm is best suited to in-sample estimation of the

posterior mean, the fact that it also produces posterior variances can be exploited

to compute an optimal shrinkage estimator for out of sample forecasts as well.

!There might be other ways to measure expected returns, based for example in analysts
forecast, but they might be as subject as realized returns to measurement errors. Having said
this, from a practical perspective, predicting realized returns, and not expected returns is what
“matters”.
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The typical out-of-sample forecast involves estimating values for the intercept
a and slope b parameters of the linear model as well as the latest value of the

adjusted predictor, z;. From equation (2.6), the ith return forecast is obtained as,

Tig1 = a+ Z;fz', (2.7)

where x:Z = x; — m; is an estimate of ¥; = z; — p; . Unfortunately, since
the regime mean, p; is not observable —but it has to be estimated— the adjusted
predictor estimated value is an imperfect predictor. Hence, the observed value
of the adjusted predictor contains an unobservable predictive component and an
unobservable noise component.

The alternative to using the observed estimated value of the predictor is to
take the extreme position that the observed predictor value has no predictive
component and any deviation from the current value of the posterior mean, 7; is
comprised entirely of noise. As equation (2.6) illustrates, only deviations from the
latest value of the regime mean predicts deviations from the steady-sate return
average. Under this assumption, this model feature squares nicely with the random
walk hypothesis, making 7; = 7'.

On the other hand, using the observed adjusted predictor value is the alternate
extreme position that the observed value is entirely composed of the predictive
component with no noise. Thus we have two different estimates for the value of
the predictive component of the predictor variable: (i) the random walk estimate,
which would ignore the observed data entirely for forecasting purposes and assume
it has zero predictive power (null deviation from the current value of the regime
mean), and (ii) the naive estimate, which would assume that the estimated value

of the predictor was fully informational and contained no small-sample noise.

LOne can see this by replacing x; = 7; in equation (2.6).
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Instead of using one or the other estimate, we combine these two approaches
using a linear shrinkage estimator to obtain an estimate that is optimal in the sense
of it being the minimum variance estimator under the modeled assumptions.

Denote p™ and p as the random walk and the naive estimates of . Under the
random walk hypothesis, the predictor estimate is such that the adjusted value
is 0, i.e. p™ = x; — m; = 0 which implies that z; = m;, because any deviation
from the posterior mean of the predictor value is noise. Since the regime mean is
not observable, the estimation error would be proportional to the variance of its
estimator. Hence, we estimate the variance of the random walk predictor estimate
Var(p..) as is the mean of the posterior variance v, which we denote as v.

On the other hand, an estimator for the variance of the naive estimator p; =
x;—m; is simply the variance of the estimated adjusted predictor, Var(p) = Var(z).
The minimum variance estimator that combines these two estimates is a weighted
sum of the two estimators, weighted by the reciprocal of the variances. Since the

predictor value for the random walk is zero, we get:

Vel 7
pi_z?—FVar(jo“) Pi v+ Var(p)
. Var(p) 1%

pi = v+ Var(p) x 0+ v+ Var(p) x (i = mi).

Under the assumptions above, the linear shrinkage estimator predictor with the

lowest variance is given by:

v

P var) T

pi =

where x; is the ith observation of the unadjusted predictor and 7; is the ith es-

timated value of the regime mean. Plugging the shrunk estimator for the adjusted
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predictor back in equation (2.7), yields the BCP-adjusted out-of-sample forecast:

~

2.3.2 Optimal shrinkage for Predictive Regression Coeffi-

cients

The predictive regression coefficients are also estimated values, that a priori suffer
from the same small-sample over-fitting problem previously mentioned. Ashley
(2006) shows that the unbiased forecast is no longer squared-error optimal in this
setting. Instead, the minimum mean squared error forecast represents a shrinkage
of the unbiased forecast toward zero. Similar to the minimum variance shrinkage
proposed for the adjusted predictor, the shrinkage target for the slope coefficient
also coincides with a prior of no predictability (random walk). Following Connor

(1997) we correct the estimated regression coefficients as,

where z is the historical mean of the predictor up to time s. As the the slope
coefficient is shrunk toward zero, the intercept needs to be adjusted to preserve the
unconditional return mean. The shrinkage intensity j (measured in units of time
periods) is proportional to the weight given to the prior model of no predictability.
Ashley (2006) shows that the mean-squared error optimal shrinkage intensity is
given by j = 1/p, where p represents the expected explanatory power of the

predictive model, and is defined as the expectation of a function of the regression
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R-square:

R2

Plugging the shrunk estimator for the adjusted regression coefficients back in

equation (2.7), yields an out-of-sample forecast with shrinkage:

Fopr = a* + bz, (2.9)

2.4 Empirical implementation

Using annual returns (with and without dividends) for the value-weighted broad
market index from the Center for Research in Security Prices (CRSP) data for the
1927—2010 period, we construct the corresponding time series of the dividend-price
ratio'. Table E.1 reports the first and second order autocorrelation coefficients for
the log dividend-price together with an Augmented Dickey Fuller test, testing the
null hypothesis of a unit root. The first and second order autocorrelation coeffi-
cients are 0.92 and 0.84 respectively and the null hypothesis cannot be rejected.
These are clear signs of non-stationarity of the log dividend price ratio (raw) series.

Using the BCP algorithm, we decompose the dividend-price ratio into its
steady-state (current-regime) level and its transitory (hopefully stationary) com-
ponent. Figure E.1 displays in its upper panel the time series of the dp ratio
together with the estimated posterior mean. One can see that the posterior mean
is a slow moving (persistent) time series with smooth variations, in contrast to the
somehow artificial step function implied by the estimation procedure implemented
in Lettau and van Nieuwerburgh (2008). A priori, there might be an advantage in

using the BCP algorithm since Barry and Hartigan (1993) have shown that their

1We chose the start of the sample period as in Goyal and Welch (2008).
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method is superior to a number of structural change alternatives, in detecting
sharp short-lived changes in the parameters.

If the methodology we propose is able to extract the non-stationary component
of the dividend price ratio, the adjusted series dp, which is equal to the raw dp
series minus its posterior mean, should be a stationary one. If this is the case,
the adjusted series would be a better suited variable to forecast returns within
the classic linear predictive regression setting. In order to verify this hypothesis,
we perform the Augmented Dickey Fuller test and estimate the autocorrelation
coefficients on the adjusted series. We also perform this analysis on the dp series
adjusted by regime means using the methodology proposed by Lettau and van
Nieuwerburgh (2008) with one (1991) and two (1954 and 1994) structural breaks.

In Table E.1 we can see that both, the first and second order autocorrelation
coefficients (AC) drops dramatically with respect to the unadjusted series’ ones,
for quarterly and annual time series. Interestingly, the coefficients also present a
significant improvement with respect to the adjusted dp series using Lettau and
van Nieuwerburgh (2008)’s method. In annual data (upper panel of Table E.1) the
AC(1) went from 0.78 and 0.66 (for one and two breaks adjustment) to 0.02 for
the BCP adjusted and the AC(2) from to 0.55 and 0.30 to —0.19 respectively. The
lower panel of Table E.1 confirms an important improvement when the same break
points and the BCP method is applied, with AC(1) falling from 0.73 and 0.63 (for
one and two breaks adjustment) to —0.14 using the BCP adjustment and AC(2)
from 0.73 and 0.62 to 0.097 respectively. The Augmented Dickey Fuller test, is
also clearer in its rejection of the unit root null hypothesis for the BCP adjusted
series than for the ones using the Lettau and van Nieuwerburgh (2008) breaks
adjustment. The last line of each panel in Table E.1, shows that the posterior

mean is a very persistent series (more than the original dp series).
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2.4.1 Evidence from Predictability Regressions

We now turn to run the predictability regression using unadjusted log dp and ad-
justed series using one or two breaks as in Lettau and van Nieuwerburgh (2008) in
addition to the adjustment we propose using the Barry-Hartigan Bayesian Change
Point methodology. The upper and lower panels of Table E.2 summarizes the re-
sults of a one year ahead and one quarter ahead predictive regressions on the log
returns of the CRSP value-weighted broad market index, testing hypothesis (2.6).
First, the results confirm Lettau and van Nieuwerburgh (2008)’s finding: “While
the statistical significance of the coefficient on the unadjusted dividend-price ratio
is marginal, coefficients on the adjusted dividend-price ratios are strongly signifi-
cant.” Second, from the table we shall notice that the the Zl; adjusted using the
BCP posterior mean presents much higher coefficient values and Newey-West ad-
justed t-stats of 1.28 (8.02) while the adjusted series with the former methodology
have lower coefficient values of 0.23 (4.48) and 0.38 (4.57) for one and two breaks
respectively in annual data. The R? is also improved for the BCP adjusted se-
ries (about 19%) with respect to the alternative one and two breaks adjustment
(9% and 15%) and with respect to the raw dp series (4%) on annual data. A
similar improvement is observed using quarterly series (lower panel of the table).
The higher predictability power of the BCP adjusted series is consistent with the
notable relative improvement achieved regarding the non-stationarity correction
reported in Table E.1.

Similar to results reported in Lettau and van Nieuwerburgh (2008), the former
results use the full sample to estimate the current level of the regime mean of
the dp ratio. We now test whether the robust predictability evidence presented
above, is robust to the sample period chosen and if it could have been recognized

before. Using a growing window of data, we estimate the model parameters (e.g.
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posterior mean) and run the predictive regression for every subsample using in-
formation available up to time ¢, just as if the test would have been performed in
real time every year. Starting the first calibration period with data up to 1965
(same as in Goyal and Welch (2008)) we repeat the exercise every year until the
end of the sample. Figure E.2 displays the Newey-West corrected t-stats for the
predictor’s coefficients time-series of regression and the corresponding R2s using
the raw dp series and the BCP-adjusted series'. We find regression’s coefficients,
t-stats and R? to be remarkably stable over time and broadly consistent with
the in-sample result of the whole sample, in every sub period we looked at. The
predictor coefficient’s Newey-West adjusted t-stat has in fact increased since the
first subsample, where it presents a value over 5. These results contrast with the
less stable and decreasingly significant regression statistics when using the pure
dp ratio as a predictor.

Consistent with identity (2.2), our results indicate that the transitory compo-
nent of the dividend-price ratio has predictability power at the annual horizon,
while its steady-state regime-mean is a very persistent series. For this reason,
when the raw series of the d-p ratio is used as the predictor variable, as in (2.4)

predictive regression, its predictability is blurred by its persistent component.

2.4.2 Out-of-Sample Predictability Evidence

Goyal and Welch (2008) provided evidence that the random walk model outper-
forms the predictive regression models using (raw) financial ratios ratios among
other common predictor variables in out-of-sample predictability tests. Interest-

ingly, Lettau and van Nieuwerburgh (2008) find that, in spite of the considerably

Lettau and van Nieuwerburgh (2008) report a similar growing-window exercise but they
use future information in order to declare the breaks in advance for adjusting the dp series. In
unreported results we run the same regression using a rolling window of data 30 points and
found that the coefficient is of the BCP adjusted series is always higher than the one obtained
with one or two breaks adjustments.
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improved in-sample predictability evidence documented using the dividend-price
ratio series adjusted for structural breaks in mean (using the methodology they
proposed), forecasts produced using the adjusted series could not out-perform the
historical average in out-of-sample tests.

Unlike the adjustment for structural breaks proposed in Lettau and van Nieuwer-
burgh (2008), the forecasting methodology we propose captures the uncertainty
in structural breaks of the steady-state level of the dividend-price ratio (see sec-
tion 2.2) and adjusts for parameter estimation error using the optimal shrinkage
introduced in section 2.3. We now turn to assess the forecasting accuracy of this
predictive methodology. For comparison purposes we also perform out-of-sample
forecasts using the raw dividend price ratio with and without Connor (1997)’s
regression coefficients’s shrinkage.

Similar to Goyal and Welch (2008), we split the sample in two: an initial
calibration sample comprised by data from 1927 up to 1965 and an out-of-sample
testing period (comprised by the rest of the available data) used to evaluate the
forecast accuracy (and significance) of real time forecasts that could have been
produced using the model proposed in former sections.

The standard way to measure the out-of-sample predictive power is a measure
based on the mean squared predictive error (MSE) of the predictive model with
respect to the MSE of the prevailing historical average (null hypothesis of no
predictability). Predictive errors are the difference between the predicted value at
time ¢ and the realized return on the market at time ¢ +1. A broadly used out-of-
sample performance measure in the predictability literature is the R% ¢ introduced

by Campbell and Thompson (2008), which is given by:

MSEpred

Rig=1— —— P
08 MSPE can

(2.10)
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Where, MSE,.; is the mean squared error of the model predictions and
MSE, cqn is the mean squared error of using the return’s historical average. A
positive value for R%,s means that the predictive model out-performed the histor-
ical average in terms of cumulative predictive error during the OOS period (and
hence an investor could have exploited its predictive power in real time).

We assess the statistical significance of the out-of-sample forecasting gains of
using the predictive model using the MSE-F statistic proposed by McCracken
(2007), given by

(MSEmean - MSEpred)

MSE — F = (T — s) SE
pre

which tests for equal MSE of the unconditional (historical mean) and con-
ditional forecasts (T stands for the total size of the sample period and sy for
the initial calibration sample). We indicate statistical significance using asterisks
according to their critical values for recursive schemes (growing window tests).

We also consider a related forecasting power analysis chart introduced by Goyal
and Welch (2003), in which one plots the cumulative difference in MSE of the
forecasting model under scrutiny with respect to the prevailing average. In periods
during which the forecasting model provides a better (worse) estimate than the
historical average, the line presents a positive (negative) slope and the sign of the
plotted value matches the one that the R3¢ would have at each point in time.

We also look at an alternative measure of forecasting accuracy introduced in

Mincer and Zarnowitz (1969). The Mincer-Zarnowitz regression is given by:

Tt = & + 67%4.1 + € (211)

where 7, is the return forecast done at time ¢. Note that the regression R3,,

measures prediction accuracy only if the coefficient of the forecasted returns f is
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positive (accurate forecasts should have a positive relationship with the forecasted
returns).

In order to measure economic risk-adjusted benefits of the forecasts, we cal-
culate realized utility gains for a mean-variance investor on a real-time basis.
Following Campbell and Thompson (2008), and Goyal and Welch (2008) we com-
pute the average utility for a mean-variance investor with relative risk aversion
parameter v = 3 who allocates her portfolio every period between stocks and risk-
free bills using forecasts of the stock market return with allocation limits to the
stock index of [0%, 150%]. We perform simultaneously 4 portfolio strategies using
4 different forecasting models for stock returns based on: (i) the historical aver-
age, (ii) the raw dividend price ratio combined with OLS regression coefficients,
(iii) the raw dividend price ratio combined with shrunk regression coefficients and,
(iv) BCP-adjusted dividend price ratio and shrunk parameter values. This exer-
cise also requires the investor to forecast the variance of stock returns which we
approximate simply with the sample estimate (for all of them). A mean-variance
investor who forecasts the equity premium will decide at the end of period t to

allocate the following share of her portfolio to equities in period t + 1,

Ak
(LY T
Wt = | = | =3 >
7/ Oig1

where 7., corresponds to the kth model excess return forecast', where k =

{1,2,3,4} corresponding to each of the above mentioned models. Over the out-

of-sample period, the investor perceives an average utility level of

- 1
Uy = O — (5) V6%,

'We use the latest observed value of the risk free rate as the next period forecast and substract
it from the market return forecast of each model to obtain excess return forecasts.
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for which, 0, and o2 denotes the sample return mean and variance of the
portfolio strategy using the kth predictive model.

We report utility gains in excess of the non-predictability random walk model
which is the difference between utility gains using the kth predictability model
(k = {2,3,4}) minus the utility gains of using historical average to forecast returns
(k = 1), and multiply this difference by 100 to express it in average annualized
percentage return. The utility gain corresponds to the certainty equivalent return,
which can be interpreted as the portfolio management fee that an investor would be
willing to pay to have access to the additional information available in a predictive
model relative to the information in the historical return average (i.e. assuming
no predictability).

The upper panel of Table E.3 reports the R3,, and R%g (in percentage terms)
together with excess utility gains (denoted as A) obtained using the same calibra-
tion sample used in Goyal and Welch (2008) - using data up to 1965 - and perform
the test over the rest of the period to determine the out-of-sample performance
measures for each of the forecasting models. We obtain an R%4 over 8% which
is significant at the 99% confidence level and positive utility gains, compared to
the negative R34 and utility losses obtained using the raw dividend-price ratio
as a predictor with both simple OLS and shrunk regression coefficients. These
results confirm that the predictive power of the (adjusted) dividend price ratio,
documented in Section 2.4.1, is not spurious. Additionally, they imply that the
forecasting methodology proposed in this paper could have been exploited in real
time by investors to obtain consistent benefits with respect to the no-predictability
assumption of stock market returns. Although we do not take into account trans-
action costs to assess the benefits of the strategy, they should not outweigh the
benefits in this case, given that portfolio rebalancing transactions occur only once

a year.
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Goyal and Welch (2008) argues that former predictability evidence was mainly
driven by data immediately after the oil price shock of 1975. To assess this concern,
we repeat the OOS predictability exercise starting to forecast in 1976. Finally we
perform the exercise starting to forecast in 1947, for which we have a calibration
sample with a reasonable minimum number of data points to estimate the model
parameters. The OOS performance measures, R%4, R3,, and excess utility gains,
for these additional out-of-sample periods are reported in the middle and lower
panels of Table E.3. We find again that the methodology proposed provides sig-
nificant forecasting improvement with respect to the no predictability benchmark
model and the other two forecasting alternatives considered.

We also report in Appendix B.1 the results of applying a regime-mean adjust-
ment computed by using Markov Switching models. We find that those models
are unable to consistently beat the random walk out of sample.

However, in unreported results' we find that the forecasting accuracy of the
methodology at quarterly horizon with or without the error shrinkage methodol-
ogy, is not superior to the prevailing historical average over the sample periods
analyzed (i.e. we found negative R%). Furthermore, Figure E.4 shows that the
predictive model is not always a better estimate than the prevailing historical av-
erage. In particular, during periods in which sharp structural changes took place
(such as the internet and the credit bubbles crashes) the forecasting accuracy of
the model diminished with respect to the non-predictability hypothesis estimate.
On the other hand, this is not entirely surprising because the BCP method is
designed to detect structural changes that took place in a time series and not to
detect when the next break will happen. In other words, the BCP algorithm can
tell us when structural changes did take place and is not intended to do any more.

In order to test this statement, we perform a pseudo out-of-sample test, in which

I Available upon request from the authors.
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we use the full sample to estimate the dividend-price ratio varying mean. In this
test, using past adjusted dp series and past returns, we estimate at every point in
time the regression parameters to forecast next period’s return, record the fore-
casting error and repeat the exercise during the OOS period 1965 to 2010. For
comparison purposes, we use the adjusted dp series adjusted by one and two breaks
as estimated by Lettau and van Nieuwerburgh (2008). In Table E.4 we present the
same OOS performance measures used for the OOS exercise for annual data and
the equivalent result in Table E.5 for quarterly data. In this Pseudo-OOS exer-
cises, we find a remarkable improvement in all three forecasting accuracy measures
with respect to the non-predictability benchmark. We also find again a significant
improvement with respect to the structural breaks adjustment proposed in Lettau
and van Nieuwerburgh (2008). Furthermore, the pseudo out-of-sample predictions
consistently outperformed historical average all along the OOS period as we can
see from Figure E.5, i.e. the forecasting power analysis chart displayed a (steep)

positive slope in almost every sub-period in the sample.

2.5 Robustness

In order to further test the robustness of the predictability evidence using the
forecasting methodology outlined in this paper, we repeat the out-of-sample fore-
casting exercise using different portfolios of assets, namely: the S&P 500 index,
the equal-weighted CRSP broad market index (Table E.6), the Fama-French Size
portfolios (Table E.7) and Book-to-Market portfolios (Table E.8).

For the other market indices (S&P 500 and EW CRSP broad market index)
we find qualitatively similar returns to the ones presented for the CRSP value-
weighted broad market index. For the size and book-to-market components, the

gains are less clear-cut, yet interesting. We find significant forecasting gains

73



Chapter 2

with respect to historical average only for the “big” stocks’ portfolio and for low

(growth) and high (value) - but not for medium- book-to-market stock portfolios.

2.6 Conclusion

The predictive power of dividend price ratio has been questioned by former empir-
ical studies (e.g. Goyal and Welch (2003) and Goyal and Welch (2008)) that find
that its return forecasting ability was temporary — a rather episodic phenomenon—
and its relation with future returns, spurious or unstable over time, due to the
persistent behavior that the ratio presented over the last few decades.

However, interpreting the observed level of the dividend price ratio as a devi-
ation from a current-regime changing mean level, restores a stationary predictor,
with renewed implications for return predictability. Considering that there is now
overwhelming evidence that there are structural breaks in the dividend-price ra-
tio mean, estimation of the break points is a crucial step towards extracting the
predictive component of the ratio.

Our methodology incorporates uncertainty related to the structural change in
prediction parameters. We show, using a Bayesian Change Point algorithm, that
incorporating this uncertainty significantly improves virtually every measure of
predictability evidence in regression coefficients, as well as providing robust ev-
idence across different sample periods and data sets that were not evident with
prior techniques. Taking advantage of one by-product measure of the bayesian
algorithm (i.e. posterior variance of the predictor variable), we introduce an es-
timation error shrinking methodology that, in combination with the structural
changes adjustment, provides evidence of out-of-sample return predictability that

could have been exploited in real time.
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Growth Optimal Portfolio
Insurance and Portfolio
Insurance’s Growth Rate

Characterization
Daniel Mantilla-Garcia*

Through a decomposition of the growth rate of the standard portfolio in-
surance strategy (CPPI) we unveil the (perhaps) surprising role that the
correlation between the underlying assets plays on the performance of this
type of investment strategy. We also find a close relationship between the
growth rate and the long term value of the strategy even under common
leverage and short-selling constraints. Then we introduce the growth op-
timal portfolio insurance strategy (GOPI), which combines the intuitively
appealing objective of maximizing the value of the portfolio in the long run
and the common constraint of insuring a fixed proportion of the portfolio
expressed in terms of the value of a given benchmark. We find that this
strategy tends to outperform the equivalent CPPI with the standard mul-
tiplier over long horizons. Interestingly, the level of the optimal multiplier
turns out to be lower than the one implied by the standard methodology in
most scenarios. Hence the outperformance achieved by the GOPI does not

come at the cost of a higher risk exposure.
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3.1 Introduction

The growth optimal portfolio (GOP) has been the subject of a long debate in
the literature of portfolio selection since its discovery by Kelly (1956) and Latane
(1959). It stands as an alternative to the utility maximization paradigm of portfo-
lio selection and recently a whole theory of asset pricing based on this portfolio has
been developed as an alternative to risk-neutral pricing (see for instance Platen
(2005) and Christensen et al. (2005) for a complete review of the role of the GOP
in finance today).

The GOP has interesting theoretical properties such as outperforming any
other portfolio in the long run in terms of wealth (see for instance Thorp (1971))
and to minimize the time to reach a given level of wealth (see Pestien and Sudderth
(1985)). It also has the intuitive appealing of maximizing the expected geometric
return mean and the median of wealth' in the long run (see Ethier (2004)). These
properties gained it the support from several authors, in articles such as Markowitz
(1976), Breiman (1961), Luenberger (1998), Long et al. (1990). Authors arguing
in favor of the GOP believe that growth optimality is a reasonable investment
objective in itself for long horizon investors.

On the other hand criticisms of the GOP, such as Samuelson (1963) and Ophir
(1978), steam from the view that the only rational approach to portfolio selection
is to maximize expected utility. Although the GOP happens to be as well the
result of maximizing the expected utility of terminal wealth for the logarithmic
utility function (which is also a special case of the power utility), they argue that it
is too much of a stretch to treat every investor as a log-utility maximizing investor

(see Christensen (2005) and Hakansson and Ziemba (1995) for a review of the

'Maximizes the median of wealth in the long run for a portfolio has no relevance from an
utility maximization standpoint. However, for skewed distributions the median is a measure of
the most likely outcome, thus it might be an interesting property from a practical perspective.
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origin and debate about GOP portfolios).

The concept of utility based portfolio selection, although widely used, has
been criticized by the observation that investors may be unaware of their own
utility functions or behave in manners that would be in strong contrast with its
predictions (see for instance Bossaerts (2002)). Wether or not one has a strong
believe on which is the right way to represents investors preferences, there seems
to be complete agreement that, no matter how long (finite) horizon the investor
has, the GOP can neither proxy nor dominate every other strategy in terms of
expected utility, different from the log, because utility based portfolios would be
more attractive in terms of their risk profile (see Merton and Samuelson (1974)).
On the other hand, the growth optimization approach has a practical advantage
over the expected utility maximization one, namely its ability to empirically verify
ex-post its performance relative to other investment strategies. The growth rate
maximization approach and the long-run growth property are formulated in dollars
instead of utility units, thus “it seems plausible that individuals, who observe their
final wealth will not care that their wealth process is the result of an ex-ante correct
portfolio choice, when it turns out that the performance is only mediocre compared
to other portfolios” (Christensen et al. (2005)).

Christensen et al. (2005) also notes that, even if the GOP dominates another
portfolio with a very high probability, the probability of the outcomes where the
GOP performs poorly may still be unacceptable to an investor who is more risk
averse than a log-utility investor. In other words, the left tail distribution of the
GOP may be too “thick” for an investor who is more risk averse than the log-
utility investor. An alternative to introduce an investors’ risk aversion within the
growth maximization approach are the so-called fractional Kelly strategies. These
strategies use a fixed allocation between the risk free asset and the GOP that

depends on a risk aversion coefficient, similar to the classic approach of Sharpe’s
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ratio maximization and the fund separation theorem (see Grauer (1981) and Platen
(2005) for an alternative derivation of the CAPM and the introduction of the risk-
aversion parameter).

However, individual investors might have behavioral attitudes toward risk in-
compatible with the solely objective of maximizing the probability of attaining
the highest possible level of wealth in the long run at all costs (the latter objective
being represented in the GOP) and for which a fixed allocation to the riskless asset
might not be flexible enough to match these preferences. Furthermore, in spite of
their typically long horizons, institutional investors are often subject to short-term
regulatory constraints such as limits to their underperformance of a given bench-
mark or on the portfolio’s value relative to the price of their liabilities (funding
ratio constraints). In this paper, we introduce a portfolio strategy that addresses
this particular need for a well defined risk control relative to a benchmark com-
bined with the intuitively appealing objective of maximizing the growth rate of
the portfolio. In order to do so, we set the investment objective as maximizing the
growth rate of the portfolio subject to the constraint of insuring a minimum floor
value for the portfolio, the former being expressed in terms of the value of a given
stochastic benchmark. The result of combining this two objectives is equivalent
to maximize the growth rate of the classic portfolio insurance strategy, known as
Constant Proportion Portfolio Insurance (CPPI) (see Perold (1986), Black and
Jones (1987), Perold and Sharpe (1988) and Black and Perold (1989)).

Although most former research on the properties of the CPPI has focused on
the standard case with a riskless constant interest rate, we focus on the more
general case with a stochastic Reserve or “Core” asset, because of its particular

interest for pension funds, individual investors and portfolio managers'.

!There are at least three practical applications for which portfolio insurance strategies with a
reserve asset different from cash are crucial. First, from a pension fund perspective, holding too
much cash can be quite risky because its liabilities have typically long terms (duration). In this
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Through the decomposition and analysis of the CPPI’s growth rate we revisit
the properties of the portfolio insurance strategy. The characterization of the
portfolio insurance’s growth rate has conceptual and practical bi-products that
were obscure and/or unavailable with former analytical characterizations of the
strategy. In particular, we characterize and isolate the role that the correlation
between the reserve and the active (or risky) asset plays in determining the value
of the strategy and provide closed-form formulas for the value of the strategy in
dollar terms for the general case with a stochastically moving reserve asset. More
importantly, by maximizing the growth rate of the strategy we derive a growth-
optimal multiplier which defines the growth optimal portfolio insurance strategy
(GOPI). Our results suggest that the growth optimal strategy outperforms the
equivalent standard parametrization of the CPPI over long horizons. Interest-
ingly, the growth-optimal strategy presents a more conservative risk profile since
its multiplier is most of the times lower than the one implied by the standard
methodology.

Our analysis of the growth rate of the portfolio insurance strategy reveals that
the “diversification benefits” of low correlations among the underlying assets of
unleveraged fixed-mix portfolios is reversed for this type of strategy: the higher
the instantaneous correlation between the reserve and the risky assets, the higher

the value of the portfolio insurance strategy, everything else being equal. The

case the reserve asset is usually defined as a portfolio composed of fixed-income securities trying
to match the obligations of the fund. Second, individual investors might want to insure defined
long term benefits or bequest objectives and/or a stream of future consumption needs (Amenc
et al. (2009)). This objective can be addressed in the construction of the reserve asset in a similar
way as for the pension fund case by treating the future cash-flow needs as liabilities. Third, asset
managers might be given the objective of outperforming a particular Benchmark. One way to
comply with this relative performance objective is to define as the Core asset the (presumably)
stochastic Benchmark so that the possible underperformance of the portfolio with respect to the
Benchmark is limited to a well defined level, while still allowing for increasing upside potential
coming from available risk premia and active manager views (for a detailed explanation of the
practical advantages of this approach called Dynamic Core-Satellite allocation, see Amenc et al.
(2004)).
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intuition for this effect is that a higher level of correlation induces less relative
return reversals” between the two assets, and hence it diminishes what we call
the “rebalancing drag”'. The importance and the role of correlation, which grows
exponentially with the level of the multiplier, is thoroughly illustrated with a
graphical analysis. The positive effect of the correlation in this strategy might be
counter intuitive for some readers due to a very common confusion of this measure
with the relative trend of assets (see Lhabitant (2011) for a very clear illustration
of this misinterpretation).

The very definition of the growth rate of the portfolio is based on specific
model assumptions for the dynamics of the assets, continuous rebalancing and
unlimited leverage and short-selling. For this reason, we also provide an empirical
verification with real data of the close relationship between the growth rate and
the portfolio insurance’s value with discrete rebalancing and leverage /short-selling

constraints.

3.2 Assets’ Properties and Portfolio’s Growth

Rate

Former studies on the growth rate of rebalanced portfolios such as Fernholz (2002)
focus on the impact that rebalancing has on the compounded return of unleveraged
fixed-mix portfolios with assets that present similar long term returns and volatili-
ties. This approach addresses the particular objective of building equity portfolios
usually compared to buy-and-hold or market-cap-weighted benchmarks, such as
the S&P 500. In what follows we illustrate that the impact that assets’ properties

such as volatility, correlations and differences in expected return among assets,

In that special case of the CPPI with a riskless asset in the Core, there is an equivalent
effect called “volatility cost” (Black and Perold (1992)) also known as “volatility drag”.
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have on the performance of portfolio insurance strategies is reversed with respect

to their effect on fixed-mix portfolios.

3.2.1 A first Intuition on the impact of Trends and Rever-

sals on (Leveraged) Return Compounding

One way to analyze the properties of the Dynamic Core-Satellite or Portfolio in-
surance strategy’ is to consider the return of the “index ratio”, i.e. the quotient of
the values of the performance-seeking asset (also called Satellite), denoted S and
the reserve asset (or Core), denoted R, i.e. I(t) = S(t)/R(t). Changes in the index
ratio are driven by the relative performance of the DCS’s components. Black and
Perold (1992) show that for a return ¢ in the index ratio, the fractional change
in the Cushion is proportionally magnified by m (the multiplier), AC/C = mod.
Hence, the dynamics of the Cushion are equivalent to a leveraged buy-and-hold

investment in the index ratio, with a leverage factor equal to m.

'We refer as the “standard CPPI” to the particular case of the portfolio insurance strategy
allocating wealth between the riskless asset and a risky asset and we use the term “Dynamic Core-
Satellite portfolio” (DCS) to refer to the general case of Portfolio Insurance with a stochastic
reserve or “Core” asset and a performance-seeking or “Satellite” asset.
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Example:

In order to develop some intuition about the impact of trends and volatility in (leveraged) buy-
and-hold investments, consider the simplest case of a return series composed of two observations:
r = {ri,ra}. Let, v; take one of two values: u (up), for a positive return and —d (down) for
a negative one. An upward (downward) trend exists when 1 = ro = u (ry = ro = —d) and
a “volatile” return reversal when r1 # ry. The compounded return of a buy-and-hold (BH)
investment with leverage factor m presents the following properties (the same properties hold for

a BH investment with no leverage, i.e. m =1):

o Upward trend: The total return is greater than the sum

2 = (1 +mu)? — 1 = 2um + (mu)?

o Downward trend: The total return is less negative than the sum

2 = (1-md)? — 1= —2dm + (md)?

o “Volatile” returns: The total return is lower (or more negative) than the sum

2 = (1 +mu)(1 —md) — 1 = mu — md — udm?

Hence, due to the compounding effect of returns, assets with stronger trends and/or lower

“volatility”, are better buy-and-hold investments, everything else equal. This effects are mag-

nified with leveraged.

In general, for a return series of N observations the compounded return of
a buy-and-hold (BH) investment is equal to 7V = Hi]\il(l + r;) — 1, which is
commonly expressed in terms of the geometric average,

1
N N

G = H(l—l—?‘i) — 1.

i=1

The following is a well known approximation' for the geometric average that

IMarkowitz (1959) proposes a similar approximation that has very close accuracy according
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relates it to the arithmetic average and the variance of returns (see Bernstein and

Wilkinson (1997)):

1 o?
GrA————
2(14+A4)
where A and o2 denote arithmetic average and variance of returns. Since A
is small compared to 1, the approximation is sometimes done as (see Booth and
Fama (1992))
1

G~ A- 502. (3.1)

Using the properties of the variance and the arithmetic average, it is straight-
forward to show that for leveraged investments the following similar relationship
holds,

1 m2o?

Since the arithmetic average is a measure of “trend”, this formula confirms the
intuition shown in the two-observations example above, for the general case with
multiple observations: there is a volatility cost for holding an asset that is magni-
fied by any present leverage. Conversely, positive “trends” have a positive impact
on compounded returns but in a more than proportional amount (see second term
in the right hand side of Equation (3.2) for which the trend also diminishes the
volatility costs) and its effect is also magnified by leverage. Similarly, negative

trends have less impact on the total return for a lower level of volatility, every-

to unreported Monte-Carlo simulations of normally distributed random variables. The approxi-

mation in Markowitz is
o

G~ (1+ A)exp (_;(HZ)J Y
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thing else equal. In other words, there is a tension between the “trend” and the
“volatility” in the compounded return of an investment. This tension is affected
by leverage, which gives proportionally more weight to the volatility cost than to
trend gains.

For a buy and hold strategy in a portfolio with two assets, the intuition follows
through. A buy and hold strategy allocates proportionally more wealth, with
respect to the previous period, to the asset presenting the highest return over
the latest period. If in the next period it occurs a (relative) return reversal, the
strategy would have allocated more wealth to the (relative) loser asset. Conversely,
if no reversal occurs but returns stay on the current trend (the latest winner asset
continues to be the winner asset), the BH portfolio allocation to the winner asset
would have been relatively higher, thus being a “winner strategy” in this market
configuration.

Another strategy of interest are the kind that rebalances (back) to a fixed set
of weights. A strategy aiming to keep a fixed proportion of the two assets, needs
to rebalance frequently as prices move. In order to keep a fixed-mix of weights, the
strategy needs to sell the latest relative winner asset and buy the relative loser.
For this reason, this type of strategies, namely unleveraged fixed-mix portfolios
present a “buy-low and sell-high” behavior when return reversals occur (winner
strategy) and a “buy-high and sell-low” one (loser strategy) in return trends, which
are the opposite effects of trends and reversals observed in simple and leveraged

buy-and-hold strategies.

3.2.2 On Portfolio Rebalancing and the Growth Rate

This section introduces the concept of the growth rate through the analysis of two

types of portfolio defined according to their rebalancing policy: buy-and-hold and
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fixed-mix portfolios. We look at buy-and-hold portfolios because their behavior
resembles to that of portfolio insurance strategies. We are also concerned with
the growth rate of fixed-mix strategies because we use it later on for deriving the
growth rate of portfolio insurance.

In what follows, we summarize some previous results about the growth rate of
portfolios defined by a vector of weights 7, assigned to a constant set of multiple
assets. Throughout this analysis we assume continuous rebalancing and abstract
from transaction costs.

Consider the simple Black-Scholes model for the return of any risky asset A

driven by a brownian motion W as follows
dA(t)/A(t) = pdt + odW (t)
which has an explicit solution for the asset price given by
A(t) = A(0)etoW® (3.3)

where W (t) = V/tz(t) for z ~ N(0,1). The term 7 is called the “growth rate” of
A because, for a long horizon, it is equal to the continuously compounded rate of

return of the asset:

v = %ln (%z)) as t — o0o. (3.4)

When t — oo, the brownian motion term disappears because %(t) = @ —
0. Hence, the growth rate is the continuously compounded rate of return but also

the continuous time version of the geometric return average, because
1 A(t)
=—-FE|ln{—=]]. 3.5
T [ ! ( Ao )] 39)
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In fact, for assets following a geometric brownian motion, the growth rate, ~
and the asset’s drift p (also called trend or mean return) are related as follows:

L,

il el Cat (3.6)

Interestingly, Equation (3.6) is equivalent to the relationship between the geo-
metric and arithmetic return averages of Equation (3.1), derived in discrete time.
Fernholz and Shay (1982) show that the growth rate of a fixed-mix portfolio

composed by n securities is given by

= ZWWML’Y; (3.7)

where,
f}/:_ — % (Z 7T101'2 — ZZT('iﬂ'jpijO'iO'j> .
i i j

The first term in Equation (3.7) is the weighted average of the growth rates
of the component assets, and the second term, 7} is called the excess growth
rate. Fernholz and Shay (1982) find that for unleveraged fixed-mix portfolios
(i,e. 0 < 7 < 1), the excess growth rate is always positive. This quantity is
higher for higher standard deviations of the individual assets and for relatively
lower or negative correlations. The intuition for the sign of the excess growth rate
of unleveraged fixed-mix portfolios comes precisely from their “buy-low sell-high”
behavior in the presence of return reversals’.

On the other hand, the value process of a Buy and Hold portfolio is given by

n

VEI(t) = mi(0)Ai(t)

i

! This effect is sometimes called “volatility pumping”.
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where 7;(0) is the proportion’ invested in asset i a time ¢ = 0 and the growth

rate of the BH portfolio is:

1 u A;(t)
BH __ i
v = gln ( EZ m;(0) (AZ(O))> as t — oo. (3.8)
From Jensen’s inequality and the concavity of the log the following inequality

holds,

im%:%imn(ﬁjgogl1nim(jj((é))) VOo<r<l (39

If the growth rates of the assets in the portfolio are equal then the inequality
becomes an equality, making the (unleveraged) FM portfolio superior to the BH
one (this is because there is no excess growth rate term on the BH’s growth
rate). Conversely, this implies that the BH portfolio presents an increase in return
relative to the FM one for higher differences in the growth rates of the component
assets (hence in trends of the relative performance of the assets).

In discrete time, using the approximation in Equation (3.1), Bernstein and
Wilkinson (1997) decompose the geometric average of a fixed-mix portfolio and
find the same expression of Fernholz’s excess growth rate and call it instead the
“diversification bonus”. Noting that the weighted average of the geometric mean
of the components is not exactly equal to the geometric average return of the buy-
and-hold portfolio, Bernstein and Wilkinson (1997) define a related quantity called
the “rebalancing bonus”, which is the difference between the geometric return of

a fixed-mix portfolio, GE™ and the one of the buy and hold portfolio, GP#. The

IThe weights of the BH portfolio vary with time as follows:

> mi(0)A;(t)

7T-BH(t) =
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latter difference can be approximated as

1/t
GM(t) =GR (t) ZmHG (ZmlJrG) FAr(3.10)

For unleveraged fixed-mix portfolios Bernstein and Wilkinson (1997) find that
the first two terms of the right hand side of (3.10) always give a negative contri-
bution, hence favoring the buy and hold portfolio. This term is large when the
differences between the geometric returns G; across assets are large, and vanishes
when they are the same. This confirms the intuition that trends in (relative) re-
turns have a positive impact of BH investments and a negative one on unleveraged
FM strategies for the general case with multiple assets.

The geometric average and the value process are intrinsically related, since the
former is a trivial transformation of the latter'. Assuming a geometric brownian
motion for each of the n risky assets, A; for 1 < i < n, the value process of a fixed-
mix portfolio can be expressed in terms of their model parameters, i.e. expected
returns, volatilities and correlations and the portfolio weights as follows (see for

instance Wise (1996), A.3 for the following formula):

VIEM (1) = Vyer=t H (il((é)))w . (3.11)

i=1

'The relationship between the value and the geometric average is given by
V(t) = Vo(G+ 1)t
In continuous time we have with continuous compounding growth rate, v the relationship is

V(t) = Voe’yt.
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Replacing (3.3) in (3.11) we get,

=1

= Vpexp (75Mt + Z ﬂiUiM(t)) . (3.13)
i=1

Since the weighted average of brownian motions is a brownian motion, Equa-
tion (3.13) matches the definition of the growth rate of Equation (3.3) for the
portfolio value process. In Equation (3.12) the portfolio’s value is written instead
as a function of the weighted average of the growth rates of the component assets

and its excess growth rate.

3.2.3 Portfolio Insurance’s Growth Rate and its Compo-

nents

Constant Proportion Portfolio Insurance (CPPI) asset allocation strategies split
the portfolio between a reserve asset (R) and a performance seeking asset (S), with
a dynamic allocation to the risky asset defined by the product of the available risk
budget or Cushion (C) at time ¢ and a constant multiplier, m. The Cushion is
the difference between the current value of the portfolio and the level of the Floor

value to be guaranteed, so the value of the portfolio is

V() = B+ Ch. (3.14)

Assuming perfect correlation between the floor and the reserve asset, we show
below that the Cushion can be interpreted as a leveraged fixed-mix portfolio that
allocates m% to the Satellite and (1 — m)% to the reserve asset. Consider the

dynamics of the Cushion:
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dC; = d(V; - F,)

= dV; —dF;
= mC’td?bzt + (1 —m) C’t%
= (m%jL(l—m)%)

Perold and Sharpe (1995) performed a graphical analysis of the payoff of stan-
dard CPPI portfolios allocating wealth between the riskless asset and a risky asset,
as a function of the value of the risky asset. Using the fact that the Cushion pro-
cess can be interpreted as a leveraged fixed-mix portfolio and Equation (3.11),
we can generalize their analysis for the case with a stochastically varying reserve
asset. This introduces a new feature to the analysis: the role of the assets’ cor-
relation'. For the two asset case the expression for the fixed mix portfolio value

(3.11) simplifies to

Vi =va (50 g((f})) Ari-mE s (315)

Using the fact that the Cushion dynamics are equivalent to a leveraged fixed

mix portfolio, we write the value of the portfolio insurance strategy, (3.14) as,

m 1-m
VEL(t) = kV (%) +(1—-k)V (%) (%) et (3.16)
0 0

0

! Another way to perform Perold and Sharpe (1995) graphical analysis’ generalization with
a stochastic reserve asset, is to do it in two dimensions using the change of numeraire proposed
in Black and Perold (1992). However, this approach would not shed light on the role that
correlation plays in the strategy, since the value of the portfolio would be expressed in terms of
the index ratio instead of the component assets’ value.
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where the Cushion’s excess growth rate 7, = m(1 — m)(c% + 0% — 2posoR)
is in fact negative for m > 1, thus we call it a “rebalancing drag”'. Hence, con-
trary to the case of unleveraged fixed-mix strategies, volatility of component assets
has a perversive effect on leveraged fixed-mix and portfolio insurance strategies,
which confirms the intuition of Section 3.2.1. More interestingly, the diversifica-
tion benefits that unleveraged fixed-mix portfolios experience in the presence of
low or negative correlation between assets is also reversed for portfolio insurance
strategies (and for leveraged fixed-mix ones). A positive correlation decreases the
rebalancing drag, having a positive effect on compounded returns. The intuition
for this is that, a higher correlation induces fewer relative return reversals.

Former studies on the properties of portfolio insurance strategies largely disre-
gard the role that the correlation between the reserve asset and the performance
seeking asset can have in the performance of the strategy, because they tend to fo-
cus on the particular case with Cash as the reserve asset. When the reserve asset is
not equal to the riskless one, there is a correlation between the two components of
the portfolio insurance strategy. Although Black and Perold (1992) also study on
the properties of portfolio insurance in the case with a reserve asset different from
the theoretical riskless asset with constant risk-free rate ,they write the portfolio’s
value in terms of the reserve asset value, instead of dollar terms. This change of
numeraire yields a strategy in which the reserve asset is again the riskless asset
and the Satellite is an an artificial value process called the index ratio, which is
the value of the risky asset divided by the reserve asset’s value. Our approach
instead expresses the value of the portfolio in dollar terms, which illustrates the
impact of correlation in the portfolio’s value much clearly.

Using Equations (3.15) and (3.16), we illustrate the important impact that

Tn the particular case with the riskless asset in the Core, this expression simplifies and
depends only on the volatility of the Satellite. Hence Black and Perold (1992) calls a discrete-
time equivalent of this term the “volatility cost”.
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correlation may have in a portfolio insurance strategy value. Figure F.1 draws the
portfolio’s value corresponding to four correlation levels, i.e. p = {—0.5,0,0.5,0.75}
and different combinations of values for S = [50,200] and R = [80,120] af-
ter 5 years (i.e. for a starting value of 100 dollars these values are equivalent
to [—13%, 15%] and [—4%, 4%)] return per annum respectively) with volatilities,
og = 0.15 and og = 0.05. The black surface draws the end of period value of a
CPPI strategy with m = 4 and k = 0.9 as given by Equation (3.16). The red sur-
face draws the end of period value of a Fixed-Mix Strategy as given by Equation
(3.15) with the same initial allocation: m(1 — k) =7 = 0.4.

As observed in Figure F.1, for a starting value of 100 dollars, the maximum
possible value attained by the CPPI for p = —0.5 is of 189.9 dollars which is
equivalent to 13.7% return per annum, while for p = 0.75, the CPPI reaches a
value of 278.9, or 22.8% return per annum, everything else equal.

On the other hand, this particular FM strategy presents a much more moderate
change with correlation: For a starting value of 100 dollars, the maximum possible
value attained by the FM strategy for p = 0.75 is 148.4 or 8.2% per annum, while
for p = —0.5, the FM reaches a value of 150.1, or 8.5% per annum, everything else
equal. Thus, the important gain obtained by the CPPI strategy with respect to
the FM strategy, observed in Figure F.1 (area of black surface over red surface),
as correlation increases comes mostly from the the increase in value of the CPPI
strategy and not from the FM’s value decrease.

Using expression (3.12), the portfolio insurance value (3.16) can be written in

terms of the assets’ growth rates and covariances as follows (see appendix C.1),

VPI(t) — F0€73t+URWR(t) + Coe(%*n+mVs+(1*m)’YR)t+masWs(t)+(1*m)URWR(t). (3.17)
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In Appendix C.1 we show that the growth rate of the PI strategy can be
approximated by the weighted average of the Floor and Cushion’s growth rates

with weights k£ and 1 — k respectively and that the growth rate of the Cushion,

ycushion can also be written in terms of the assets’ drifts and covariances:
,%%Lshion — ’7:1 + m('YS _ ’YR) + YR (318)
cushion * 1 2 2
Vrm =V +mus — pr) — §m(05 —OR) TR (3.19)
. 1 1
ny:shwn _ m(,uS . NR) + LR — é(m o 1)20,?% _ §m20—§ + m(m — 1)pUSUR-

(3.20)

The term m(pus — pg) in Equation (3.19) illustrates the impact that the dif-
ferences in assets’ drifts (trends) have on the value of leveraged FM and portfolio
insurance strategies: the higher the expected outperformance of the Satellite with
respect to the Core asset, the higher the expected return of the portfolio (this effect
is also reversed with respect to the case of unleveraged FM strategies). Conversely,
the term —3m(cg — o) indicates that having a Satellite asset with a much higher
volatility than the Core asset is not desirable, everything else equal'.

From Equation (3.20) it is possible to infer the relative importance of the
different assets characteristics on the Cushion’s growth rate. In order of relative

importance per unit of each term, for m > 1 we have:

e Core and Satellite covariance: pogor (coeflicient: +m(m — 1))

n fact, for a Core and a Satellite with the same volatility (i.e. 05 = or = o), the growth
rate simplifies to:

) 1
S = i = ) + i = (mlm — 1)1 = )+ 3 ) o

The coefficient of o2 is always negative for m > 1 and hence is a rebalancing drag of volatility
which is likely to be important unless there is a high correlation between the two assets.
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Satellite’s variance: 0% (coefficient: —3m?)

e Core’s variance: 0% (coefficient: —3(m —1)?)

Expected overperformance: pg — pr (coefficient: +m)

Core’s drift (trend): pg (coefficient: +1)

The order of importance presented above is indicative in particular of the
Cushion growth rate’s sensitivity to changes in the values of each of these assets’
characteristics. However, the relative importance of these characteristics in the
Cushion’ growth rate not only depends on their coefficient but also on the actual
values that the asset’s parameters may take.

In this section we uncovered the fact that the value of the portfolio insurance
strategy increases with the correlation between its assets. This implies that, a
potentially interesting alternative to construct a PI strategy is to use one single
asset or portfolio with “good” properties in terms of its growth rate parameters
as the Core and a leveraged investment in the same asset as the Satellite. In this
particular case, the rebalancing drag is minimized for a given level of volatility
because p = 1. We discuss this alternative in Appendix C.3.

We now turn to verify the relationship of the growth rate with the long term
value of the portfolio insurance strategy with real data and short-selling con-

straints.

3.3 Empirical Test of the Growth Rate

The theoretical characterization presented above draws a one-to-one relationship
between the value of the portfolio insurance Cushion’s growth rate for a given

Core or Reserve asset.
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The relationship of the growth rate and the portfolio’s value that should hold
for long enough horizons was derived under the assumptions of continuous re-
balancing, unlimited borrowing or short-selling (leverage) and a simple geometric
brownian motion model for the dynamics of the component assets. In this section
we test to what extend these relationships hold in applications with real data and
real world constraints.

We use monthly returns of the 13 EDHEC-Risk Alternative Investment indices’
over the period January 1997 to March 2011. In the tables of results, we use the

following acronyms for the strategy indices:

(ConvArb) Convertible Arbitrage (GMacro) Global Macro

(CTAs) CTA Global

(LSequity) Long-Short Equity

(Distress) Distressed Securities

(MergArb) Merger Arbitrage
e (EM) Emerging Markets

(RelVal) Relative Value

(MNeutral) Market Neutral

(ShortS) Short Selling

(EventD) Event Driven

(FixArb) Fixed-Income Arbitrage (FoF) Fund of Funds

The summary statistics of this set of assets are presented in Table F.2. These
indices constitute a diverse set in which correlations across indices range from
—76% to 93%, average returns between 2.4% and 10.4% and volatilities between
3% and 18.5%.

In order to verify if the theoretical relationship between growth rate and port-
folio’s value holds in real data with discrete rebalancing and allocation constraints,

we compare the ranking of candidate assets according to their growth rate and the

!The data and a complete description of it is available in EDHEC-Risk’s website, www.edhec-
risk.com.
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actual end of period value of the portfolio insurance strategy implemented with
monthly data and limits to the Satellite exposure of [0, 1] (i.e. short-selling and
leverage are not allowed).

We also consider the ranking of assets according to the “semi-theoretical” esti-
mation of the value of the portfolio insurance given by Equation (3.16), which uses
the actual end of period value of the assets considered. This formula assumes con-
tinuous rebalancing but it does not assume a geometric brownian motion for the
dynamics of the assets'. The estimation of (3.16) is denoted V,, while the actual
implementation with exposure limits and discrete rebalancing of the more Gen-
eral Portfolio Insurance strategy (or Dynamic Core-Satellite strategy) is denoted
DCS,,.

One should notice that, if the relationship is verified, the growth rate implied
by parameters’ estimates for a set of candidate assets would constitute a selection
criteria to choose among candidate assets for the strategy. Of course, having good

estimates of this parameters would be crucial for this purpose.

3.3.1 Growth Rate ranking with a riskless Core

First consider the simple case with the riskless asset in the Core, for which there
is no correlation between the two components of the strategy. In order to verify if
the one-to-one relationship of the growth rate and the value of the portfolio holds,
we estimate the Cushion’s growth rate y<%s"" for each of the the 13 indices and
compare it with their ranking according to the end of period value of the portfolio
as given by V,, and DC'S,,.

In this case with a single risky asset we also look at the raking implied by the

!The estimation of the excess growth rate, in this case called rebalancing drag, does not
need the assumption of a geometric brownian motion, but it uses a more general setting for
the dynamics of the component assets. In fact Bernstein and Wilkinson (1997) derives the same
expression in discrete time. See Fernholz (2002) for details on the derivation of the excess growth
rate.
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leveraged geometric average G™ provided in Equation (3.2). In order to have a
reference of the order of magnitude of the number of matches in the ranking among
these criteria, we also look at the ranking of assets as implied by their simple
geometric average return (without leverage) and the returns autocorrelation®.

We consider the theoretical value of the portfolio insurance strategy given by
Equation (3.16) because it does not depend on the brownian motion assumption.
Thus, it is not just a transformation of the formula with the growth rate (Equa-
tion (C.2)). The difference in the ranking between V;,, and DC'S,, can help us
infer wether the differences observed in the ranking of the growth rate and the
value of actual implementation DC'S,,, come from the geometric brownian motion
assumption or from the unlimited leverage constraint.

In the case with a risky free asset (B) with constant rate r with dynamics

B(t) = Bye™ (3.21)

and thus with or = 0, Equation (3.16) simplifies to

VEPL) = kVe™ + (1 — k)1 (%) (=)t gmag)t. (3.22)
0

Assuming an interest rate of r = 3.5% and using the sample estimate of the
volatility of the risky asset we can get the theoretical value of the portfolio at the
end of the sample period. Equation (3.22) assumes continuous trading and no
short-selling limits. Hence, we also estimate the value of the DCS portfolio while
rebalancing after a §/m move in the exposure to the Satellite’ with § = 5% and
with short-selling constraints (Satellite exposure limits are 0 <e< 1). Table F.3

presents the raking of candidate assets according to the different criteria for three

!The autocorrelation is an alternative measure of “trendiness”. The autocorrelation coeffi-
cient is not affected by leverage (just as correlation between two series).
2This is equivalent to a § move in the Index Ratio (see Black and Perold (1992)).
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different multiplier values: m = {2,3,5} and k = 90% (the latter does not affect
the raking among different methodologies).

As we can see from Table F.3, the percentage of assets that has exactly the
same ranking according to the Cushion’s growth rate and the end-of-period-value
of the actual implementation of the portfolio, is 100% (13 out of 13) for m = 2.
For m = 3 the percentage is 85% (11 out of 13) and of 46% (6 out of 13) for m = 5.
In this latter case, the deviations in the place of the assets are not dramatic (for
instance GMacro and LSequity simply swap their place).

The former numbers contrast with the percentage of matches of the DC'S,,
criterion with the ranking of the simple geometric return average and the auto-
correlation coefficient, which ranges from 0% to 53%, suggesting that these two
alternative measures of return and trendiness are not as good estimates of the
suitability of an asset to enter in the portfolio insurance strategy as the growth
rate.

Furthermore, the percentage of assets with the same ranking according to all:
the growth rate, the value V,, and the leveraged geometric mean is 100% in all
cases. This implies that the differences with the actual implementation of the DCS
is coming from the fact that the exposure limits were reached during a significant
part of the period and not from the model assumptions on the dynamics of the

assets used to derive the growth rate formula.

3.3.2 Ranking with stochastic Core and Satellite

In the previous example we chose to put in the Core the riskless asset. In general,
the Core might be an asset that varies in time stochastically, being for instance a
portfolio hedging a stream of future consumption needs or replicating a stochas-

tic benchmark. We now turn to verify the relationship between the Cushion’s
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growth rate and the end of period value of the portfolio using the same ranking
methodology but using the Fixed-Income Arbitrage index as the Core asset of the
portfolio.

Table F.4 presents the results of the ranking of the different Candidate Assets,

using the geometric return average, the Cushion growth rate, y<#s"n the value of

the CPPI using the estimated rebalancing drag and the actual value of the DCS
rebalanced after a /m move in the exposure to the Satellite with 6 = 5% and
exposure limited to [0, 1], for m = {2, 3,5}.

The percentage of indices with the same ranking according to the growth rate
and the actual end of period value of the portfolio with constraints and discrete
rebalancing are 100% (12 out of 12 indices), 83% (10 out of 12) and 58% (7 out
of 12) for m = {2, 3,5} respectively.

Similar to the previous ranking exercise, the percentage of assets with the same
ranking according to the Cushion’s growth rate and with the theoretical value V,,, is
100% in all cases. This implies that the differences with the actual implementation
of the DCS mostly comes from the portfolio’ allocation constraints and not from
the model assumptions used to derive the growth rate formula. The results also
imply that the exposure limits are more likely to be reached for higher values of
the multiplier.

The results of this raking exercise confirm that, in spite of the assumptions used
to derive the theoretical value of the growth rate, in the absence of parameter
estimation error, its one-to-one relationship with the portfolio’s value holds in
most cases. Hence, if one would have good estimates of the expected volatilities,
correlations and over-performance of the a set of candidate assets with respect to
the Core, one could rank the candidate assets to be chosen as the Satellite using

the cushions’ growth rate ycushion,

m
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3.4 Introducing the Growth-Optimal Portfolio
Insurance

A strand of the literature on portfolio selection argues in favor of “growth optimal
portfolios” (GOP) (see for instance Markowitz (1976), Breiman (1961), Long et al.
(1990)). GOP portfolios maximize expected log-utility of terminal wealth, the
expected geometric return average and have the interesting theoretical property
of outperforming all other strictly positive portfolios in long enough horizons (see
Kelly (1956) and Platen and Heath (2006)).

Motivated by the absence of a risk dimension in the GOP, we propose instead
to maximize the growth rate of the portfolio subject to the constraint of preventing
its value to fall below a given fraction of the value of a benchmark (this fraction
is chosen either by the investor or imposed by regulatory constraints). This is
equivalent to maximizing the growth rate of the classic CPPI strategy.

Furthermore, in former sections we document the close relationship between
the long term value of portfolio insurance strategies and their growth rate. This
result suggests as well that a reasonable objective for a long term investor with
short-term constraints is to maximize the growth rate of the portfolio insurance
strategy. Given a pair of assets with its corresponding parameter values and the
fraction to be the guaranteed k, the multiplier should be chosen such that it max-
imizes the portfolio’s growth rate. Since the Floor process does not depend on the
multiplier, maximizing the portfolios’ growth rate with respect to the multiplier
is equivalent to maximize the growth rate of the Cushion (see Appendix C.2 for
details). Taking the partial derivative of the Cushion’s growth rate (in Equation
(3.18)) with respect to m equating to zero and solving for m yields the growth

optimal multiplier:
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mt— ST IRYY (3.23)
2%

where v* = 1(0% + 0% — 2posor). Replacing (3.23) in Equation (3.18) yields
the optimal Cushion’s growth rate value as a function of the component asset’s

parameters:

cushion o _ (I8 =R +7)? (s — 1R +77)°
2y 4(7)?

In order to illustrate the importance of the choice of the multiplier value, Figure
F.2 plots the Cushion’s growth rate as given by Equation (3.18) for the following
parameter values: pug = 0.08, 05 = 0.15, ug = 0.03, og = 0.05, all possible values
for the correlation coefficient, i.e. p = [—1,1] and different multiplier values, i.e.
m = [1,10].

Figure F.2 illustrates how m* maximizes the Cushion’s growth rate due to its
concavity! with respect to m. This figure also illustrates two interesting inter-
actions between the correlation and the multiplier: i) the gray surface indicates
that for uncorrelated or negatively correlated assets, the choice of the multiplier
becomes critical in determining the Cushion’s growth rate, ceteris paribus and 7)
the optimal multiplier (dark line) increases with the correlation between the two
assets, everything else being equal. Similarly, Figure F.3 illustrates that for highly
volatile Satellite assets, the choice of the multiplier becomes critical (gray surface)
and the growth-optimal multiplier decreases with the Satellite’s volatility (dark
line), everything else equal.

In previous sections the parameters determining the dynamics of the compo-

'The value of portfolio insurance strategies is convex with respect to the value of the “index
ratio” or the outperformance of the Satellite with respect to the Core asset, precisely because of
the leverage role of the multiplier. The concavity with respect to “m” in this case is of course

for a given level of performance of the component assets (ceteris paribus condition).
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nent assets where assumed to be known and constant. This assumption is mild if
the purpose is to perform an ex-post performance attribution exercise using the
values of the parameters estimated using the sample period in question. However,
it is well documented that expected returns, volatilities and correlations for most
assets present significant variations in time. If any of these values varies in time,
in order to maintain the optimality condition the multiplier should be adjusted

accordingly:

(3.24)

In the particular case with a riskless asset as the reserve asset with instanta-

neous risk-free rate ur = r, with g = 0 Equation (3.24) yields

o Hst) =7
boog)

Using the standard utility maximization setting, Merton (1971), Grossman and

(3.25)

Vila (1992) and Basak (2002) find a remarkably similar solution for an optimal
multiplier in the case of a portfolio insurer investor with CRRA preferences’.
Merton (1971), Grossman and Vila (1992) and Basak (2002)’s optimal multiplier
is equal to (3.25) times the inverse of the investor’s risk aversion parameter. From
a practical standpoint, the problem with this approach is precisely to select the
risk aversion parameter value, for which there is not general consensus.

On the other hand, the growth-optimal multiplier does not need a risk aversion
parameter, hence there is no ambiguity about its optimal (unique) value. However,

it is possible to integrate the risk aversion parameter within the growth optimal

n Basak (2002) solves in the presence of inter-temporal consumption and includes the floor
violation restriction embedded in the investor’s utility function. The investor’s marginal utility
smoothly converges towards infinity, as opposed to imposing an exogenous constraint in which
marginal utility jumps in a discrete way when wealth hits the floor.
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portfolio insurance approach by defining the objective of maintaining a target level

of growth rate. We discuss this alternative in Appendix C.4.

3.4.1 Maximum Multiplier

The multiplier, m is a key parameter that determines the behavior of the portfolio
insurance strategy. Perhaps the most common way to determine the multiplier of
the CPPI in practice is using the maximum value that would allow the Cushion
to remain positive even in the “worst case scenario”. In general, in order to
guarantee that the Cushion remains positive, the multiplier has to satisfy the

following condition:

Cit1 Sit1 R S (m - 1) Ry
= 1— 0
C mStJr( m)Rt><:>St>m R,
or equivalently
mrs(t,t+ 1)+ (1 —m)rg(t,t +1) > —1 (3.26)
m(rs(t,t+ 1) —rg(t,t +1)) > —(1 +rg(t,t+ 1)) (3.27)

For (rg(t,t +1) —rg(t,t + 1)) < 0 the inequality (3.27) gets inverted,

o (LRt t4 1)
- T’S(t,t+ 1) —TR<t,t+ 1)

where ¢t and t+1 are any two portfolio rebalancing dates. Hence, the maximum
value for the multiplier that could guarantee in general the Cushion’s positivity
condition (3.27) is:
—(1 4+ min(rg))

m = min(rs —rn) " (3.28)
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In the particular case where the reserve asset is the riskless one, rz has a
minimum value equal to 0 (assuming positive interest rates) and its values are
usually small compared to the magnitude of the returns on stocks. For this reason,
condition (3.28) is very commonly approximated by:

-1
m = W

Although this value of the multiplier would respect the insurance promise of
the portfolio strategy, complying with a feasibility condition is not necessarily the
optimal choice from an investor’s perspective. As we saw in previous sections,
the rebalancing drag increases with the multiplier at a rate of m(m — 1). In the
next section we compare the growth optimal portfolio insurance we introduced,
with the equivalent portfolio insurance strategy defined by the aforementioned

methodology to determine the multiplier.

3.4.2 Empirical test of the Growth-Optimal Portfolio In-

surance

In order to empirically evaluate the performance of the GOPI strategy we use
the standard set of assets of the CPPI. We use monthly data of the T-bill rates
as the reserve asset and the value-weighted CRSP broad market stock index as
the risky asset, available from Kenneth French website from January 1926 until
December 2010. We first perform two Backtest exercises over long periods of
time and compare the performance of the GOP or Kelly criterion'), the GOPI

and the CPPI strategy, the latter being the standard portfolio insurance strategy

'For the pair of assets in question the GOP formula yields a portfolio with leverage and
short selling constraints. In the GOP literature the portfolio has the properties mentioned in
the introduction only if all the weights happen to be positive. Thus in this case, what we call
the GOP corresponds more precisely to the Kelly criterion, according to the denomination in
the academic literature.
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that uses the multiplier as given by Equation (3.28). Both portfolio insurance
strategies have the constraint of preserving 90% of the value of the reserve asset.
The allocation of the GOP to the risky asset in the case with two assets, is equal
to the multiplier of the GOPI.

In the first Backtest we use the entire sample to estimate the parameters that
determine the optimal and the standard multipliers and the allocation of the GOP.
Figure F.4 presents the log of the cumulative performance of the three strategies
and of an investment in the reserve asset, i.e. cash. The portfolio with the highest
cumulative performance during the entire sample is, unsurprisingly the GOP (dark
blue line). On the other hand, the GOP does not respect the constraint that the
GOPI and CPPI strategies have and it presents a significantly riskier profile that
the other two strategies. In fact the GOP in this case is even more risky than
the stock index itself, as illustrated in Table F.1. The upper panel of Table F.1
shows that, the minimum value ever attained by the GOP is 17 dollars, for an
initial investment of 100, while the minimum value attained by the GOPI and
CPPI strategies are 99.2 and 97.5 respectively. This is not surprising because the
GOP or Kelly criterion in this case happens to be a leveraged investment in the
stock index. The maximum drawdown of the GOP over the sample is equal to
95.6% compared to a maximum drawdown of around 50% for the GOPI and CPPI
strategies.

Interestingly, we find that, although the GOPI multiplier is lower than the
standard multiplier of the CPPI, the value of the GOPI strategy is higher than
the value of the CPPI at the end of the sample and during most of the period, as
observed in Figure F.4. The growth optimal multiplier estimated with the entire

sample is equal to 1.6 while the standard multiplier of the CPPI is equal to 3.4

'In this case we use monthly data and monthly rebalancing, hence the worst case scenario
is given by the worst stock return that happened in the 1930s of almost —30%.
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The CPPI strategy happens to lose almost all its risk budget at the beginning of
the sample an it stays very close to its floor value during the rest of the period.
On the other hand the GOPI strategy “survives” the periods of high volatility and
presents an important growth in the long run, with an average geometric return
of 7.9% compared to 3.6% for the standard CPPI.

As a second Backtest, we perform an out-of-sample exercise in which we split
the sample in two. We use the first half of the sample (i.e., 1926 : 01 —1968 : 05) to
estimate the parameters of the strategies (multipliers and allocation of the GOP)
and the second half to implement the three strategies (i.e., 1968 : 06 — 2010 : 12).
We use a very long period of time to estimate the parameters in order to avoid the
estimation sample bias mostly present in expected return estimates. The result of
this second Backtest is presented in the lower panel of Table F.1. The conclusions
are similar to the former Backtest. The GOP attains the highest value among
the three strategies but also a minimum value of around 39.2 dollars, compared
to minimum values of 100 and 99.5 dollars for the GOPI and CPPI strategies
respectively and 70.3 dollars for the stock index. Although the optimal multiplier
(1.7) is again lower than the standard multiplier (3.4) the growth optimal portfolio
insurance strategy attains a higher value than the standard CPPI and it remains
higher during most of the sample period, as illustrated in Figure F.5.

Portfolio insurance strategies are often perceived as dependent on the market
conditions at the inception of the strategy. However, one should notice that the
first Backtest, starting in 1926, begins in a bull market, while the second Backtest
starts with a bear market.

In order to make a more throughout comparison between the GOPI and the
standard CPPI, we now turn to an historical simulations exercise, where we per-
form N Backtest exercises for which the starting dates are selected randomly from

the available sample period and performed over 5, 10 and 20 years investment
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horizons. This methodology is equivalent to perform block-bootstrap simulations
using a block-size equal to the length of the investment horizon (i.e., either 5, 10
or 20 years).

The available sample for choosing the starting dates of the simulations excludes
the multiplier’s calibration sample, which is the taken as the first 10 years of
data, and the last 5, 10 or 20 years of available data, respectively (the latter
condition allows all Backtests to have the same length, either 5, 10 or 20 years).
We compare the end of period value of the portfolio insurance strategy using the
growth-optimal multiplier and the standard multiplier approach. We perform 100
random simulations for each of the three horizons considered.

We use three different methodologies to estimate the standard multiplier of
Equation (3.28): i) first we use the whole available time series following the first
10 years of calibration sample to determine the minimum values required by its
formula in (3.28), which we denote as mg, i7) we estimate the standard multiplier
that corresponds to the sample period over which each of the backtests simulations
will be performed (hence it is a forward looking estimate), denoted “Perfect”
Myperioa ad i17) we use all data available before the starting date of each of the
backtest scenarios to estimate the multiplier, which we denote as “Sample” 1period-

In order to estimate the optimal multipliers, as given by Equation (3.24), we
also use three different approaches: i) we use sample estimates over the testing
period of each of the backtest scenarios (hence it is a forward looking estimate)
which we denote as “Perfect” m*, ii) we estimate the optimal multiplier using the
latest 10 years of data available at the starting date of each simulated scenario,
denoted as “Sample” m* and ¢ii) in order to estimate the “Dynamic” optimal
multiplier series, 7}, we fit' a Dynamic Conditional Correlation model (Engle

and Sheppard (2001)) to all available stock returns at the starting date of each

"'We use Kevin Sheppard’s UCSD Multivariate Garch toolbox for estimating the DCC model.
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simulated scenario and use the estimated parameters and available “innovations”
at each point in time to infer the variance and covariance time series over the
testing period. We use a 10 year moving average to estimate expected stock
returns and take the latest available interest rate value as its next period forecast.

The standard multiplier estimated using the whole available time series after
the first 10 years of calibration sample is equal to m,; = 4.2, which is higher than
the standard multiplier obtained using the “Sample” estimate m* = 3.4. This
latter presents always the same value (see Table F.5) because the “worst” scenario
in the available history occurred during the 1930s (within the first 10 years of
data). This contrast with the wide range of values for the “Perfect” foresight
standard multiplier myeri0q, Which falls between 4.2 and 20.4 depending on the
backtest scenario.

Table F.6 presents the range and median values of the three different estimates
of the growth-optimal multipliers. In order to have a better comparison between
these two types of multiplier, we compute the percentage of scenarios in which the
optimal multiplier is less or equal to the standard multipliers corresponding to the
same periods. Table F.7 presents the results for each pair of multipliers and each
horizon. In every pair, even for the perfect foresight multipliers, we find that the
optimal multiplier has a lower level in most scenarios. On average across pairs
and horizons the percentage of times for which the optimal multiplier is lower or
equal than the standard multiplier is around 70%.

Perhaps the most interesting comparison is the percentage of scenarios on
which the portfolio with the optimal multiplier obtains a higher value than the
portfolio using the standard multiplier approach, presented in Table F.8. When
comparing the “Perfect” foresight estimates of the optimal and standard multi-
pliers, we find that the percentage of scenarios favoring the optimal multiplier

portfolio is between 51% and 67% (for 20 and 5 years horizon respectively). This

108



Chapter 3

result is more dramatic when compared with the also forward-looking estimate of
the standard multiplier, m,;, in which case the range of the percentage of scenarios
favoring the optimal multiplier portfolio is 66% to 85%. The average geometric re-
turn of the portfolios across scenarios is higher for the portfolios using the optimal
multiplier on the three horizons considered, as shown in Table F.9.

On the other hand the portfolios with the sample estimate of the optimal
multiplier outperforms the portfolio using the sample estimate of the standard
multiplier in around 40% of the scenarios. This is not surprising considering that
the variations in average returns and volatility from one period to the next can
be very dramatic in stock returns. These variations are expected to affect more
the optimal multiplier than the standard multiplier, because the latter is simply
a lower bound approximation of the return. However, using the “Dynamic” es-
timates of the parameter values composing the optimal multiplier favors again
the corresponding portfolio with respect to the one using the “Sample” standard
multiplier estimate mP¢"?. In this case the over performance probability for the
three horizons considered are 69%, 72% and 72%, for 5, 10 and 20 horizons re-
spectively. Furthermore, the portfolio insurance strategies constructed using the
dynamic estimates of the optimal multiplier outperformed the portfolio using the
forward looking standard multiplier estimate my; in 64%, 62%, 67% of the scenar-
ios, for 5, 10 and 20 horizons respectively. The superiority of the dynamic optimal
multiplier portfolios is also suggested by the higher average geometric return it

obtained for the three horizons considered (see Table F.9).

3.5 Conclusion

We derive the growth rate of the portfolio insurance strategy in the general case

with a stochastic reserve asset as a function of the underlying assets’ characteristics
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(i.e. expected returns, volatilities and correlation). The analytical characteriza-
tion of the growth rate of portfolio insurance strategies sheds light on the largely
disregarded role that the correlation between the underlying assets plays on the
value of this type of strategy.

Through different empirical exercises we find that the growth rate has a very
close relationship with the expected value of the portfolio insurance strategy even
when common short-selling and leverage constraints are imposed. We also illus-
trate how can the growth rate of the strategy be decomposed to nail down the
relative importance and effect of the characteristics of the underlying assets on
the performance of the strategy.

Finally, we introduce the growth optimal portfolio insurance strategy (GOPI),
which combines the pragmatic objective of maximizing the growth rate of the
portfolio and the common risk-management objective of preserving a given fraction
of the value of the portfolio typically indexed to a given benchmark. The growth
rate maximization is achieved by using the growth optimal multiplier, while the
investor chooses the benchmark and the fraction of its value to insure as in the
standard CPPI case.

Through empirical tests with real data and in the presence of short-selling
and leverage constraints, we find that the GOPI strategy tends to outperform a
CPPI using the standard multiplier selection methodology while keeping a more

conservative risk profile.
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APPENDIX A

Appendix Chapter 1
A.1 Proof of Proposition 1
Consider the factor model decomposition

Nt Nt
(w) _
Ty = wi B Fy + Wit
i—1 i=1

and
Nt Nt
= = B, — B | By + i — e
Tig — Ty = it Wit Pt t T Eit W€ jt
Jj=1 Jj=1

Under the homogeneous betas assumption, we have

Ny
Tit — Tt(wt) =&t — Z wjtgjt (A]‘)

j=1

and therefore

) Ny 2 Ny
(w¢) _ 2
[Tit — Ty =& + E wthjt — 261‘,5 E U}jtffjt
Jj=1 Jj=1

so that

Ny 9
CSVt(wt) = ZUJit (T’it - Tt(wt)>
i=1

N N 2 Nt N
2
= E witgit_’_ E W tE 5t —25 E WjtWitEitE jt
i=1 Jj=1 i=1 j=1

Noting that

Ny 2 Ni Ng
g W€ jt = E g Wt Wit Eit€ jit
j=1

i=1 j=1

we finally have:
Nt Nt 2
CS‘/;(wt) = Z witg,?t — (Z w]‘tfjt>
i=1 i=1
We now argue that the term vaztl wji€j¢ converges to 0 for increasingly large
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numbers of stocks. To show this, we need to use a recent result by Cuzick (1995)
regarding the Marcinkiewcz—Zygmund strong law of large numbers for weighted

sums of i.i.d. variables:

N

1

N Z an;X; — 0 almost surely (A.2)
i=1

when {X, Xy, N > 1} is a sequence of i.i.d. random variables with F (X) = 0,
E|X| < oo and {an;,1 < ¢ < N,N > 1} is an array of constants uniformly
bounded satisfying'

sup |an;| < 0o. (A.3)

Here we take any = Nywy and X; = g;. For the result (A.2) to hold ay;; needs
to be uniformly bounded and to satisfy condition (A.3). We therefore restrict
our attention to non-trivial weighting schemes, ruling out the situation such that
the index is composed by a single stock. Please note that this condition together
with the fact that ). w; = 1 implies N; > 1 and also restrict the weights to be
(strictly) positive at every given point in time. Hence, a weighting scheme (wy), is
defined as a vector process which satisfies 0 < w;; < 1V 4,t. This condition seams
reasonable since our focus is to measure idiosyncratic risk in the market.

By definition, the weighting scheme w;; and ap;; is uniformly bounded by Ny

and the following condition holds,
0<wy<1Vi,t (A.4)
Multiplying by N, we get

0 < Nywyy < Ny
O<Nth‘t<00
0 < an < oo

lani| < oo Vit

which implies that condition (A.3) holds. Thus, for a positive weighting scheme

from the strong law of large numbers for weighted sums of i.i.d. variables, it follows

1See Theorem 1.1, particular case of Cuzick (1995).
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that:

Ny

E wyey — 0 a.s.,
—1 N¢—o00

1=

Using similar arguments, and the homogeneous idiosyncratic second moment
assumption, E [¢%] = o2 (t), we obtain that for a strictly positive weighting scheme,

wy, and i.i.d. g;,
Ny
2

Z wies, N Oc (t) almost surely

i=1

Using these results, we finally have that:

N, )
sV = Z Wit (m - Tﬁwt)> — o2 (t) almost surely.
i=1

Nt—)OO

A.2 Properties of the CSV Estimator

A.2.1 Bias of the CSV Estimator

Under the factor model decomposition (1.1) and equation (1.2) and using the

homogeneous beta assumption, we have:

Nt Nt Nt
(we)
Tig — Ty = | Bt — E wjtﬁjt Fy+ey — g WjtEjt = Eit — g W€ jt (A-5)
Jj=1 Jj=1 Jj=1

Replacing result (A.5) in equation (1.3) we have as before:

N Ny Ng
CSVt(w‘) = Z WieF — Z Z W Wi EE jt (A.6)
i—1 i—1 j=1

2
E;°

By definition of a strict factor model, F [e4e5] = 0 for i # j, and E(e2) = o
Applying the expectation operator in equation (A.6) we get:

Ny N
elosvi] = ; wao? (1) — ; wlo? (1) (A7)

The second term in (A.7) implies that the CSV would tend to underestimate

the average idiosyncratic variance. Considering the equal-weighted scheme where
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wiy = 1/Ny Vi, (A.7) simplifies into

and we obtain:

A.2.2 Variance of the CSV Estimator

Let w; and €; be column vectors of the weighting scheme and residuals respectively

and Q, = waw,, Ay = diag (w;), Ny x Ny matrices, and denote ¢ the variance

covariance matrix of the residuals, which is diagonal for a strict factor model.
For a finite number of stocks in the case where F, # r(*9) we have from

equation (A.6):

Nt Nt Nt
(we) _ 2
CSV, = Wit€5 — Wi WiHEitE jit
i—1 i=1 j=1

Letting Q; = Ay — Q;, C' SV, can be written in matrix form, as follows:

CSV"™) = Qe (A.8)

Using the quadratic structure of the CSV and assuming normal residuals, we have

(see for instance Kachman (1999))":

Var (5;@,5575) = 2tr (QtZ§QtZ§) (Ag)

Under the assumption of a strict factor model, i.e. pf;, = 0 Vi # j, equation
(A.9) simplifies to:

Ny Ny N
Var (CSV;(M)> =2 Z ol wi(1—wy)® +2 Z Z w?twf-ta?itafjt (A.10)
i=1 i=1 j#i

Assuming an upper bound for the individual idiosyncratic variances, denoted

!The operator tr stands for the trace of a matrix, which is the sum of the diagonal terms.
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as 0., equation (A.10) yields to the following inequality (replacing each variance

for its upper bound)

Nt 2 Ny Ny
Var (C’Svt(wt)) < 267 (Z wft> + Z w2 — 2 Z w | . (A.11)
i=1 i=1 i=1
When wy = 1/N,, equation (A.11) simplifies to

N, —1 1
Var (CSVt(w”) <262 ( ;VQ ) <262 (ﬁ) : (A.12)
t t

For a large number of stocks,

1
Var (OSV,W) <264 (N) N (A.13)
t

A.2.3 Relaxing the Assumption of Homogenous Betas

The assumption that §; = §; for all ¢ is obviously a simplistic one and is done
only for exposure purposes. Starting with the single factor decomposition on the
definition of the CSV we have:

Ny )
CSV;&(W) = Z Wit (Tit - ngwt)>
i=1
Ny N N 2
= Z Wit [(5% - Z wjtﬁjt) Fy+ey — Z wjtffjt]
i=1 j=1 i=1
N¢ Nt 2 Ny Nt 2
= th Z Wiy <th - Z wjtﬁjt) + Z Wit <5it — Z wz‘t£jt> +
=1 j=1 i=1 i=1
Ny Ny Ny
2F; Z Wit (ﬁz - Z wjtﬁjt) (51'15 - Z wjtﬁjt)
i=1 j=1 i=1
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After simple rearrangement of terms we get:

Nt Nt 2 Ny Nt N
(we) _ 2 2
CSV,™" = F; E Wit | Bir — E Wi B |+ W€ — W Wit €€ jit
i=1 j=1 i=1 i=1 j=1

Nt Nt
+2F; Z Wit (Bt — Z wjtBjt)
i1 =1

Applying the expectation operator and assuming a strict factor model, the last

expression simplifies so as to yield:

N N
b [OSVt(wt)} =FE [FECSVtﬁ] + Z witait - Zw?to-git
i=1 i=1

Under an equal-weighting scheme, we finally have:

N
E[CSVFY] =E [chsvﬂ - (1 —~ N%) i > a2,
i=1
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APPENDIX B

Appendix Chapter 2

B.1 Out of Sample Prediction using a Markov
Switching Model

Similar to the BH-BCP algorithm the Markov Switching model can yield a prob-
ability of being in a particular state at each point in time. Whereas the BH-BCP
algorithm produces a single posterior change-probability sequence, the Markov
Model estimation procedure can produce two different sets of probability sequences
- usually referred to as “filtered” (or “unsmoothed”) and also a “smoothed’ prob-
abilities sequence’. Given the estimated regime means in each state and the esti-
mated probabilities of being in each state at a point in time, we obtain an expected
value for the regime mean, analogous to the posterior mean produced by the BH-
BCP procedure.

In this appendix, we present results on predicting returns by using the adjusted
d-p ratio series as the predictor where the adjustment level is estimated by fit-
ting the observed series using a Markov Switching model instead of the BH-BCP
procedure.

At each point in time, we estimate a model based on all data available at
that time, making it a “true” out-of-sample experiment which could have been
performed by an investor at each point in time.

Additionally, following Lettau and van Nieuwerburgh (2008), we also perform a
“pseudo” out-of-sample experiment. Instead of relying only on data being available
at each point in time, we first generate the d-p adjustment by looking ahead over
the entire series in order to build the best possible estimates of the regimes and
the regime means. Of course, this could not have been performed by an investor
at each point in time, but it does serve to demonstrate what that investor would
have been able to do if she had a more reliable estimation methodology at her
disposal.

Finally, we repeat each of the true and pseudo out of sample experiments for
different calibration periods and sub periods, and then for two different market
series (CRSP Value Weighted Broad Market and the CRSP Equally Weighted
Broad Market indices).

We first present the results for annual data then for quarterly data. In each
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model, we report the Mincer-Zarnowitz R?, the Campbell R%,q as well as the

difference in utility as we did for BCP-based predictions.

B.1.1 Out of Sample Prediction using a Markov Switching
Model - Annual Data

Tables E.9 and E.10 present the summary results of running a returns prediction
based on a “true” out of sample experiment (denoted by “True OOS” in the
tables). We examine both the CRSP Value Weighted series (denoted by C'RS Py )
and the CRSP Equally Weighted Series (denoted by CRSPgw ). For each series
we examine the results both true and pseudo OOS results for different calibration
periods for the unadjusted dp ratio and then using smoothed and unsmoothed
probabilities by fitting a 2-state and a 3-state Markov Switching model.

We see that none of the out of sample predictions based on Markov Switching
models succeeds in beating the random walk model, either for CW or EW indices.
This is in contrast to the BCP procedure which produces economically meaningful
predictions that outperform the random walk model.

However, if we are permitted to “peek ahead” to construct an adjustment to
the d-p ratio by looking ahead in a Pseudo out of sample experiment, the Markov
Switching model does outperform the Random Walk model in several periods,
confirming the notion that better estimates of the regimes result in more accurate
predictions (results are in Tables E.11 and E.12).

B.1.2 Out of Sample Prediction using a Markov Switching
Model - Quarterly Data

Tables E.13 and E.14 present the results of using Quarterly Value Weighted data

instead of Annual data, using both 2 and 3 state Markov Switching models.
Asin the case of Annual data, we see that Pseudo OOS results often outperform

the random walk model, but True OOS predictions using Markov Switching models

are unable to do so consistently.
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APPENDIX C

Appendix Chapter 3

C.1 Derivation of Portfolio Insurance Growth
Rate

Using a Black-Scholes model for the dynamics of the Reserve (R) and performance
seeking asset (S) and the fact that the CPPI can be decomposed in to a floor
process, Iy = kR; and a Fixed-Mix Portfolio, we now derive an approximation of
the growth rate of the CPPI, in the case with a stochastic reserve asset.

Using the interpretation of the Cushion as a Fixed-Mix portfolio with weights
m and 1 —m and result (3.11) for two assets, the value of the Portfolio Insurance

strategy is given by

VEL(t) = kV, (%) + (1 - k)W (g—;)m (%)l_m et (C.1)

The second term in equation (C.1) is equal to the value of a fixed mix portfolio,

thus it can be expressed in terms of its growth rate, as in equation (3.12),

Cn(t) = (1_k)Vbe(Wn+m75+(1*m)7R)t+mUsWs(t)+(1*m)0RWR(t) C.2

= (1—k)VEM@) (C.3)

Since Cy = (1 — k)Vj, by definition of the growth rate (eq. (3.4) or (3.5)), the

Cushion process’s growth rate is

cushion

Tm =, +m(vs — Vr) + Vg,

where v, = m(1—m) (0% + 0% — 2posos). Notice that the brownian motion terms
in equation (C.2) disappear after dividing by t as t — oo, because W (t) = v/tz(t)
for z ~ N(0,1). Alternatively, replacing (C.2) in the other definition of the growth
rate, i.e. equation (3.5), leads to the same result because E[W (t)] = 0.

By definition of the growth rate (equation (3.5)) and using result (C.1), the

portfolio insurance’ growth rate can be written as

r % . {m (k:R(t) + (1‘/—0 k)anM(t))} | .4
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From Jensen’s inequality and the concavity of the log it follows that

-t (B () o (5

by definition of the growth rate we have

Yo' 2 kv (1= k). (C.5)
Inequality (C.5) implies
Yo = kv 4 (1= k)" 4 ¢, with ¢ > 0. (C.6)

Since the growth rate of the Floor process is equal to the growth rate of the
Reserve asset, g, equation (C.6) implies that the growth rate of the Portfolio
Insurance strategy is the weighted average of the growth rate of the Reserve asset
and the growth rate of the Cushion with weights equal to k and (1—k) respectively
plus a positive term ¢. The latter term can be estimated using a Taylor expansion

of the log where all terms above the quadratic are omitted (see below), yielding

1 . .
6 = Sh(1 = B) (7 + ()2 — 2y tiony

The log of a weighted average of exponentials can be approximated using the

following Taylor expansion where all terms above the quadratic are omitted:
/ / 1 /
In(w’ exp(x)) =~ z'w + 3% Va (C.7)

where V; ; = —w;w;Vi # j and V;; = w;(1 — w;), and w is a vector with the same
size of vector z, satisfying ) ©. w; = 1. Thus, the “weights” of the weighted average

of the exponentials are k and 1—k when applying approximation (C.7) in equation

(C.4).

C.2 Portfolio Insurance Growth Rate Maximiza-
tion

As shown above, the growth rate of the CPPI can be approximated as
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Tk = kv A (1= k) + ¢,

where

1 | |
¢ = Sk(1=k) (Vi + (™™ ")* = 275" (C8)

In order to maximize v.! we assume positive values of vz and y<“shien and

m
cushion >
m =

Y
strategy in which the expected long term return (growth rate) of the Cushion is

vr. The latter assumption seems reasonable, as investing in a CPPI

lower than the growth rate of the reserve asset would not make sense from an
economic standpoint (it would better to simply invest in the reserve asset). Under
these assumptions, ¢, as given by equation (C.8) is a strictly increasing function
of Hcushion.

On the other hand, the growth rate of the Floor process is equal to yg, which is
independent from the multiplier. Hence, under the assumptions above, maximizing
the growth rate of the portfolio insurance strategy is equivalent to maximize the
growth rate of the cushion (Alternatively, one could notice that for k close to 1 and
typical parameter values, ¢ tends to be small compared to the weighted average
of the Cushion and Floor’s growth rate, thus: v7 ~ k g + (1 — k)yushion which

implies to the same result).

As shown above, the Cushion process has a growth rate equal to

cushion

Yra =y +m(vs — Yr) + VR (C.9)

taking the partial derivative of equation (C.9) with respect to m, equating to zero

and solving for m yields the growth optimal multiplier:

s _ VS TOREY
2y*

m

b

where, v* = %(ag + 0% — 2p0os0R).

C.3 Leveraged investment in Satellite

One alternative to construct a DCS with an asset with “good” properties in terms
of risk and return, is to put the asset in the Core and a leveraged investment of

the same asset in the Satellite. Choosing a leveraged factor equal to the multiplier
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of the portfolio insurance strategy, the formula of the growth rate of the Cushion
has a simpler expression. The parameters of the Satellite’s growth rate are in
consequence given by pug = mug, 0s = mog and the rebalancing drag is minimized
for a given level of volatility since p = 1. Replacing these terms in Equation (3.18)

we get,

_ 1 1
A== (m? —m 4 Vg + §m(m2 —m+1)o% — ém(m2 —1)og (C.10)
For the growth rate of the cushion to be higher than the growth rate of the
asset, the following condition should be satisfied:
2 pr 1, 4 2 L 3
(m*—m)— + =(m> —m”+m+ 1)og > =(m> —m). (C.11)
OR 2 2

In particular, for m = 2, Equation (C.10) simplifies to,

7%22 = 3ur+ 3033 —30gr
v = 3(pr—or(l—og))

Which is positive for an asset with a ratio of expected return to volatility
satisfying £ > 1 — o. In this particular case, for the growth rate of the cushion
to be higher than the growth rate of the asset, the following condition should be
satisfied:

1 [T

3(NR_0R(1_0R))>NR_§(712~2:>,U_0>§_60- (C.12)

For given values of ur andogr one may find the value of m that maximizes

y=m_ Deriving Equation (C.10) with respect to m and equating to zero we have:

3 1
Zm’yR—§m203(1—03)+503—’m:0.

Which solution is given by the quadratic formula, yielding (Here the numer-
ator and denominator of the typical presentation of the quadratic formula was
multiplied by —1).

. 2R F \/47}23+60R(1—0R)(%UR—7R)
m* = .
30’R(1 - O'R)
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C.4 Alternative Time-Varying Multiplier

In Section 3.4 we claimed that a reasonable objective for an investor is to maximize
the growth rate of the portfolio. An alternative and perhaps more general objective
for the investor could be to maintain a target level of growth rate in the portfolio.
The target level of the growth rate can be chosen, for instance, such that the
probability of breaching the floor in the presence of jumps in asset prices is held
constant and the level of this probability could be chosen according to the risk
aversion level, as done in Cont and Tankov (2009).

Hence, instead of letting the growth rate to change as dictated by the move-
ments in the component assets’ parameters, the investor may adjust the multiplier
in a way that compensates the movements in the asset’s parameters.

Let the target growth rate be denoted as I', which depends on the assets’

parameters and the multiplier as in Equation (3.18):

youshion (1) = my (1 — my)y*(t) + mu(ys(t) — vr(t)) + Yr(t) =T. (C.13)

Hence we solve for m;, leaving I" constant as follows,

L= m(1—m)y"(t) + mu(vs(t) — vr(t)) + Vr(1)
I —yr(t) = mi(vs(t) —vr(E) + (1) — miv*(b).

Which solution is given by the quadratic formula, yielding

_bF VP4 ()(r(t) - T)
29(t)

my when b= vg(t) —vr(t) +~*(t).(C.14)
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APPENDIX D

Tables and Figures of Chapter 1

Table D.1: Estimates of the biases due to the cross-sectional dispersion of betas
and weight concentration: This table contains a summary of the distribution of the
following time series: the cross-sectional dispersion of betas C'S Vtﬁ , estimated with respect to
the CAPM at the end of every month using daily returns; the average idiosyncratic variance

a?t with respect to the CAPM; the product of the average return of the market portfolio

squared, F2, and the beta dispersion, CSV;’; the proportion of the product F2CSV/ to aZ,
and the proportion of ) wiztogit to ogt. The upper panel corresponds to the equal-weight

scheme (CSVFW) and the lower panel to the market-cap weighting (C.SV¢W). All figures
are daily. The period is July 1963 to December 2006.

Equal-Weighted Q25 Q25 Q50 Qi Qors
Csvy 0.282  0.970 1.563  3.022 11.437
o2 (%) 0.043  0.065  0.103 0.241 0.485

F2OSV/(%)  6.57e-07 6.920-05 3.84e-04 0.001 0.005
FCSVE gy 0.001  0.078  0.348  0.890 3.240

agt ,
%(%) 0.014 0.020 0.030 0.054 0.154

Cap-Weighted Q25 Qa5 50 Q75 Qo735
CSVtﬁ 0.075 0.309 0.451 0.704 3.079
Ugt(%) 0.009 0.020 0.030 0.042 0.153

F2CSVA(%)  1.83¢-07 2.30e-05 1.09e-04 2.77e-04 0.001
FEOSVE(%)  4.85e-04  0.080 0351 0.930  3.472

%(%) 0.173 0.281 0.426 0.637  1.463
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Table D.2: Total bias associated with CSV: This table reports the output summary
of the regression CSV,”* = bias + o2, ., (wi) + ¢, where o2, .., (w¢) represents monthly
estimates of the weighted average idiosyncratic variance estimated using the corresponding
model (either CAPM or FF). The average and the C'SV are computed with either the
cap-weighted scheme (CW) or the equal-weighted one (EW). The period is July 1963 to

December 2006.

CAPMEW  FFPEW  CAPMCY  FFCW

Bias 1.20e-05 2.23¢-05 -2.0e-05 -3.74e-05
NW t-stat  1.986 2.382 -2.849 -4.767

Std. dev.  3.05e-06  5.86e-06  2.04e-06  3.50e-06
W 0.983 0.988 1.125 1.242
NW t-stat  153.819  100.162  39.259 39.226
Std. dev. 0.002 0.003 0.005 0.009
R(%) 99.866  99.503  98.946 97.117
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Table D.4: Comparison of daily measures of idiosyncratic variance: The upper
panel of this table contains the annualized mean and standard deviation of the daily time
series for the CSV and the average idiosyncratic variance based on the Fama-French model
as in equations (1.4) and (1.11) using both weighting schemes. The lower panel presents the
cross-correlation matrix among these variables. The period is January 1964 to December
2006.

CSVEW  ppEwW  CSyew  ppcw

Mean 0.384 0.383 0.085 0.078
Std.Dev. 0.021 0.019 0.005 0.004
Correlation CSVEW FEREW COQyew  ppew
100.00 82.63 60.33 63.96

100.00 52.12 72.55

100.00 73.95

100.00
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Table D.5: Regime-Switching Parameters: This table contains the parameter esti-
mates of the Markov regime-switching model specified in equation 1.14 for the CSV and
the average idiosyncratic variance based on the FF model as in equations (1.4) and (1.11)
The upper panel corresponds to
monthly estimates and the lower panel to daily estimates. u; is the average level of the
variable on regime i, o; is the standard deviation level of the variable on regime i, ¢ is the
autocorrelation coefficient, p and q are the probabilities of remaining in regimes 1 and 2
correspondingly. The period is January 1964 to December 2006.

using both, equal-weighted and cap-weighted schemes.

Monthly series

CSVEW  [FpEW  COSyeW  Fpew

1 0.401 0.363 0.107 0.115
{2 0.299 0.275 0.065 0.061
o1 0.067 0.062 0.029 0.021
o 0.010 0.009 0.004 0.003
0] 0.980 0.981 0.839 0.839
p 0.839 0.823 0.857 0.906
q 0.963 0.951 0.980 0.990
Daily series CSVEW  FFEW CSyew  ppew
1 0.446 0.261 0.110 0.048
) 0.304 0.262 0.064 0.048
o1 0.036  2.04e-04  0.009  4.89e-05
o 0.003 0.002 0.001  3.60e-04
) 0.965 1.000 0.825 1.004
p 0.695 0.962 0.778 0.870
q 0.956 0.838 0.970 0.809
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Table D.6: Correlations between the monthly series of several measures of cross-
sectional variance and economic variables. The sample period is January 1990 to

December 2006.

CSVEW —CcsveWw  CSVEWE  COSVEW-

Consumption-Vol  0.401 0.241 0.184 0.346
Credit-Spread 0.177 0.268 0.098 0.165
Term-Spread -0.086 -0.135 -0.107 -0.219
Inflation-Vol -0.367 0.019 -0.137 -0.097
T-bill Rate 0.302 -0.043 0.091 0.164
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Table D.8: Daily predictability Regression on CRSP broad market portfolio
with average idiosyncratic variance measures: The upper panel presents the results
of a one-day ahead predictive regression of the excess equal-weighted daily portfolio re-
turns, denoted by W, on the daily lagged equal-weighted cross-sectional variance de-
noted as CSVEW estimated as in equation (1.4) for three sample periods. The lower panel
presents the results of the predictive regression on the cap-weighted market portfolio using
the cap-weighted CSV. The intercept, the regression coefficient corresponding to the CSV,
the standard error of the regression coefficients denoted by std, the Newey-West corrected
t-stats (30 lags) and the adjusted coefficient of determination denoted by R are reported.
The sample periods are 1963:07 to 1999:12, 1963:07 to 2001:12 and 1963:07 to 2006:12.

Daily series 63:07-99:12  63:07-01:12  63:07-06:12

Forecasting r*" CSVEW CSVEW CSVEW
Intercept -1.58e-04 -1.40e-04 -1.29e-05
NW t-stat -0.785 -0.714 -0.071

Std 1.09e-04 1.10e-04 1.04e-04
Coefficient 0.544 0.483 0.411
NW t-stat 4.711 4.515 4.000

Std 0.060 0.055 0.051

R (%) 0.883 0.788 0.573

Forecasting r¢" cSsvew CcSsvew cSsyew

Intercept -0.001 -1.88e-04 -1.65e-04
NW t-stat -3.521 -0.791 -0.737

Std 1.41e-04 1.23e-04 1.19e-04
Coefficient 3.404 1.189 1.151
NW t-stat 5.919 1.948 1.966

Std 0.385 0.251 0.248

R (%) 0.831 0.220 0.186
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Table D.13: Predictability Regression on CRSP broad market index with right
and left CSV measures: The upper panel presents the results of a one-day, one-month,
one quarter and one year ahead predictive regressions of the excess equal-weighted portfolio
returns, denoted by r“W on the daily or monthly (correspondingly) lagged equal-weighted
cross-sectional variance of the returns to the right (higher than) of the cross-sectional dis-
tribution mean (which is actually rZ") denoted as CSV* and the cross-sectional variance
of the returns to the left (lower than) the mean of the cross-sectional distribution rZW,
denoted as C'SV~. The lower panel presents the results of the predictive regressions on
the cap-weighted market index using the cap-weighted CSV measures as predictors. The
intercept, the regression coefficients corresponding to the CSV* and CSV ~, the standard
error of the regression coefficients denoted by Std, the Newey-West corrected t-stats and

the adjusted coefficient of determination denoted by R~ are reported. The sample period is
1963:07 to 2006:12.

Forecasting "'  Daily®™  Monthly®™ Quarterly®™  Annual®"

Intercept 0.001 0.003 0.014 0.050
NW t-stat 3.944 0.727 0.822 1.069
Std 1.10e-04 0.004 0.017 0.076
CSV+ 0.488 0.375 -0.042 -0.288
NW t-stat 3.360 2.400 -0.282 -0.845
Std 0.038 0.161 0.190 0.403
CcSV-— -1.200 -0.486 0.824 1.701
NW t-stat -3.901 -1.129 0.842 1.346
Std 0.142 0.432 0.902 1.610
R (%) 1.552 1.114 10.595 11.862
Forecasting r®"  Daily®W  Monthly®V  Quarterly®"  Annual®V
Intercept -1.12e-04 0.008 0.020 0.107
NW t-stat -0.588 2.753 2.656 2.147
Std 1.16e-04 0.003 0.010 0.043
cSsv+ 4.942 0.071 -0.163 -2.354
NW t-stat 3.546 0.054 -0.254 -1.669
Std 0.528 1.983 0.914 1.824
CcSV~ -2.842 -1.302 -0.870 1.227
NW t-stat -2.736 -0.879 -0.672 0.869
Std 0.669 2.233 1.477 2.527
R (%) 0.785 -0.069 -0.849 1.215
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Table D.14: Daily and Monthly predictability with skewness for »”": This table
presents the results of one-day and one-month ahead predictive regressions of the excess
equal-weighted daily portfolio returns, denoted by r#"W. The first explanatory variable is
lagged estimate of the equal-weighted CSV estimated as in equation (1.4); The second ex-
planatory variable is the robust estimate of skewness estimated as in equations (1.20). The
intercept, the corresponding regression coefficients together with their Newey-West auto-
correlation corrected t-stats (with 30 lags for daily and 12 lags for monthly) and standard

errors are reported. §2 denotes adjusted coefficient of determination. The regression is
reported for the main sample period from 1963:07 to 2006:12.

Daily horizon  Coeff.  t-stat Std.Dev. EZ(%)

Intercept -3.7e-005  -0.234 0.000 5.833
CSVEW 0.402 4.013 0.053
Skewness 0.004 20.190  0.000

Monthly horizon Coeff. t-stat Std.Dev. §2(%)

Intercept 0.000 0.107 0.004 4.587
CSVEW 0.250 2.518  0.102
Skewness 0.078 4.458 0.017
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Table D.15: CSV quintiles premium. The upper panel present the results for equal-
weighted quintile portfolios and the lower panel on cap-weighted quintile portfolios. The
first column presents the (arithmetic) average return annualized on quintiles formed at the
end of every month on CSVFW’s coefficient estimated with one month of daily returns.
The second column presents the average return difference of the first quintile with every
other quintile. The third column presents the p-value of the test of the difference to be
significantly positive. The sample period is July 1963 to December 2006.

EW Quintiles Quintile Return Q1 — Q;  p-value(%)

Q1 0.390 0.00e+-00
Q2 0.083 0.307 0.00e+00
Q3 0.044 0.346 0.00e+-00
Q4 0.050 0.340 0.00e+00
Qs 0.237 0.154 0.130
CW Quintiles Quintile Return Q1 — Q;  p-value(%)
Q1 0.383 0.00e+00
Q2 0.087 0.296 0.00e+00
Q3 0.036 0.347 0.00e+00
Q4 0.047 0.335 0.00e+00
Qs 0.247 0.136 0.725
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Table D.16: Fama-MacBeth regression. This table displays the average values, stan-
dard errors and Newey-West corrected t-stats for the coefficients in the Fama-MacBeth
regression run every month in the sample, using the 3 Fama-French factors and C'SVEW
on 100 and 25 size/book2market Fama-French equally-weighted (first two panels) and cap-
weighted (last two panels) portfolios. It also displays the average R? across subsamples of

Fama-MacBeth regressions. The sample period is July 1963 to December 2006.

100-EW Portfolios Intercept XMKT SMB HML CSVEW  R2(%)
v 0.223  -0.067 0.029 0.048  0.005  24.657
SE 0.024 0.016 0.012 0.012  0.002
tstat 9222  -4.173 2320 3.916  2.847

25-EW Portfolios Intercept XMKT SMB HML CSVEW  R2(%)
v 0278  -0.133 0.042 0.064 0.009  51.962
SE 0.028 0.021  0.017 0.016  0.003
tstat 9.969  -6.447 2480 3.927  2.703

100-CW Portfolios Intercept XMKT SMB HML CSVEW  R2(%)
v 0.155  -0.007 0.004 0.037  0.003  24.262
SE 0.023 0.017 0.012 0.013  0.002
tstat 6.896  -0.421 0.323 2.762  1.909

25-CW Portfolios Intercept XMKT SMB HML CSVEY  R2(%)
v 0.175  -0.034 0.010 0.048  0.004  50.815
SE 0.024 0.021 0.016 0.016  0.003
tstat 7417  -1.624 0.625 2.910  1.395
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Figure D.1: Cap-weighted idiosyncratic variances, daily estimation: The white
line is the time series of the cap-weighted idiosyncratic variance with respect to the FF
model estimated daily as in equation 1.11. The darker line shows the time series of the cap-
weighted version of CSV estimated daily as in equation 1.5. The sample period is January
1964 to December 2006.
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Figure D.2: Equally-weighted idiosyncratic variances, daily estimation: The
white line is the time series of the equal-weighted average idiosyncratic variance with respect
to the FF model estimated daily similar to equation 1.11. The darker line shows the time
series of the CSVEW estimated daily as in equation 1.4. The sample period is January 1964
to December 2006.
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Figure D.3: Regime Switching filtered probabilities and cap-weighted CSV,
monthly estimation: The red line plots the filtered probability of the CSVEW being
in the high-mean high-variance regime of a Markov regime-switching model specified in
equation 1.14. The blue line shows the monthly time series of the CSVEW estimated at
the end of each month as the average of the daily estimations (as in equation 1.4) during
the month. The shaded areas are the NBER recessions. The sample period is July 1963 to

December 2006.
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Figure D.4: Regime Switching filtered probabilities and equal-weighted CSV
monthly estimation: The red line plots the filtered probability of the CSVEW being
in the high-mean high-variance regime of a Markov regime-switching model specified in
equation 1.14. The blue line shows the monthly time series of the CSVEW estimated at
the end of each month as the average of the daily estimations (as in equation 1.4) during
the month. The shaded areas are the NBER recessions. The sample period is July 1963 to

December 2006.
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Figure D.5: CSVFW and Consumption Volatility:Monthly time series of CSVEW on
the right-hand axis and Consumption Volatility on the left-hand axis. The sample period
is January 1990 to December 2006.
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Figure D.6: CSVEY and Inflation Volatility: Monthly time series of CSVEW on the
right-hand axis and Inflation Volatility on the left-hand axis. The sample period is January
1990 to December 2006.
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APPENDIX E

Tables and Figures of Chapter 2

Table E.1: Persistence Properties of Adjusted Dividend-Price Ratio, Broad Market CRSP
VW index. This table displays the autocorrelation coeflicients of first and second order
and the augmented Dickey-Fuller test of a unit root with the respective p-values and stan-
dard errors for the unadjusted d-p series, the adjusted d-p series using the Lettau and van
Nieuwerburgh (2008) adjustment with one and two breaks and the d-p series adjusted using
the BCP posterior mean. The last line of each panel present the same statistics for the BCP
posterior mean of the d-p ratio. The upper panel present the figures for the annual series
and the lower panel for the quarterly series. The sample period is 1927 to 2010.

Annual data AC(1) AC(2) ADF test p-value Std.dev.
dp unadjusted 0.925 0.848 -1.508 0.123 0.429
dp, 1 break 0.775  0.555 -3.209 0.002 0.256
dp, 2 break 0.657 0.300  -4.044 0.001  0.204
dp BCP-adjusted  0.019 -0.187  -8.973 0.001 0.069
Posterior Mean ~ 0.958  0.898 0.587 0.841 0.407

Quarterly data ~ AC(1) AC(2) ADF test p-value Std.dev.
dp unadjusted 0.888  0.886 -4.275 0.001 0.437
dp, 1 break 0.720 0.726  -7.214 0.001  0.283
dp, 2 break 0.627 0.620  -8.702  0.001  0.241
dp BCP-adjusted -0.135 0.097  -20.840 0.001 0.111
Posterior Mean ~ 0.975  0.960 0.280 0.754 0.410
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Table E.2: Predictability Regression with adjusted log d-p, Broad Market CRSP VW
index. This table present the summary statistics of the predictive regression using the
unadjusted d-p series and the adjusted series using 1 and two breaks for the mean of the
predictor, as in Lettau and van Nieuwerburgh (2008) and using the BCP adjustment.The
upper panel present the figures using the annual series and the lower panel using the quar-
terly series to predict the return of the market one period ahead. The sample period is 1927

to 2010.

Annual data a  tstat B t-stat R*(%)

dp unadjusted 0.089 4.295 0.095 2.281 4.033

dp, 1 break 0.090 4.321 0.241 4.489 9.473

dp, 2 break 0.090 4.653 0.387 4.579 15.270

dp BCP-adjusted 0.089 4.651 1.284 7.770 19.178
Posterior Mean  0.317 2.116 0.068 1.545 1.891
Quarterly data a  tstat B t-stat R*(%)
dp unadjusted 0.023 3.777 0.021 1.332 0.726
dp, 1 break 0.023 3.746 0.047 1.926 1.510
dp, 2 break 0.023 3.758 0.071 2.665 2.577
dp BCP-adjusted 0.023 3.753 0.226 3.843 5.432
Posterior Mean ~ 0.057 0.693 0.007 0.427 0.077
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Table E.3: Out-of-Sample return prediction, Annual data, Broad Market CRSP VW
index. The first column presents the R3,,, the second column the OOS R? and the third
column the difference in utility gains of using the return forecast minus the utility of using
the prevailing historical average for a mean-variance investor with risk aversion parameter
~v = 3 and stock index allocation limits of [0%, 150%]. The prevailing historical average’
coefficient of the MZ regressions were negative, hence the R3,, for the historical average
are meaningless.

OOS CRSPyw  Calibration: 1927-1965
OS period:  1966-2010

Ry Ros A
dp unadjusted 5.54 -3.04 -0.10
dp with Shrinkage 2.97 -1.21 -0.15
dp BCP-adjusted 7.47 8.12%*FF (.81

OOS CRSPyw Calibration: 1927-1976
OS period:  1977-2010

Rz R A
dp unadjusted 1.32 -13.42 -0.51
dp with Shrinkage 0.24 -9.46 -0.58
dp BCP-adjusted 3.18 2.31%  0.25

OOS CRSPyw Calibration: 1927-1947
OS period:  1948-2010

Ry R A
dp unadjusted 5.80 -8.47 0.07
dp with Shrinkage 4.04 -3.96 -0.08
dp BCP-adjusted 4.30 4.63%* 0.36

158



Table E.4: Pseudo-Out-of-Sample return prediction, Annual data, Broad Market CRSP
VW index. The first column presents the R3,,, the second column the OOS R? and the
third column the difference in utility gains of using the return forecast minus the utility
of using the prevailing historical average for a mean-variance investor with risk aversion
parameter 7 = 3 and stock index allocation limits of [0%, 150%]. The prevailing historical
average’ coefficient of the MZ regressions were negative, hence the R3,, for the historical
average are meaningless.

Pseudo-O0OS Calibration: 1927-1965
OS period:  1966-2010

] Ry R A
dp, 1 break 14.04 12.9%%*%  1.16
dp, 2 breaks 15.44 14.9%%% 191

dp BCP-adjusted 19.61 201Kk 3.03

Pseudo-O0S Calibration: 1927-1976
OS period:  1977-2010

Riz Rbs A
dp, 1 break 9.66 9.87%F% 1,19
dp, 2 breaks 8.15 1.99 1.26
dp BCP-adjusted 18.36 18.3%%*F 287

Pseudo-O0S Calibration: 1927-1947
OS period:  1948-2010

Riyy R A
dp, 1 break 8.74 3.85%F  0.97
dp, 2 breaks 14.27 15.5%F*  1.93

dp BCP-adjusted 22.07 22.8%%% 289
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Table E.5: Pseudo-Out-of-Sample return prediction, Quarterly data, Broad Market CRSP
VW index. The first column presents the R3,,, the second column the OOS R? and the
third column the difference in utility gains of using the return forecast minus the utility
of using the prevailing historical average for a mean-variance investor with risk aversion
parameter 7 = 3 and stock index allocation limits of [0%, 150%]. The prevailing historical
average’ coefficient of the MZ regressions were negative, hence the R3,, for the historical
average are meaningless.

Pseudo-O0S Calibration: 1927:3-1965:3
OS period:  1965:6-2010:12

] Ry R A
dp, 1 break 3.70 3.24%%% (89
dp, 2 breaks 4.89 4.99%** 1.52
dp BCP-adjusted 8.98 8.4HH* 2.37

Pseudo-O0S Calibration: 1927:3-1976:3
OS period:  1976:6-2010:12

Riz R A

dp, 1 break 3.00 JHHk 0.90
dp, 2 breaks 4.01 4. 57k 1.37
dp BCP-adjusted 6.70 6.83%F* 1.82

Pseudo-O0S Calibration: 1927:3-1947:3
OS period:  1947:6-2010:12

R3yz Rbs A
dp, 1 break 2.35 2.46%** 0.56
dp, 2 breaks 4.37 4.96%** 1.37
dp BCP-adjusted 5.42 6.01%%* 2.09
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Table E.6: Out-of-Sample return prediction, Annual data, S&P 500 index and equal-
weighted CRSP broad market index. The first column presents the R3,,, the second column
the OOS R? and the third column the difference in utility gains of using the return forecast
minus the utility of using the prevailing historical average for a mean-variance investor with
risk aversion parameter v = 3 and stock index allocation limits of [0%, 150%)]. The prevailing
historical average’ coefficient of the MZ regressions were negative, hence the R%,, for the
historical average are meaningless.

OO0S SP500 Calibration: 1927-1965
OS period:  1966-2010

Ry R A
dp unadjusted 5.19 -2.91 -0.13
dp with Shrinkage 3.12 -0.92 -0.10
dp BCP-adjusted 4.16 5.21°%* 0.66

OOS CRSPgy  Calibration: 1927-1965
OS period:  1966-2010

Rz R A
dp unadjusted 4.05 -0.57 -0.30
dp with Shrinkage 0.19 -0.21 -0.25
dp BCP-adjusted 2.60 3.79%* 0.20

161



Table E.7: Out-of-Sample return prediction, Annual data, on Fama-French Size Portfolios.
The top panel presents the R3,,, the middle panel the OOS R? and the bottom panel the
difference in utility gains of using the return forecast minus the utility of using the prevailing
historical average for a mean-variance investor with risk aversion parameter v = 3 and stock
index allocation limits of [0%,150%)]. The prevailing historical average’ coefficient of the
MZ regressions were negative, hence the R3,, for the historical average are meaningless.

R%,, Calibration: 1927-1965
OS period:  1966-2010
Small Medium  Big
dp unadjusted 2.58 5.14 25.44
dp with Shrinkage 1.91 6.21 23.73
dp BCP-adjusted 9.75 15.13  23.14
R% ¢ Calibration: 1927-1965
OS period:  1966-2010
Small Medium  Big
dp unadjusted 0.40 -1.79 -6.00
dp with Shrinkage 0.16 -0.72 -3.36
dp BCP-adjusted -4.15 273 2.01*
A Calibration: 1927-1965
OS period:  1966-2010
Small Medium  Big
dp unadjusted -0.21 -0.13 -0.39
dp with Shrinkage -0.28 -0.31 -0.44
dp BCP-adjusted -0.72 -0.33 0.67
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Table E.8: Out-of-Sample return prediction, Annual data, on Fama-French Book-to-
Market Portfolios. The top panel presents the R3,,, the middle panel the OOS R? and the
bottom panel the difference in utility gains of using the return forecast minus the utility
of using the prevailing historical average for a mean-variance investor with risk aversion
parameter 7 = 3 and stock index allocation limits of [0%, 150%]. The prevailing historical
average’ coefficient of the MZ regressions were negative, hence the R3,, for the historical
average are meaningless.

R3,, Calibration: 1927-1965
OS period:  1966-2010
Low Medium  High
dp unadjusted 2.59 9.49 5.48
dp with Shrinkage 7.82 6.88 4.84
dp BCP-adjusted 12.69 7.74 14.07
R% Calibration: 1927-1965
OS period:  1966-2010
Low Medium  High
dp unadjusted -4.66 -1.42 0.11
dp with Shrinkage -2.69 -0.88 -0.61
dp BCP-adjusted 4.46%* -2.60 2.94%*
A Calibration: 1927-1965
OS period:  1966-2010
Low Medium  High
dp unadjusted 0.04 0.18 -0.15
dp with Shrinkage -0.06 -0.17 -0.10
dp BCP-adjusted 0.89 -0.58  -0.12
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Table E.9: Out-of-Sample return prediction of CRSP VW Index, Annual Data, using
Markov Switching model with two and three regimes. The first column presents the R3,,,
the second column the OOS R? and the third column the difference in utility gains of using
the return forecast minus the utility of using the prevailing historical average for a mean-
variance investor with risk aversion parameter v = 3 and stock index allocation limits of

(0%, 150%).

True OOS CRSPyyw Calibration: 1927-1965
OS period:  1966-2010

Ry Rps A
Unadjusted dp 5.54 -3.04 -0.10
Two States, smoothed 16.87 -6.51 -0.92
Three states, smoothed 0.00 -2.69 -0.45
Two States, unsmoothed 2.29 -5.73 -0.59
Three states, unsmoothed 0.58 =777 -0.63

True OOS CRSPyw Calibration: 1927-1976
OS period:  1977-2010

Ry R A
Unadjusted dp 1.32 -13.42 -0.51
Two States, smoothed 17.23 -6.82 -1.12
Three states, smoothed 3.72 -8.92 -0.97
Two States, unsmoothed 6.45 -6.05 -0.91
Three states, unsmoothed 5.62 -12.23 -1.26

True OOS CRSPyw Calibration: 1927-1947
OS period:  1948-2010

R, R A
Unadjusted dp 5.80 -8.47 0.07
Two States, smoothed 0.89 -5.45 -0.39
Three states, smoothed 0.09 -8.13 -0.28
Two States, unsmoothed 0.33 -15.55 0.20
Three states, unsmoothed 0.05 -29.65 -0.34
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Table E.10: Out-of-Sample return prediction of CRSP EW Index, Annual Data, using
Markov Switching model with two and three regimes. The first column presents the R3,,,
the second column the OOS R? and the third column the difference in utility gains of using
the return forecast minus the utility of using the prevailing historical average for a mean-
variance investor with risk aversion parameter v = 3 and stock index allocation limits of

(0%, 150%).
True OOS CRSPrw Calibration: 1927-1965
OS period:  1966-2010
Rz Rbs A
Unadjusted dp 4.05 -0.57 -0.30
Two States, smoothed 6.50 -4.02 -0.30
Three states, smoothed 2.43 -1.46 -0.25
Two States, unsmoothed 2.37 -6.91 -0.25
Three states, unsmoothed 1.27 -4.62 -0.48
True OOS CRSPgw Calibration: 1927-1976
OS period:  1977-2010
R, Rbs A
Unadjusted dp 1.08 -8.30 -0.92
Two States, smoothed 13.38 -4.23 -0.22
Three states, smoothed 5.79 -4.10 -0.45
Two States, unsmoothed 7.84 -8.08 -0.46
Three states, unsmoothed 0.38 -6.65 -0.85
True OOS CRSPgrw Calibration: 1927-1947
OS period:  1948-2010
RY R A
Unadjusted dp 1.96 -0.51 -0.18
Two States, smoothed 1.23 -4.59 -0.07
Three states, smoothed 2.85 -3.47 -0.44
Two States, unsmoothed 0.46 -11.22 0.12
Three states, unsmoothed 0.05 -5.70 -0.21
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Table E.11: Pseudo-OOS prediction test of CRSP VW Index, Annual Data, using Markov
Switching model with two and three regimes. The first column presents the R3,,, the
second column the OOS R? and the third column the difference in utility gains of using
the return forecast minus the utility of using the prevailing historical average for a mean-
variance investor with risk aversion parameter v = 3 and stock index allocation limits of

(0%, 150%).

Pseudo OOS CRSPyy  Calibration:  1927-1965
OS period:  1966-2010

Ry Rps A
Unadjusted dp 5.54 -3.04 -0.10
Two States, smoothed 16.33 14.00 1.08
Three states, smoothed 14.37 14.05 0.86
Two States, unsmoothed 9.67 6.22 0.44
Three states, unsmoothed 4.89 2.99 1.06

Pseudo OOS CRSPyy  Calibration: 1927-1976
OS period:  1977-2010

R, Rbs A
Unadjusted dp 1.32 -13.42 -0.51
Two States, smoothed 12.30 11.53 1.08
Three states, smoothed 13.03 10.46 0.48
Two States, unsmoothed 4.05 0.44 0.23
Three states, unsmoothed 0.79 -11.32 0.07

Pseudo OOS CRSPyw Calibration: 1927-1947
OS period:  1948-2010

R, R A
Unadjusted dp 5.80 -8.47 0.07
Two States, smoothed 9.52 4.73 0.91
Three states, smoothed 15.53 15.81 1.23
Two States, unsmoothed 6.60 -4.01 0.45
Three states, unsmoothed 5.87 1.98 0.95
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Table E.12: Pseudo-OOS prediction test of CRSP EW Index, Annual Data, using Markov
Switching model with two and three regimes. The first column presents the R3,,, the
second column the OOS R? and the third column the difference in utility gains of using
the return forecast minus the utility of using the prevailing historical average for a mean-
variance investor with risk aversion parameter v = 3 and stock index allocation limits of

(0%, 150%).

Pseudo OOS CRSPgy  Calibration: 1927-1965
OS period:  1966-2010

Ry Rps A
Unadjusted dp 4.05 -0.57 -0.30
Two States, smoothed 9.59 5.51 1.58
Three states, smoothed 13.81 14.59 0.86
Two States, unsmoothed 6.99 7.01 0.64
Three states, unsmoothed 0.50 2.21 0.08

Pseudo OOS CRSPgy  Calibration: 1927-1976
OS period:  1977-2010

Ry Rps A
Unadjusted dp 1.08 -8.30 -0.92

Two States, smoothed 7.26 -11.82 0.41
Three states, smoothed 3.73 3.68 -0.57
Two States, unsmoothed 6.49 1.08 -0.13
Three states, unsmoothed 1.69 2.78 0.01

Pseudo OOS CRSPgw Calibration: 1927-1947
OS period:  1948-2010

RY R A
Unadjusted dp 1.96 -0.51 -0.18
Two States, smoothed 7.72 0.47 1.83
Three states, smoothed 11.05 12.60 0.74
Two States, unsmoothed 6.98 6.94 0.51
Three states, unsmoothed 0.19 0.03 -0.12
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Table E.13: Out-of-Sample return prediction of CRSP VW Index, Quarterly Data, using
Markov Switching model with two and three regimes. The first column presents the R3,,,
the second column the OOS R? and the third column the difference in utility gains of using
the return forecast minus the utility of using the prevailing historical average for a mean-
variance investor with risk aversion parameter v = 3 and stock index allocation limits of

(0%, 150%).

True OOS CRSPyw Calibration:  1927:3-1965:3
OS period:  1965:6-2010:12
Rz Rbs A
Unadjusted dp 1.29 0.47 -0.03
Two States, smoothed 4.01 -0.78 -0.21
Three states, smoothed 1.37 -1.11 -0.32
Two States, unsmoothed 0.02 -0.30 -0.16
Three states, unsmoothed 1.17 0.69 -0.02
True OOS CRSPyw Calibration:  1927:3-1976:3
OS period:  1976:6-2010:12
R, Rbs A
Unadjusted dp 0.77 -0.98 -0.31
Two States, smoothed 3.73 -0.68 -0.19
Three states, smoothed 1.31 -1.11 -0.36
Two States, unsmoothed 0.02 -0.99 -0.20
Three states, unsmoothed 0.70 -0.18 -0.17
True OOS CRSPyw Calibration: 1927:3-1947:3
OS period:  1947:6-2010:12
R}, R A
Unadjusted dp 1.23 0.16 -0.09
Two States, smoothed 1.07 -1.58 -0.24
Three states, smoothed 1.63 -1.77 -0.34
Two States, unsmoothed 0.19 -0.30 0.05
Three states, unsmoothed 0.85 0.24 0.11
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Table E.14: Pseudo-OOS prediction test of CRSP VW Index, Quarterly Data, using
Markov Switching model with two and three regimes. The first column presents the R3,,,
the second column the OOS R? and the third column the difference in utility gains of using
the return forecast minus the utility of using the prevailing historical average for a mean-
variance investor with risk aversion parameter v = 3 and stock index allocation limits of

(0%, 150%).

Pseudo OOS CRSPyy  Calibration:

1927:3-1965:3

OS period:  1965:6-2010:12
Rz Rbs A
Unadjusted dp 1.29 0.47 -0.03
Two States, smoothed 3.65 3.03 0.71
Three states, smoothed 4.16 4.25 0.95
Two States, unsmoothed 3.61 2.85 0.55
Three states, unsmoothed 0.63 0.97 0.24
Pseudo OOS CRSPyy  Calibration:  1927:3-1976:3
OS period:  1976:6-2010:12
R, Rbs A
Unadjusted dp 0.77 -0.98 -0.31
Two States, smoothed 2.82 2.70 0.66
Three states, smoothed 3.14 291 0.54
Two States, unsmoothed 2.87 2.52 0.45
Three states, unsmoothed 0.50 0.82 0.16
Pseudo OOS CRSPyw Calibration: 1927:3-1947:3
OS period:  1947:6-2010:12
R}, R A
Unadjusted dp 1.23 0.16 -0.09
Two States, smoothed 2.26 2.28 0.43
Three states, smoothed 3.01 2.92 0.79
Two States, unsmoothed 2.31 2.12 0.31
Three states, unsmoothed 0.10 0.68 0.14
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Figure E.1: Dividend-Price ratio, posterior mean and posterior change point
probability series. The upper panel of the figure plots the dividend price ratio (dots) and
the estimated posterior mean (straight line) using the Bayesian Change Point algorithm of
Barry and Hartigan (1993). The sample period is 1927 to 2010. The persistence of the
“regime” mean provide further evidence of strucutural changes in the ratio’s mean.
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Figure E.2: Predictive regression on market return using a growing window of data with
information available up to time ¢. The initial calibration sample is 1927 until 1965. Annual
data, Broad Market CRSP index.
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Figure E.3: Predictive regression on market return using a growing window of data with
information available up to time ¢. The initial calibration sample is 1927 until 1965. Quar-

terly data, Broad Market CRSP index.
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Figure E.4: Cumulative squared prediction errors of the prevailing mean minus the cumu-
lative squared prediction error of the predictive variable from the linear historical regressions.
The parameters are estimated using a growing window of data with information available
up to time ¢ to predict the market return at time t+1. The initial calibration sample has
40 data points, making the first prediction from 1965 to 1966. Annual data, Broad Market

CRSP index.
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Figure E.5: Pseudo Out-of-sample test. Cumulative squared prediction errors of the
prevailing mean minus the cumulative squared prediction error of the predictive variable
from the linear historical regressions. Regression parameters are estimated each period
using a growing window of data. However, the posterior mean of the dp ratio is estimated
using the entire sample. The initial calibration sample has 40 data points, making the first
prediction from 1965 to 1966. Annual data, Broad Market CRSP index.
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APPENDIX F

Tables and Figures of Chapter 3

Table F.1: Backtests for the Growth Optimal Portfolio (GOP), the Growth Optimal
Portfolio Insurance strategy (GOPI), the CPPI and the underlying assets (Cash and Stocks).
The upper panel of the table presents the results for which the optimal multiplier and the
allocation of the GOP were estimated as in Equation (3.23) using the sample estimate over
the entire period and equal 1.6. The multiplier of the CPPI is given by Equation (3.28) and
estimated using the entire sample, and equal to 3.4. The lower panel presents the results
of an out-of-sample test in which the optimal multiplier and the allocation of the GOP
were estimated as in Equation (3.23) using the first half of the sample (1926:01-1968:05)
and the strategies performed over the second half of the available sample period (1968:06-
2010:12). The optimal multiplier in this case is equal to 1.7. The multiplier of the CPPT is
given by Equation (3.28) and estimated using the first half of the sample and equal to 3.4.
Return stands for the annualized geometric return average, Min represents the minimum
value ever attained by the portfolio for an initial value of 100 dollars of each strategy, Vol
is the annualized standard deviation of returns and MDD stands for Maximum draw-down.
All performance figures are presented in percentage terms.

Period: 01/1926-12/2010 GOP GOPI CPPI Cash Stocks

Return 11.27  7.88 3.58 3.71 9.62

Vol 29.50 12,73  4.60 0.88 18.86

MDD 95.56 51.45 4846  0.00 83.72

Min 17.00 99.23 97.49 100.00 41.27

Period: 06/1968-12/2010 GOP GOPI CPPI Cash Stocks
Return 10.41  6.76 5.63 5.66 9.49

Vol 27.03  6.63 6.01 0.87 16.16

MDD 72.20 3473 2926  0.00 51.45

Min 39.17 100.00 99.53 100.00 70.28
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Table F.5: This table presents the distribution summary of the standard multiplier (equa-
tion (3.28)) from 100 Backtest exercises for which the starting dates are selected randomly
and performed over 5, 10 and 20 years horizons. The upper panel presents the result of
estimating the multiplier using the same sample period of each historical scenario (perfect
foresight). The lower panel presents the multiplier estimation using all data available before

the starting date of each of the backtest scenarios to estimate the multiplier (sample).

Perfect Max Multiplier Range
Min Median Max
Sy 4.17 9.20 20.37
10y  4.17 7.48 16.36
20y 417 6.13 11.40
Sample Max Multiplier Range
Min Median Max
S5y 3.41 3.41 3.41
10y 341 3.41 3.41
20y  3.41 3.41 3.41
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Table F.6: This table presents the distribution summary of the standard multiplier (equa-
tion (3.23)) from 100 Backtest exercises for which the starting dates are selected randomly
and performed over 5, 10 and 20 years horizons. The upper panel presents the result of
estimating the multiplier using the same sample period of each historical scenario (perfect
foresight). The middle panel presents the multiplier estimation using the latest 10 years
of data available at the starting date of each backtest scenario. The lower panel present
the result corresponding to the dynamic estimate of the optimal multiplier. The dynamic
multiplier uses all available stock returns at the starting date of each simulated scenario
to fit a Dynamic Conditional Correlation model and forecast the conditional variance and
covariance parameters. The expected stock returns are estimated with a 10 year moving

average of past returns.

Perfect Optimal Multiplier Range
Min Median Max
Sy 1.00 2.55 17.08
10y 1.00 2.84 12.68
20y 1.00 2.83 9.21
Sample Optimal Multiplier Range
Min Median Max
Sy 1.00 2.68 10.34
10y 1.00 3.07 13.50
20y 1.00 1.97 13.00
Dynamic Optimal Multiplier Range
Min Median Max
S5y 1.00 3.04 12.14
10y 1.00 3.10 12.41
20y 1.00 2.90 12.01
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Table F.7: Percentage of times that the Optimal Multiplier is lower or equal than the
Standard multiplier. This table displays the percentage of times that the Optimal Mul-
tiplier is lower or equal than the Standard multiplier for each of the different estimation
methodologies over 100 randomly selected Backtest exercises performed over 5, 10 and 20
years horizons. The upper panel compares the optimal multiplier estimated using the same
sample period of each historical scenario (perfect foresight). The first column compares the
optimal multiplier with the standard multiplier estimated using the entire sample period (de-
noted myll) while the second column with the standard multiplier estimated using the same
sample period of each historical scenario (perfect foresight). The middle panel compares the
optimal multiplier estimated using the latest 10 years of data available at the starting date
of each backtest scenario with the standard multiplier estimated using the whole sample
period (first column) and with the standard multiplier estimated using all available sample
before the starting date of each Backtest (second column), denoted m,eriod. The lower
panel compares the optimal dynamic multiplier estimated using all available stock returns
at the starting date of each simulated scenario with m,l (first column) and rhyeriod (second
column).

Perfect Percentage of Lower Multiplier
m* <= Mall m* <= Mperiod
oy 0.58 0.95
10y 0.66 0.99
20y 0.71 0.96
Sample Percentage of Lower Multiplier
m <= mMaii m* <= mperiod
oy 0.70 0.64
10y 0.68 0.61
20y 0.69 0.68
Dynamic Percentage of Lower Multiplier
m: <= Mg TAYL: <= 77Aﬁbperiod
Sy 0.71 0.57
10y 0.66 0.55
20y 0.70 0.59
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Table F.8: Optimal Multiplier’s portfolio over-performance probability with Perfect Fore-
sight on parameter values and with Sample estimates. This table displays the over-
performance probability of the strategy defined by the optimal multiplier over the CPPI
strategy using the standard multiplier over 100 randomly selected Backtest exercises in the
available sample period and performed over 5, 10 and 20 years horizons. The upper panel
compares the optimal multiplier estimated using the same sample period of each historical
scenario (perfect foresight). The first column compares the optimal multiplier with the
standard multiplier estimated using the entire sample period (denoted m,ll) while the sec-
ond column with the standard multiplier estimated using the same sample period of each
historical scenario (perfect foresight). The middle panel compares the optimal multiplier
estimated using the latest 10 years of data available at the starting date of each backtest sce-
nario with the standard multiplier estimated using the whole sample period (first column)
and with the standard multiplier estimated using all available sample before the starting
date of each Backtest (second column), denoted r,eriod. The lower panel compares the
optimal dynamic multiplier estimated using all available stock returns at the starting date
of each simulated scenario with mgll (first column) and 7hy,eriod (second column).

Perfect Over Performance - Probability

Mall =4.22 Mperiod

oy 0.850 0.670

10y 0.680 0.540

20y 0.660 0.510
Sample Over Performance - Probability

May =4.22 mperiod

S5y 0.480 0.470

10y 0.430 0.420

20y 0.360 0.310
Dynamic Over-performance - Probability

My =4.22 mpem'od

Sy 0.640 0.690

10y 0.620 0.720

20y 0.670 0.720
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Table F.9: This table displays the average return of the strategies defined by the standard
and optimal multipliers over 100 randomly selected Backtest exercises in the available sample
period and performed over 5, 10 and 20 years horizons. The first column presents the results
corresponding to the optimal multiplier (either static or dynamic). The second column
presents the results corresponding to the standard multiplier estimated using the entire
sample period (denoted mgll) while the third column presents the results corresponding to
the standard multiplier estimated using the same sample period of each historical scenario
(perfect foresight) or the data available at the starting date of each historical scenario
(sample estimate).

Perfect Average Return
m* My =4.22 Mperiod
oy 0.093 0.080 0.081
10y  0.091 0.089 0.090
20y  0.091 0.090 0.090
Sample Average Return
m* Mall =4.22 mperiod
oy 0.070 0.080 0.075
10y 0.077 0.089 0.085
20y 0.076 0.090 0.093
Dynamic Average Return
m: My =4.22 mperiod
oy 0.080 0.080 0.075
10y 0.091 0.089 0.085
20y 0.096 0.090 0.093
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Figure F.1: Impact of assets’ correlation in Portfolio’s value after 5 years with og = 0.15,
or = 0.05. The black surface draws the end of period value of a CPPI strategy with m = 4
and k = 0.9 as given by Equation (3.16). The red surface draws the end of period value of
a Fixed-Mix Strategy as given by Equation (3.15) with the same initial allocation: 7 = 0.4.
The upper panels of the figure correspond to negative and null correlation, i.e. p = {—0.5,0}
and the lower panels to positive correlations, i.e. p = {0.5,0.75}.
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Figure F.2: Cushion Growth Rate, Correlation and Optimal Multiplier. The dark line
represents the value of the Cushion’s growth rate for the optimal multiplier values cor-
responding to the different levels of the correlation coefficient p. The optimal multiplier
is given by Equation (3.4) and the following parameter values: pg = 0.08, og = 0.15,
pur = 0.03, og = 0.05 and p = [—1,1]. The surface represents the Cushion’s growth rate for
different multiplier values, i.e. m = [1,10] and correlations. This figure illustrates that for
uncorrelated assets, the choice of the multiplier becomes critical (surface) and the optimal
multiplier increases with correlation (dark line), everything else equal.
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Figure F.3: Cushion Growth Rate, Volatility and Optimal Multiplier. The dark line
represents the value of the Cushion’s growth rate for the optimal multiplier values corre-
sponding to the different levels of the Satellite’s volatility og. The optimal multiplier is
given by Equation (3.4) and the following parameter values: ps = 0.08, og = [0.05,0.2],
ur = 0.03, og = 0.05 and p = —0.025. The surface represents the Cushion’s growth rate for
different multiplier values, i.e. m = [1,10] and volatilities. This figure illustrates that for
highly volatile assets, the choice of the multiplier becomes critical (surface) and the optimal
multiplier decreases with the volatility (dark line), everything else equal.
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Figure F.4: The green line represents the log of the cumulative returns of the Growth
Optimal Portfolio Insurance strategy (GOPI), the red line is the log of the cumulative
returns of the CPPI, the dark blue line corresponds to the Growth Optimal Portfolio (GOP)
and the light blue corresponds to Cash. The optimal multiplier and the allocation of the
GOP were estimated as in Equation (3.23) using the sample estimates of the entire sample
period. The multiplier of the CPPI is given by Equation (3.28) and estimated using the
entire sample (1925-2010).
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Period: 1968-2010
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Figure F.5: The green line represents the log of the cumulative returns of the Growth
Optimal Portfolio Insurance strategy (GOPI), the red line is the log of the cumulative
returns of the CPPI, the dark blue line corresponds to the Growth Optimal Portfolio (GOP)
and the light blue corresponds to Cash. This is an out-of-sample test in which the optimal
multiplier and the allocation of the GOP were estimated as in Equation (3.23) using the
first half of the sample (1926:01-1968:05) and the strategies performed over the second half
of the available sample period (1968:06-2010:12). The multiplier of the CPPI is given by
Equation (3.28) and estimated using the first half of the sample.
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